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Abstract We consider an initially horizontal curved elastic strip, which bends and twists under the action of
the varying length of the span between the clamped ends and of the gravity force. Equations of the theory of
rods, linearized in the vicinity of a largely pre-deformed state, allow for semi-analytical (or sometimes closed-
form) solutions. A nonlinear boundary value problem determines the vertical bending of a perfect beam, while
the small natural curvature additionally leads to torsion and out-of-plane deflections described by the linear
equations of the incremental theory. Numerical experiments demonstrate perfect correspondence to the finite
element rod model of the strip. Comparisons to the predictions of the shell model allow estimating the range
of applicability of the three-dimensional theory of rods. Practically relevant conclusions follow for the case of
high pre-tension of the strip.

Keywords Elastic rods · Incremental equations · Spatial Kirchhoff rods · Shell finite elements · Asymptotics

1 Introduction

Problems of finite spatial deformations of elastic rods with coupled torsion and bending are mainly treated
using finite element or other variational formulations; examples of solutions based on differential equations
are rare to find in the literature. This increases the value of such semi-analytic or even closed-form solutions, in
particular for studies of parameter sensitivity, asymptotic treatment, etc. Particularly interesting are equation-
based solutions for practically relevant or fundamental problems. Thus, it can be analytically shown that a
straight rod with a symmetric cross section assumes a helical form under the action of a dead-end moment,
see Eliseev [1]. An iterative algorithm featuring sequential solutions of a nonlinear boundary value problem
(BVP) for the spatial bending of a clamped-free circular rod by an out-of-plane force was suggested in [2].
Huynen et al. [3] as well as Belyaev and Eliseev [4] treated constrained torsion of a rod in a spatially curved
channel. For the analytic treatment of instability and supercritical torsion of annual rings with unsymmetric
cross section and natural out-of-plane curvature, see Vetyukov [5]. Dias and Audoly [6] developed and applied
an extended rod-like theory of folded elastic strips; Audoly and Seffen [7] considered stability and various
supercritical configurations of naturally curved elastic strips and compared to experiments. Fang and Chen
[8] considered small oscillations of a largely deformed rod with clamped ends by first solving the nonlinear
problem of plane deformation and then using a linearized version of the theory, which is methodologically
close to the present study.
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Equations, linearized in the vicinity of a pre-stressed but undeformed configuration, are frequently used
for stability analysis. Thus, problems of lateral-torsional buckling of deep beams under various kinds of
loading have become classical, see Eliseev [1], Vetyukov [2], Simitses and Hodges [9]. Buckling of pre-
twisted straight rods has been extensively discussed by Glavardanov and Maretic [10] and by Ziegler [11].
Michell’s instability of twisted elastic rings was re-discovered byGoriely [12]. For lateral-torsional buckling of
thin-walled channel-like rods of open profile at bending and compression, see [13]. While using incremental
formulations, the mentioned studies feature trivial pre-stressed configurations of the rod, which are either
straight or circular.

Many essentially nonlinear solutions to problems of in-plane deformations of rod structures are avail-
able in the literature. Thus, a contact of a closed elastic rod with cylindrical pulleys is analyzed in [14–16].
Denoël and Detournay [17] used Eulerian kinematic formulation in the problem of deformation of an elastica
within a channel contacting both its walls. For post-buckling of shear-deformable beams, we refer to Humer
[18]. Stability of non-trivial plane equilibrium configurations of flexible rods is studied in comparison with
experimental results by Levyakov and Kuznetsov [19].

The present contribution combines all mentioned kinds of analysis. We decompose coupled flexural-
torsional deformation of a naturally curved rod into large in-plane bending of a perfect beam and an additional
incremental out-of-plane deformation and torsion because of the curvature. The resulting configuration follows
after solving two BVPs, the nonlinear one for the large pre-deformation and the linear one with the equations
of the incremental theory. Further we demonstrate the asymptotic character of the solution for flat rods, whose
out-of-plane bending stiffness is high, by deriving and solving the equations for the leading order terms. Closed-
form solution are discussed for specific combinations of parameters, which either result in a particularly simple
differential equation, or at which the approximate solution is easy to obtain.

The semi-analytical results are in a perfect correspondence with the outcome of finite element simulations
with classical Kirchhoff rod models; see [20–22] for the numerical schemes. We also involved a shell finite
element solver [23] and compared deflections and rotations against data, obtained with the shell model of
the strip. Despite good correspondence for moderately thick strips, we observed significantly different results
decreasing the thickness-to-width ratio of the cross section of the rod. Attributing the discrepancies to the
shell-specific deformation forms, which cannot be described by the kinematics of a rod, we thus determine
the little known boundary of the range of applicability of the Kirchhoff theory to strips with a thin cross
section at coupled bending and torsion. We conclude the paper by a practically relevant study of the effect of
axial pre-stretch on the lateral and torsional deformations of a horizontally clamped strip owing to its natural
curvature in the horizontal plane.

