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Abstract A generalized ray solution is presented for the three-dimensional (3-D) acoustic field produced
by a transient point source in a rigid-bottom, fast-speed fluid-bottom, and fast-speed elastic-bottom wedge
modeling a continental shelf environment. The effect of diffraction (scattering) at the wedge apex is ignored in
the solution, but nevertheless the solution is exact and complete for the image component of the field, expressed
by a sum of partial waves including a pulse emitted from the source plus a finite number of pulses reflected off
the wedge boundaries. Time records of the acoustic pressure illustrating 3-D acoustical propagation effects are
evaluated at five receivers located at equal radial range in the horizontal from the source, but different orientation
to the source, measured by the azimuthal angle assuming values: 0◦ (down-slope), 45◦ (obliquely down-slope),
90◦ (cross-slope), 135◦ (obliquely up-slope), and 180◦ (up-slope). The arrival times of the spherical and head
waves propagating along various paths are evaluated at each receiver for each bottom. It was found that the time
interval between the first arrival and the ultimate arrival diminished, and the pulses became more peaked, as
the azimuthal angle of the receiver increased. For the rigid-bottomwedge, we have found that all backscattered
pulses are significant at the up-slope receiver. For the fluid-bottomwedge, we have found that: at each receiver,
the source-pulse is preceded by the ground wave which is much weaker than the water wave; and, at the
up-slope receiver, the backscattered pulses are insignificant. For the elastic-bottom wedge, we have found
that: at each receiver, the ground-wave-response begins earlier than that in the fluid-bottom wedge, and thus
the record separates out into distinct ground-wave and water-wave phases; and, at the up-slope receiver, the
backscattered pulses are significant.

1 Introduction

In this paper, we present a generalized ray solution for the acoustic field generated by a transient point source
in a wedge of fluid overlaying a sloping bottom that is assumed to be rigid, fast-speed fluid, or fast-speed
elastic medium. The horizontal boundary of the wedge is a pressure-release surface. The wedge and the fluid
and elastic bottoms are homogeneous (thus isovelocity) and lossless. The wedge is three-dimensional (3-D) in
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that the source and the receiver are not restricted to the plane perpendicular to the wedge apex (main vertical
plane), that is, the receiver may lie cross-slope as well as down-slope or up-slope from the source. This 3-D
wedge is a physical model of a continental shelf environment in which the ocean bottom has a constant slope
(coastal wedge or shallow water wedge).

A wedge of fluid with a pressure-release horizontal surface and a rigid bottom (perfect wedge with mixed
boundaries) is the simplest model of a coastal wedge, but it is inadequate in that it cannot account for acoustical
penetration of the bottom typical for a real ocean floor. A wedge of fluid with a pressure-release horizontal
surface and a penetrable bottom (penetrable wedge) is a more realistic model for a sand-bottom (the case of a
fluid bottom) or a rock-bottom (the case of an elastic bottom) coastal wedge.

The total field in a wedge consists of two components: the field due to diffraction (scattering) at the wedge
apex, which under certain conditions vanishes in the perfect wedge with homogeneous or mixed reflecting
boundaries (Refs. [1–6]), and the image field represented by the wave emitted from the source plus (opposite
to a parallel layer) a finite number of multi-reflected waves. The head (lateral) wave with the conical front is
excited in a penetrable wedge whenever a multi-reflected spherical wave undergoes the total reflection at a
fast-speed bottom, and the head wave front propagating along the refracted ray path arrives at a receiver ahead
of the spherical wave front following the stationary time path.

