Skip to main content

Advertisement

Log in

Measurement of the stiffening parameter for stimuli-responsive hydrogels

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A method of measuring the stiffening parameter \(\beta ^\circ \) for stimuli-responsive hydrogels using a simple tensile test is shown. 2-hydroxyethyl methacrylate (2-dimethylamino)ethyl methacrylate (HEMA–DMAEMA) stimuli-responsive hydrogels are examined using this method. HEMA–DMAEMA preconditioned in 3.0 pH, 7.0 pH, and 11.0 pH buffer solutions is studied experimentally. The stiffening parameter extracted at pH 7.0 is successfully used to predict the nonlinearity at pH 3.0 and 11.0. The measured stiffening parameter \(\beta ^\circ \) of the hydrogel is 0.870 ± 0.018, compared with 11.4 for ligament and 0.12–0.23 for brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A., et al.: Handbook of mathematical functions. Appl. Math. Ser. 55(62), 39 (1966)

    Google Scholar 

  2. Baek, S., Srinivasa, A.: Modeling of the pH-sensitive behavior of an ionic gel in the presence of diffusion. Int. J. Non-Linear Mech. 39(8), 1301–1318 (2004)

    Article  MATH  Google Scholar 

  3. Beebe, D.J., Moore, J.S., Bauer, J.M., Yu, Q., et al.: Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778), 588 (2000)

    Article  Google Scholar 

  4. Bigliani, L.U., Pollock, R.G., Soslowsky, L.J., Flatow, E.L., Pawluk, R.J., Mow, V.C.: Tensile properties of the inferior glenohumeral ligament. J. Orthop. Res. 10(2), 187–197 (1992)

    Article  Google Scholar 

  5. Brock, D., Lee, W., Segalman, D., Witkowski, W.: A dynamic model of a linear actuator based on polymer hydrogel. J. Intell. Mater. Syst. Struct. 5(6), 764–771 (1994)

    Article  Google Scholar 

  6. Cao, X., Lai, S., Lee, L.J.: Design of a self-regulated drug delivery device. Biomed. Microdevices 3(2), 109–118 (2001)

    Article  Google Scholar 

  7. Cowin, S.C.: Bone Mechanics Handbook. CRC Press, Boca Raton (2001)

    Google Scholar 

  8. De, S.K., Aluru, N., Johnson, B., Crone, W., Beebe, D.J., Moore, J.: Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J. Microelectromech. Syst. 11(5), 544–555 (2002)

    Article  Google Scholar 

  9. Dong, L., Agarwal, A.K., Beebe, D.J., Jiang, H.: Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442(7102), 551–554 (2006)

    Article  Google Scholar 

  10. Dong, L., Jiang, H.: Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter 3(10), 1223–1230 (2007)

    Article  Google Scholar 

  11. Durning, C., Morman Jr., K.: Nonlinear swelling of polymer gels. J. Chem. Phys. 98(5), 4275–4293 (1993)

    Article  Google Scholar 

  12. Fischel-Ghodsian, F., Brown, L., Mathiowitz, E., Brandenburg, D., Langer, R.: Enzymatically controlled drug delivery. Proc. Natl. Acad. Sci. 85(7), 2403–2406 (1988)

    Article  Google Scholar 

  13. Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)

    Google Scholar 

  14. Flory, P.J., Rehner Jr., J.: Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J. Chem. Phys. 11(11), 512–520 (1943)

    Article  Google Scholar 

  15. Freed, A.D.: Soft solids. Modeling and Simulation in Science, Engineering and Technology (Birkhäuser, Basel, 2014). A Primer to the Theoretical Mechanics of Materials (2014)

  16. Freed, A.D., Doehring, T.C.: Elastic model for crimped collagen fibrils. J. Biomech. Eng. 127(4), 587–593 (2005)

    Article  Google Scholar 

  17. Freed, A.D., Rajagopal, K.: A promising approach for modeling biological fibers. Acta Mech. 227(6), 1609 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fung, Y.: Elasticity of soft tissues in simple elongation. Am. J. Physiol. Legacy Content 213(6), 1532–1544 (1967)