2 Theory of Kirchhoff rods: nonlinear and incremental

We will employ the equations of the nonlinear theory of rods in the form suggested by Eliseev [1,24], see also
[2]. For alternative but mathematically equivalent presentations, we refer to Antman [25] as well as Simitses
andHodges [9]. Equations of the theory follow from the principle of virtual work, applied to amaterial linewith
three translational and three rotational degrees of freedom of particles. In the classical theory, conditions of
inextensibility and absence of shear impose certain constraints between the rotations of particles and variations
of the axis of the rod. In the following, we consider the rod to be unshearable, but extensible, thus extending
the range of considered examples.

Particles of the rod are identifiedby theirmaterial coordinate s,which is the arc coordinate in the undeformed
state. Position vectors of particles r(s) define the geometry of the axis, and the orientation of particles is
determined by the rotation of three basis vectors ek(s); see Fig. 1. Constraints of the classical theory allow
choosing the third basis vector in the tangent direction, such that the unit tangent vector is

e3 = t = r ′/|r ′|. (1)

The strain measure for axial extension is traditionally introduced as

ε = |r ′| − 1, r ′ = (1 + ε)t. (2)

The rate of change of the local basis along the axis of the rod is determined by the vector of twist and
curvature Ω:

e′
k = Ω × ek, Ω = 1

2
ek × e′

k = Ωkek; (3)
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summation over the repeating index is implied, and Ωk are the components in the local basis.
In the undeformed reference state, we have the axis ◦r(s) and the orientations of particles ◦e(s), and

|◦r ′
(s)| = 1,

◦
Ω = ◦

Ωk
◦ek . (4)

Along with ε, the deformation from the reference state to the actual one is described by the vector

κ = (Ωk − ◦
Ωk)ek = κkek . (5)

The components κ1,2 are responsible for bending, and κ3 shall be interpreted as torsion of the rod. Computing
these strain measures, we deal with the components Ωk and

◦
Ωk , which are, respectively, written in the actual

basis and in the reference one. If we write the tensor of rotation of a particle from the reference to the actual
state P, then its derivative along the axis is expressed similarly to the time derivative of the rotation tensor of
a rigid body (as if κ was angular velocity and s was time):

P = ek
◦ek, P′ = κ × P. (6)

The internal force factors are the force Q(s) and the moment M(s), which act from the particle s + 0 on
the neighboring one s − 0. The equations of balance in a state of static equilibrium

Q′ + q = 0,

M ′ + r ′ × Q + m = 0 (7)

feature the external distributed forces q and moments m, which are counted per unit material length of the rod.
The constitutive relations

Qt ≡ Q · t = bε, M = a · κ (8)

relate the internal axial (also known as normal) force and the moments to the strain measures. The physically
linear model features the tension stiffness b and the symmetric tensor of stiffness for bending and torsion a,
which has constant components in the local basis:

a = ai j ei e j ⇒ Mi ≡ M · ei = aikκk . (9)

Conventionally, the torsion and the bending are decoupled, and

a = −E t × J × t + at t t, (10)

in which the bending stiffness is determined by the tensor of moments of inertia J of the cross section and the
Young modulus E . The torsional stiffness at follows from the classical Saint-Venant problem of pure torsion
as the integral of the Prandtl stress function times the shear modulus.

No constitutive relation exists for the transverse components of the force vector Q1,2, as the corresponding
work-conjugate deformation forms are kinematically constrained in the considered model. Instead, they follow
from the equilibrium conditions (7). The system of equations is completed by the boundary conditions.

Fig. 1 Rod as a material line with positions of particle r(s) and their orientations ek(s) depending on the material coordinate s,
t = e3
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Small increments in the external forces q· and moments m· result in small displacements r · = u and
rotations e·k = θ × ek away from the static equilibrium. The incremental formulation [1,2] comprises above
equations, linearized in the vicinity of a pre-stressed and deformed equilibrium state. The constraint (1) holds
during the deformation, which relates displacements and small rotations θ :

u′ = ε· t + θ × (1 + ε)t, ε· = u′ · t. (11)

The constitutive relations

Q·
t = bε·,

M· = θ × M + a · θ ′ (12)

and the balance equations

Q·′ + q· = 0,

M·′ + u′ × Q + r ′ × Q· + m· = 0 (13)

feature the force factors Q, M in the rod in the previous equilibrium state and their small increments Q·, M·.
Deriving Eqs. (12), we accounted for the variation of the stiffness tensor (9),

a· = ai j (ei e j )· = θ × a − a × θ , (14)

as well as for the Clebsch formula

κ · = θ ′ + θ × κ, (15)

see [1,2] for details of derivation.
In Eulerian approach, stability of the static equilibrium of a conservative system is judged by the existence

of infinitesimally close equilibrium configurations. It means that the configuration is critical if the above linear
equations allow for a non-trivial solution u, θ , M· and Q· with q· = 0 and m· = 0; the boundary conditions
are to be treated correspondingly. A pitchfork bifurcation of an equilibrium path corresponds to a classical
buckling of a conservative system [1,2,11].