Since the wedge is a nonparallel-sided waveguide, these (refracted and stationary) paths are essentially
3-D. The repeated reflections of acoustic energy at the sloping bottom introduce a curvature into the projection
of the propagation path onto the horizontal surface of the wedge, provided the segment of this path originating
at the source has a cross-slope component. This path curvature in the horizontal is known as the horizontal
refraction (Refs. [7–12]). When such a path leaves the source propagating up-slope, it may be turned around
to reach a receiver propagating down-slope. This change in propagation direction occurs as a result of multiple
reflections at the sloping bottom. A receiver that is not restricted to the main vertical plane containing the
source can thus be reached along one of the two paths: a direct path or an indirect path that is turned around
on approaching the wedge apex. If a receiver is restricted to the main vertical plane, the change in propagation
direction is referred to as the backscattering, and indirect paths are referred to as backscattered paths (Refs.
[9,13]).

The horizontal refraction and backscattering are essential features of acoustical propagation in wedge-like
waveguides. The field is then 3-D, that is, it depends on three spatial coordinates: the range (normal to the
apex), the cross-range (parallel to the apex), and the depth coordinate.

Most previous work on acoustical propagation on a coastal wedge treated the perfect wedge model with
homogeneous or mixed boundaries (Refs. [2–6,14–16]). The analytical solution for the field in a perfect
wedge is exact, since the Helmholtz equation for this problem is separable. However, for the penetrable wedge
problem, the Helmholtz equation is no longer separable, and an exact analytical solution for the field does not
exist (Refs. [4,17]).

In shallow water acoustics, the widely used analysis of acoustical propagation from waterborne sources is
that in terms of the normal-mode theory, but the theory is restricted only to stratified media with plane-parallel
interfaces. Also, a sum of all the normal modes, as such, does not establish the entire field, and the branch
line integral that represents the remainder should not be discarded for short-range propagation, as discussed
in Refs. [18–20].

Nevertheless, the normal-mode method may be extended to a coastal wedge with a slowly sloping bottom
by neglecting the coupling between normal modes due to horizontal variation of the water depth. Such an
(approximately correct) analysis is known as the adiabatic mode theory (Refs. [10,21–23]), and the theory
predicts that the normal modes, as they propagate, adjust their depth profiles to the local water depth, but the
theory in its original form fails to explain disappearance into the underlying bottom of an up-slope propagating
mode when it encounters its critical (cutoff) depth, beyond which it can no longer exist as a propagating
wave (Refs. [24–26]). The validity of the assumption of uncoupled normal modes was carefully examined by
conducting measurements of guided modes in model experiments (Refs. [22,27,28]) and in a real ocean (Refs.
[29,30]), and by comparing numerical parabolic equation (PE) calculations with adiabatic mode predictions
(Refs. [26,31]).

An alternate modeling approach to the normal-mode method is that in terms of the so-called complex ray
method, which accurately predicts the field at short and long ranges, as well as in the region of the critical
angle where a propagating mode is near cutoff and the normal-mode method may be invalid at all ranges. Such
a ray method was developed early by Tindle et al. (Refs. [32–34]) for investigating acoustical propagation in
a Pekeris-type environment (horizontal seabed), and later extended by Westwood (Refs. [13,35,36]) to model
a modal structure of the field on a coastal wedge. In Ref. [35], three interesting features of 3-D acoustical
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propagation in a fluid-bottom wedge model are discussed: modal shadow zones, multiple mode arrivals, and
curvature of the mode wavefronts. The first and second effects were described also by Buckingham (Ref.
[17]) who derived an approximate solution of acoustic waves in a penetrable wedge, and Sturm (Ref. [37])
and Sturm and Korakas (Ref. [38]) who applied a PE method to treat acoustical propagation in a sloping-
bottom environment, and observed by Korakas et al. (Ref. [39]) and Sturm and Korakas (Ref. [38]) in a model
experiment for cross-slope propagation. The third effect was also treated by Jensen and Tindle (Ref. [27]) who
used a PE method to simulate down- and up-slope propagation, and observed by Tindle et al. (Ref. [66]) in a
model experiment for down-slope propagation.