    Article  Google Scholar 

  19. Gupta, P., Vermani, K., Garg, S.: Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7(10), 569–579 (2002)

    Article  Google Scholar 

  20. Harris, K.D., Bastiaansen, C.W., Broer, D.J.: A glassy bending-mode polymeric actuator which deforms in response to solvent polarity. Macromol. Rapid Commun. 27(16), 1323–1329 (2006)

    Article  Google Scholar 

  21. Hong, W., Zhao, X., Zhou, J., Suo, Z.: A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phys. Solids 56(5), 1779–1793 (2008)

    Article  MATH  Google Scholar 

  22. Jagur-Grodzinski, J.: Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polym. Adv. Technol. 17(6), 395–418 (2006)

    Article  Google Scholar 

  23. Jiang, H., Zhu, D.: Hydrogels as actuators for biological applications. In: Gels Handbook: Fundamentals, Properties and Applications Volume 3: Application of Hydrogels in Drug Delivery and Biosensing, pp. 149–187. World Scientific (2016)

  24. Johnson, B., Bauer, J., Niedermaier, D., Crone, W., Beebe, D.: Experimental techniques for mechanical characterization of hydrogels at the microscale. Exp. Mech. 44(1), 21–28 (2004)

    Article  Google Scholar 

  25. Katchalsky, A., Michaeli, I.: Polyelectrolyte gels in salt solutions. J. Polym. Sci. Part A Polym. Chem. 15(79), 69–86 (1955)

    Google Scholar 

  26. Langer, R.: Drug deliveryand targeting. Nature 392(6679), 5–10 (1998)

    Google Scholar 

  27. Ma, M., Guo, L., Anderson, D.G., Langer, R.: Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339(6116), 186–189 (2013)

    Article  Google Scholar 

  28. Paranjothi, K., Saravanan, U., Krishnakumar, R., Balakrishnan, K.: Mechanical properties of human saphenous vein. In: Mechanics of Biological Systems and Materials, Vol. 2, pp. 79–85. Springer (2011)

  29. Rajagopal, K.R.: On implicit constitutive theories. Appl. Math. 48(4), 279–319 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rajagopal, K.R., Saccomandi, G.: A novel approach to the description of constitutive relations. Front. Mater. 3, 36 (2016)

    Article  Google Scholar 

  31. Rashid, B., Destrade, M., Gilchrist, M.D.: Mechanical characterization of brain tissue in simple shear at dynamic strain rates. J. Mech. Behav. Biomed. Mater. 28, 71–85 (2013)

    Article  Google Scholar 

  32. Roy, D., Cambre, J.N., Sumerlin, B.S.: Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 35(1), 278–301 (2010)

    Article  Google Scholar 

  33. Standard, A.: D638: Standard Test Method for Tensile Properties of Plastics. ASTM International, West Conshohocken (PA) (2010)

    Google Scholar 

  34. Tanaka, T., Fillmore, D.J.: Kinetics of swelling of gels. J. Chem. Phys. 70(3), 1214–1218 (1979)

    Article  Google Scholar 

  35. Treloar, L.R.G.: The Physics of Rubber Elasticity. Oxford University Press, Oxford (1975)

    Google Scholar 

  36. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: The Non-linear Field Theories of Mechanics, pp. 1–579. Springer (2004)

  37. Woo, S.: Mechanical properties of tendons and ligaments. I. Quasi-static and nonlinear viscoelastic properties. Biorheology 19(3), 385 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Dr. Benjamin would like to acknowledge helpful conversations that he had with Drs. Mehrdad Arjmand and Robert Witt on the conceptual application of implicit elasticity and future numerical methods. Additionally, I would like to acknowledge Dr. David Beebe for the use of his laboratory equipment and space when fabricating samples for testing and Dr. Alan Freed for his guidance with the conceptual understanding of tensor theory. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1256259). Support was also provided by the Graduate School, the Graduate Engineering Research Scholars (GERS) program, and the Vilas Life Cycle Professorship at the University of Wisconsin-Madison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Benjamin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benjamin, C.C., Lakes, R.S. & Crone, W.C. Measurement of the stiffening parameter for stimuli-responsive hydrogels. Acta Mech 229, 3715–3725 (2018). https://doi.org/10.1007/s00707-018-2201-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2201-8

Navigation