3 Statement of the problem

We consider a flat strip of length L , which is clamped at both ends such that the distance between the ends
is kinematically set to H . If H < L , then it is more than probable that the straight configuration of the strip
becomes unstable and it bends out of its own plane. The deformed configuration would become essentially
three-dimensional including torsion, if the undeformed strip is not straight and has a curvature radius R; see
Fig. 2. According to the strategy declared above, we develop a rod model of the strip. Particles are associated
by a material coordinate s ∈ [−L/2, L/2] counted from the middle point of the strip, and the undeformed
configuration has a curvature R−1. The effect of the transverse gravity force is also accounted for in the
analysis.

The possible deformed state, the global Cartesian coordinate system xyz as well as the chosen orientation
of the local basis vectors ek are shown in Fig. 3.

Fig. 2 Undeformed configuration of a flat strip with length L and curvature radius R, which is clamped between points with a
distance H
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Fig. 3 Deformed strip with local basis, seen from two viewpoints; dashed line represents the plane configuration in the absence
of the natural curvature at R → ∞

The first local basis vector e1 is the direction in which the cross section of the rod is elongated; the
corresponding bending stiffness a11 is small. The second local basis vector e2 is orthogonal to the plane of the
strip, and thus ◦e2 is orthogonal to the plane of Fig. 2; the bending stiffness a22 is high. The third local basis
vector e3 is tangential to the deformed axis of the rod. Two variants of the clamping conditions are considered
in the following (see also Fig. 4). The first option is to demand that both ends of the rod are directed along the
horizontal line connecting them (z axis), such that

{e1, e2, e3}
∣
∣
s=±L/2 = {i, j , k}, r

∣
∣
s=±L/2 = ±H/2k, (16)

in which {i, j , k} are the unit basis vectors of the global Cartesian coordinates. The second considered option
is vertical clamping, in which we demand

{e1, e2, e3}
∣
∣
s=±L/2 = {i, ∓k, ± j}, r

∣
∣
s=±L/2 = ±H/2k. (17)

In the absence of the natural curvature (when R−1 → 0), the deformation takes place entirely in the plane yz.
Increasing R−1, we obtain symmetric configurations with displacements in x direction and torsion. The semi-
analytical solution below accounts for the small natural curvature in terms of the incremental theory.

Fig. 4 In-plane deformed configurations of an elasticawithout gravity for various ratios of the length to the span L/H , horizontally
clamped (α = 0) on the left and vertically clamped (α = π/2) on the right
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4 Semi-analytical solution for an inextensible rod

As long as H < L and the gravity forces are moderate, we expect the effect of the tensional deformations to
be negligible and first derive the equations under the assumption that b → ∞ and ε = 0. The geometrically
nonlinear deformation in the plane yz, which takes place at no natural curvature, is then determined by the
angle of rotation of particles from the straight undeformed state ϕ(s):

r(s) = y(s) j + z(s)k, y′ = sin ϕ, z′ = cosϕ, (18)

see Fig. 4 for the examples of configurations, which take place at different ratios L/H in the absence of
gravity. We begin by integrating the first of the balance equations (7) for the force vector Q, which may not
have transverse components in the middle point (at s = 0) owing to the symmetry considerations:

Q′ − ρg j = 0, Q
∣
∣
s=0 = Q0k ⇒ Q = Q0k + ρgs j , (19)

ρ is the mass density of the rod per unit length and g is the free fall acceleration. Considering no external
moment loading, m = 0, we substitute (19) in the balance of moments (second line in (7)) and with the
kinematics (18) we find

M ′ = (−Q0 sin ϕ + ρgs cosϕ)i . (20)

The differential equation for ϕ follows as we compute the bending moment using the constitutive relations.
There is no initial curvature about x axis,

◦
Ω1=0, and with (3) we compute

κ1 = Ω1 = −ϕ′. (21)

With the tensor of bending and torsional stiffness

a = ax e1e1 + aye2e2 + at e3e3, a11 = ax , a22 = ay (22)

we find from (8) that

M = −axϕ
′ i, (23)

and the BVP follows from (20):

axϕ
′′ − Q0 sin ϕ + ρgs cosϕ = 0,

ϕ(0) = 0, ϕ(L/2) = α,

∫ L/2

0
cosϕ ds = H/2. (24)

The boundary condition at s = 0 follows again from the symmetry, and both considered variants of the
boundary conditions follow by either setting α = 0 (horizontal clamping) or α = π/2 (vertical one) for the
value of ϕ at the right end. The integral condition for the distance between the clamping points shall be satisfied
by the appropriate choice of the horizontal force Q0.

Particularly at higher ratios L/H , the solution of the BVP (24) is not unique: various equilibria are
possible. Most of them are, however, unstable, see Levyakov and Kuznetsov [19], Singh and Goss [26] for
detailed discussions. Themost straightforward option for solving is the numerical integration of an initial value
problem by choosing an initial approximation for the curvature in the middle ϕ′(0) as well as for the force
Q0 and then by iteratively seeking better approximations, which allow fulfilling the condition at s = L/2 and
the integral one from (24) in the framework of the Newton method. This, however, does not allow excluding
unstable solutions from the consideration (in contrast to finite element schemes).Obtaining desired deformation
forms with no loops as depicted in Fig. 4 is rather a matter of choice of the initial approximation for the Newton
method. One may presume that the sought solutions correspond to the smallest Q0 and ϕ′(0) (by absolute
values), at least in the absence of the gravity loading. The numerical solution is easily implemented using
Wolfram Mathematica1 and poses no difficulties as long as the bending stiffness is moderate. The problem
becomes, however, ill-conditioned and challenging at very small bending stiffness, when very small variations
in the initial conditions have enormous impact on the solution at L/2.

1 http://www.wolfram.com.

http://www.wolfram.com
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Knowing the in-plane solution ϕ(s), we consider its small increment because of the perturbation in the
form of small natural curvature about the local axis e2,

◦
Ω

·
2 = R−1. (25)

For an inextensible rod Eq. (11) reduces to

u′ = θ × t. (26)

Introducing components of the small rotation vector in the local basis and recalling that

e3 = t = r ′ = sin ϕ j + cosϕk, e1 = i, e2 = e3 × e1 = cosϕ j − sin ϕk, (27)

we write

θ = θkek, u′ = θ2e1 − θ1e2. (28)

The distributed gravity force does not change, q· = 0, and from the first line in (13) as well as symmetry
considerations we conclude that Q· = Q·

0 i = const.
Now, we extend the kinematic Clebsch formula for the increment of the strain measure κ · (15): the imposed

natural curvature of the rod results in an additional term− ◦
Ω

·
2e2 on the right-hand side (compare to the definition

of κ in (5)). Thus we obtain an extended version of the incremental constitutive relation for the moment in the
second line of (12):

M· = θ × M + a · θ ′ − ay
◦

Ω
·
2e2 = axϕ

′(θ2e3 − θ3e2)

+axθ
′
1e1 + ayθ

′
2e2 + atθ

′
3e3 + ϕ′(ayθ3e2 − atθ2e3) − ay

◦
Ω

·
2e2, (29)

we substituted the bending moment for the pre-deformed state (23) and took into account that e′
2 = −ϕ′e3,

e′
3 = ϕ′e2.
Finally, we compute the derivative M·′, substitute into the incremental equation of balance of moments

(second line of (13)) with m· = 0 and project the resulting vectorial differential equation for the three
components of θ on the directions of the local basis ek . The mathematical transformations are easy with a
computer algebra software, and in the end of the day we arrive at a system of differential equations for the
components θk . The first one (projection on the direction e1) reads

axθ
′′
1 − (Q0 cosϕ + ρgs sin ϕ)θ1 + Q·

0 sin ϕ = 0. (30)

The problem for the increment of the deformation in the plane yz decouples, and alongwith the trivial boundary
conditions for θ1 as well as the requirement of vanishing increment of the integral conditions in (24) this allows
us to conclude that θ1 = 0 identically and that Q·

0 = 0.
Projections of the vectorial balance equations on the directions e2 and e3 result in a system of equations

for the torsional and out-of-plane bending components of θ :

ayθ
′′
2 + (at + ay − ax )ϕ

′θ ′
3 + (ay − ax )ϕ

′′θ3
− (

(at − ax )ϕ
′2 + Q0 cosϕ + ρgs sin ϕ

)

θ2 = 0,

atθ
′′
3 − (at + ay − ax )ϕ

′θ ′
2 − (ay − ax )ϕ

′2θ3
− (

(at − ax )ϕ
′′ + Q0 sin ϕ − ρgs cosϕ

)

θ2 + ayϕ
′ ◦
Ω

·
2 = 0. (31)

The linear BVP for the components θ2 and θ3 follows from Eq. (31) with the boundary conditions

θ2(0) = 0, θ2(L/2) = 0,

θ ′
3(0) = 0, θ3(L/2) = 0, (32)

as the strip is clamped at the right end and the solution is symmetric at s = 0.
The second equation in (31) becomes slightly shorter if we exclude the constant Q0 using the equation of

in-plane bending (24):

ayθ
′′
2 + (at + ay − ax )ϕ

′θ ′
3 + (ay − ax )ϕ

′′θ3
− (

(at − ax )ϕ
′2 sin ϕ + ρgs + axϕ

′′ cosϕ
)

θ2/ sin ϕ = 0,

atθ
′′
3 − (at + ay − ax )ϕ

′θ ′
2 − (ay − ax )ϕ

′2θ3 − atϕ
′′θ2 + ayϕ

′ ◦
Ω

·
2 = 0. (33)
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The absence of Q0 simplifies the logic of solution. Although the coefficient with (· · · )/sin ϕ in the first equation
will not be singular as ϕ fulfills (24), it needs to be treated in the numerical procedure, e.g., by shifting the
boundary conditions (32) from s = 0 to a neighboring point s = δ, in the computations below we used
δ = 10−6L .

Comparing solutions in the numerical examples below, we use the rotation of the middle point of the strip
θ3(0) as well as its lateral deflection

ux (0) = −
∫ L/2

0
θ2 ds (34)

as principal kinematic entities.

5 Asymptotics for a thin strip

Flat strips with thin cross sections are very stiff for bending about the axis e2; thus ay 
 ax , at holds. In this
section we seek equations for the limiting case, when this stiffness is very high, and introduce a formal small
parameter λ replacing in the equations ay by λ−1ay . The unknown functions are sought in the form of formal
asymptotic expansions,

θ2 = λ0
0

θ2 + λ1
1

θ2 + · · · , θ3 = λ0
0

θ3 + λ1
1

θ3 + · · · . (35)

Now we formally substitute the above series in the system (33) and balance terms of the order λ−1, thus
obtaining equations for the leading order terms:

0

θ ′′
2 + ϕ′ 0θ ′

3 + ϕ′′ 0θ3 = 0,
0

θ ′
2 + ϕ′ 0θ3 − ◦

Ω
·
2 = 0. (36)

The first equation is evidently a derivative of the second one, and at the first step we find

0

θ3 = (
◦

Ω
·
2 − 0

θ ′
2)/ϕ

′. (37)

We are not able to compute the leading order terms yet. The second step of the procedure of asymptotic splitting
(see [1,2,27] for discussions) is required, which allows finding the principal terms from the conditions of
solvability for the minor ones. We again address the full system (33) and balance terms of the order λ0, taking

(37) into account. The resulting equations for the first-order correction terms
1

θ2,3 again have the structure of
the system (36), but are no longer homogeneous as the leading order terms are present. Equations need to be

non-contradictory (i.e., solvable), and we finally arrive at a single fourth-order differential equation for the
0

θ2:

atϕ
′3 0

θ I V
2 − 4atϕ

′2ϕ′′ 0θ ′′′
2 + (

(2at + ax )ϕ
′4 + 8atϕ

′′2 − 3atϕ
′ϕ′′′)ϕ′ 0θ ′′

2

+
(

ϕ′′ (2axϕ′4 − 8atϕ
′′2 + 7atϕ

′ϕ′′′) − atϕ
′2ϕ I V

) 0

θ ′
2

+ (

(at + ax )ϕ
′4 + (at + 2ax )(ϕ

′ϕ′′′ − ϕ′′2) + (ρgs + axϕ
′′ cosϕ)ϕ′2/ sin ϕ

)

ϕ′3 0

θ2

+at
(

ϕ′′(ϕ′4 + 8ϕ′′2 − 7ϕ′ϕ′′′) + ϕ′2ϕ I V
) ◦

Ω
·
2 = 0. (38)

Although not compact, the single equation for the principal term in θ2 is more efficient when ay is so large
that the original system (33) becomes ill-conditioned. The boundary conditions for (38) read

0

θ2(0) = 0,
0

θ2(L/2) = 0,
0

θ ′′
2(0) = 0,

0

θ ′
2(L/2) = ◦

Ω
·
2, (39)

the latter two follow from the conditions for θ3 in (32) and the relation (37) together with ϕ′′(0) = 0 from
(24).

Finally we notice that the derived asymptotics is valid as long as the in-plane deformed configuration has
no inflexion points, in which the curvature changes its sign and ϕ′ vanishes. Such points are highly probable
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in the case of horizontal clamping conditions (16) with α = 0 in (24). The relation (37) cannot be written
in the vicinity of such points, and the required analysis becomes much more complicated. Therefore, in the
numerical section below we apply the asymptotic solution only to the case of vertical clamping and as long as
the span H is sufficiently high, such that the curvature ϕ′ remains positive.

6 Numerical simulations for an inextensible strip

For benchmark problems, we adopted the bending and torsional stiffness values as well as linear density of
the rod model to be

ax = E
wh3

12
, ay = E

hw3

12
, at = E

2(1 + ν)

wh3

3
, ρ = ρ3wh. (40)

The numerical values for the width of the cross section w, its thickness h, Young’s modulus E , Poisson’s ratio
ν, material density ρ3, free fall acceleration g and material length L are chosen as

w = 0.01β, h = 0.002/β, E = 2.1 · 1011, ν = 0.3,

ρ3 = 7800, g = 9.8, L = 1. (41)

All numerical values here and below are written using the SI system of units. Varying β we change the shape
of the cross section. In the following, we compare solutions for a thick (β = 1, w/h = 5) and a thin (β = 4,
w/h = 80) strip. The length of the span H as well as the type of the boundary conditions determined by the
angle α shall be varied.

We also solved the problem using the shell finite element formulation, presented in [23]. Comparison
between rod and shell solutions allows understanding the range of applicability of the rod model for the con-
sidered sort of problems. The shellmodel featured amesh of 2×60 finite elementswith bi-cubic approximation.
The equivalent kinematic variables used for comparison (rotation and deflection in the middle) were estimated
using linear regression of the nodal positions of the deformed configuration of the shell, which for H = 0.8,
the imperfection value

◦
Ω

·
2 = 0.15 (corresponds to R ≈ 6.67) and horizontal clamping is demonstrated in

Fig. 5 for the case of a thin cross section. This solution with significant out-of-plane deformations is still almost
linear with respect to the imperfection: reducing

◦
Ω

·
2 by a factor 100 and correspondingly scaling the computed

out-of-plane kinematic variables, we observe ca. 0.15% change in the rotation angle θ3(0) of the middle cross
section s = 0, and its out-of-plane deflection ux (0) changes by ca. 0.04%.

Having stated that, for all subsequent solutions we use a very small value
◦

Ω
·
2 = 10−4, and all the presented

deflections and rotations are scaled correspondingly such that they correspond to the unit imperfection (the
computed values are divided by

◦
Ω

·
2 = 10−4). We also notice here that the presented rod solutions perfectly

correspond to the converged results of equivalent rod finite element simulations featuring classical rod theory
[20,21] as the effect of extensibility in the considered case is very small.

Fig. 5 Deformed shell: horizontal clamping, thin strip, H = 0.8,
◦

Ω
·
2 = 0.15, isometric and front views
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Table 1 Comparison of lateral deflections resulting from the full and the asymptotically reduced BVPs

H ux (0), thick
0
ux (0), thick ux (0), thin

0
ux (0), thin

0.72 − 0.01820 − 0.01754 − 0.01851 − 0.01848
0.79 0.00030 0.00322 0.00140 0.00149
0.86 0.02257 0.03377 0.03053 0.03070

Fig. 6 Angle of rotation θ2 for the rod model of a thick strip with vertical clamping for various spans

The lateral deflections, computed for the thick and for the thin vertically clamped strips using the full BVP
(32), (33) as well as for the asymptotically reduced one (38), (39) are compared in Table 1 for different span
lengths H . As expected, the asymptotic solution is evidently much more accurate for the thin strip with its
very high out-of-plane bending stiffness ay compared to ax and at . For the thick strip, the asymptotic solution
becomes more accurate at lower H : for H = 0.6 its relative error is 0.3%. We also notice that the lateral
deflection changes its sign as the clamped ends are moved. To clarify the effect, in Fig. 6 we compare the
computed distributions of the angle of rotation θ2 along the axis of the strip. For small H the angle remains
always negative and from (34) we find positive deflections ux (0). At higher H we obtain sign-changing θ2(s),
which eventually changes the sign of the integral in (34).

Comparison against shell solutions is provided in Fig. 7. For the case of the vertical clamping, we computed
the rotation and the lateral deflection of the middle cross section s = 0 of the thin and of the thick strips in
dependence on the span length using both, the rod and the shell models. The first observation is that all curves
are very close for moderately small H , when the rod solution is close to the asymptotic one. Indeed, the
unperturbed solution ϕ(s) is very similar for both the thin and the thick strips as the influence of gravity is low,
and from the asymptotic equation (38) we see that the result is determined by the ratio ax/at , which is the same
for both cases. Increasing H , we see that the behavior of the thin and the thick strips is qualitatively different.
The good correspondence to the shell solution holds in a broader range of H for the thick strip, and the rod
kinematics apparently becomes insufficient to describe the complicated three-dimensional behavior of a thin
one when H/L approaches 1 and the curvature of the strip is growing near the end points because of the vertical
clamping. Examining the shell solution, we indeed observe that the cross sections of the strip significantly
deform in the regions with high curvature ϕ′: the originally straight transverse fibers become S-shaped, which
cannot be reproduced by the rod model.

Finally we consider the case of horizontal clamping and compare solutions for thick and thin strips, with
and without gravity in both shell and rod models in Fig. 8. Comparing the thick dashed line (rod thick with
gravity) against Fig. 7, we see the effect of the boundary conditions: the values of ux (0) are similar only at
small H . The gravity force reduces the lateral deflection, and the accuracy of the rod solution against the
shell one is comparable to that in Fig. 7. Moreover, this time the rotation angle θ3(0) in the rod and the shell
solutions is much closer than in the case of the vertical clamping as no zones of high curvature develop when
H is growing.
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Fig. 7 Comparison of rod and shell solutions for the vertically clamped strip

Fig. 8 Comparison of the lateral deflection of the middle point for the horizontally clamped strip in various settings

7 Special case: semicircle

The derived equations and their solution become remarkably simple in the particular case, when the curvature of
the in-plane pre-deformed state is constant, ϕ′ = const. We consider a beam with vertical clamping conditions
with H = 2/η and L = π/η, η being the curvature of the resulting semicircle. Considering the case with no
gravity, g = 0, we see that the BVP (24) is fulfilled by ϕ = ηs, Q0 = 0. This is a pure bending solution with
κ1 = −η and M1 = −axη. Again we apply a small natural curvature

◦
Ω

·
2 about the local axis e2. The BVP for

the small rotations θ2 and θ3 (33) becomes

ayθ
′′
2 + η(at + ay − ax )θ

′
3 − η2(at − ax )θ2 = 0,

atθ
′′
3 − η(at + ay − ax )θ

′
2 − η2(ay − ax )θ3 = −ηay

◦
Ω

·
2,

θ2(0) = 0, θ2(L/2) = 0, θ ′
3(0) = 0, θ3(L/2) = 0. (42)
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Table 2 Small rotation of the middle point θ3(0), established with different methods

θ3(0)

Asymptotic with
◦

Ω1 = −η 0.00163662
Asymptotic with

◦
Ω1 = 0 0.00160170

Shell model with
◦

Ω1 = 0 0.00155358
Exact with

◦
Ω1 = 0 0.00155226

Exact with
◦

Ω1 = −η 0.00154231

The differential equation has constant coefficients, and the solution to this BVP reads

θ2 = sin(ηζ s) − sin(ηs) sin(ζπ/2)

ηζ cos(ζπ/2)

◦
Ω

·
2 with ζ 2 = (ay − ax )(at − ax )

ayat
,

θ3 =
(

ay
ay − ax

cos
ζπ

2
− ay

ay − ax
cos(ηζ s) + 1

ζ
cos(ηs) sin

ζπ

2

) ◦
Ω

·
2

η cos(ζπ/2)
. (43)

The parameter ζ is real for thin rectangular cross sections with stiffness values (40) with ν < 1/2 as

at > Ewh3/9 > ax , (44)

whereas ay > ax is trivial. Because the strip is thin compared to its width, we show the asymptotic formulas
by considering ax,t/ay → 0:

0

θ2 = sin(ηγ s) − sin(ηs) sin(γ π/2)

ηζ cos(γ π/2)

◦
Ω

·
2,

0

θ3 = R(
◦

Ω
·
2 − 0

θ ′
2), γ 2 = lim

ay→∞ ζ 2 = at − ax
at

, (45)

which is slightly simpler than the exact solution. It is also possible to use the above asymptotic equations to
obtain this result.

The solution becomes even more simple if the rod is initially curved in the plane yz such, that the semi-
circular configuration is stress free and the incremental formulation becomes identical to the equations of the
linear theory. Indeed, considering a natural curvature

◦
Ω1 = −η, we find κ1 = 0 and M1 = 0. The resulting

exact equations are (42) with omitted ax . The solution reads

θ2 = − 2

π
s cos(ηs)

◦
Ω

·
2,

θ3 = 2(ay − at ) cos(ηs) + (ay + at ) (πR − 2ηs sin(ηs))

πη(ay + at )

◦
Ω

·
2. (46)

We see that θ2 does not depend on the properties of the cross section and the asymptotic result would therefore
be the same as the exact one – which, however, is not the case for the angle of twisting θ3.

Finally we compare different solutions for η = 1, w = 0.01, h = 0.002 and
◦

Ω
·
2 = 10−3. The computed

values of θ3(0) are presented in Table 2. While both the rod and the shell solutions of the original problem are
remarkably close, the error introduced by neglecting the pre-stress (exact solution with

◦
Ω1 = −η) is below

1%. The asymptotic solutions are less accurate in this case of a thick strip with w/h = 5.

8 High pre-tension of the extensible strip

The problem at hand is important for the study of such practically relevant phenomena as the lateral run-off
of the flat belt in a belt drive or formation of waves in a flat metal strip within a rolling mill. Both cases differ
from the above examples by the presence of a high tension force, such that the extension of the strip cannot
be neglected. We consider a horizontally clamped rod, and instead of (24) the plane bending problem is now
governed by the following BVP:

axϕ
′′ + (1 + ε)(−Q0 sin ϕ + ρgs cosϕ) = 0,

ϕ(0) = 0, ϕ(L/2) = 0,
∫ L/2

0
(1 + ε) cosϕ ds = H/2. (47)

The axial strain follows with the tangential force:
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Fig. 9 Numerical and analytical solutions of the BVP (49) for a weakly pre-tensioned strip with ε0 = 10−5

bε = Qt = Q0 cosϕ + ρgs sin ϕ. (48)

At high pre-tension, the strip behaves like a string inside the domain, and narrow edge layers with bending
effects develop near the boundaries, which makes the problem ill-conditioned and difficult to treat with the
shooting method. However, small deflections allow constructing an approximate analytical solution. Without
gravity the strip is straight, spanned with H = (1 + ε0)L , ε0 > 0, and the axial force is Q0 = bε0. Because
of small deflections, we assume small angles and both Q0 and ε = ε0 remaining constant. We obtain

axϕ
′′ + (1 + ε0)(ρgs − bε0ϕ) = 0, ϕ(0) = 0, ϕ(L/2) = 0, (49)

with the solution

ϕ = ρg
(

Leξ(L−2s)/2 − Leξ(L+2s)/2 + 2seLξ − 2s
)

2bε0
(

eLξ − 1
) , ξ2 = (1 + ε0)bε0

ax
. (50)

We use the parameters (41) for a thick strip, setting for simplicity ν = 0, and test the solution (50) against
the numerical solution of the BVP (49). While for ε0 = 10−4, the maximal relative difference in the values of
ϕ does not exceed 0.2%, for the lower pre-stretch ε0 = 10−5 the error reaches 18.5%, see Fig. 9.

Finally we consider the incremental problemwith the small natural curvature
◦

Ω
·
2 = 10−3 (again, the results

below are scaled by this value of the imperfection). The counterpart to system (31) for the case of extensible
rods contains the factor 1 + ε in front of the terms with Q0 and ρg; we do not present the derivation here, as
it is methodologically very similar to the one in Sect. 4. We solve the equations setting ε = ε0 and then use
u′
x = (1 + ε0)θ2 as a counterpart to (34) to find the lateral deflection. For two values of the pre-stretch, we

compare the computation results against equivalent rod (unshearable, but extensible) and shell finite element
simulations in Table 3.Moreover, we also present the values, which result from the linear incremental equations
for the inextensible case (31) as if ε = 0 (the analytic expression for ϕ(s) (50) was used in both incremental
solutions).

Table 3 Lateral deflection and rotation of the middle cross section of the strip depending on the pre-stretch computed with rod
and shell models

Model ε0 θ3(0) ux (0)
Rod, incremental 10−4 4.375 · 10−3 −3.637 · 10−7

Rod, finite elements 4.363 · 10−3 −3.612 · 10−7

Shell, finite elements 4.358 · 10−3 −3.608 · 10−7

Rod, incremental, ε = 0 4.312 · 10−3 −3.533 · 10−7

Rod, incremental 10−3 5.272 · 10−4 −1.285 · 10−9

Rod, finite elements 5.272 · 10−4 −1.284 · 10−9

Shell, finite elements 5.222 · 10−4 −1.273 · 10−9

Rod, incremental, ε = 0 5.182 · 10−4 −1.242 · 10−9
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The perfect correspondence to the rod finite element solution at high pre-stretch justifies the assumptions of
the semi-analytic model. The approximate expression for ϕ(s) is not so accurate at lower ε0, which determines
the differences between the values in the first and the second lines of the upper block of the table. High
pre-tension reduces the lateral deformations, but the rotational response to the imperfection is still significant:
the intrinsic curvature makes one edge of the strip longer than the other one, and the response to the gravity
loading becomes unsymmetric.

Predictions of the rod and of the shell models of the strip remain close, which validates the use of the com-
putationally more efficient one-dimensional model to the analysis of the above-mentioned technical problems.
This observation provides a practically relevant dimension to the considered academic example of nonlinear
spatial deformations of curved elastic strips.
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