Further experimental studies of propagation effects in a wedge-shaped domain were presented in Refs.
[41–44]. A visual picture of the horizontal curvature phenomenon was given in Ref. [41], but no comparison
with a theoretical model was made. Experiments conducted in a wedge-like ocean (Ref. [42]) confirmed
theoretical predictions of the horizontal refraction (Ref. [5]). The formation of acoustic shadow zones in
cross-slope propagation, arising from the bending of the propagation paths in the horizontal, was investigated
experimentally in a perfect wedge with pressure-release boundaries (Ref. [43]) and in a penetrable wedge with
an elastic bottom (Ref. [44]), and the experimental results showed good agreement with the theoretical models
(Refs. [5,45]).

As reviewed in Ref. [46], there has been limited application of the above-summarizedmodeling approaches
tomeasured data, primarily due to the lack of experimental observation of 3-D propagation of underwater sound
on a coastal wedge. Only recently the 3-D sound was quantitatively measured in a pair of acoustic transmission
tests on the (wedge-like) Florida shelf (Ref. [47]), and then accurately modeled by applying a novel hybrid
approach (Ref. [46]) and that based on a 3-D adiabatic mode technique (Ref. [48]), both approaches achieving
excellent agreement with data.

The generalized ray theory of transient waves in layered media was primarily developed for geophysical
applications. They were made to investigate the propagation of sound pulses in shallow water, which was
modeled by two or three layers of fluid; the layered model was also applied to interpret seismograms of
natural and artificial seismic events [see the articles by Pao and Gajewski (Ref. [49]) and Pao (Ref. [50]),
and the monograph by Kennett (Ref. [51])]. The early applications of the theory were confined to parallelly
layered models. For a sloping surface layer of soil overlaying a basement or a sloping-bottom continental shelf
environment, the canonical model is that of a wedge-shaped medium overlaying a half-space. The theory was
thus adopted by Pao and Ziegler (Ref. [52]), Ziegler and Pao (Refs. [53,54]), Ziegler et al. (Refs. [55,56]),
Borejko (Ref. [57]), and Borejko and Ziegler (Ref. [58]) for analyzing elastic waves in a wedge of solid to
explain the effect of a sloping surface layer of soft deposits on the local magnification of ground surface motion
(earthquake intensity); and by Pao et al. (Ref. [59]) for analyzing acoustic waves in a penetrable wedge of fluid
to investigate propagation characteristics of underwater sound on a coastal wedge.

In the generalized ray solution for the acoustic field in a penetrable wedge of fluid, the contribution from the
diffracted (scattered) component of the field is not included. Nevertheless, the solution is exact and complete
for the image component of the field, expressed by a sum of partial waves: the 0th order partial wave is that
radiated from the source, and the kth order partial wave (k = 1, 2, 3, …) is that reflected k-times from the
wedge boundaries before arriving at the receiver. When the wedge angle α is an integer submultiple of π , the
number of partial waves contributing to the image field is then 1 + 2π/α.

For transient waves, the Laplace transform with respect to time is used; and a representation of each
Laplace-transformed partial wave is obtained in the form of a double integral over infinite intervals in the
slowness variables, known in the generalized ray theory as a “ray integral” (Ref. [49]). The inverse Laplace
transform of each ray integral is then evaluated exactly by applying the Cagniard–de Hoop method so that
the integral representation of each partial wave is then reduced to the form of a single integral over a finite
interval in the slowness variable, which is further transformed into the form amenable to numerical integration
accomplished by the Gaussian quadrature (Ref. [59]).

The values of each ray integral, calculated at a preselected time interval, are convolutedwith a time function
of the source to obtain complete pressure response of the particular partial wave at a receiver point, including
the contribution from the multi-reflected spherical wave, which, depending on the receiver position and the
number of consecutive reflections, may be preceded by a number of contributions from the head waves (ground
wave). For a fast-speed elastic bottom, the response also includes the contributions from the pseudo-Rayleigh
and Scholte (Stoneley) waves. Besides the partial pressure responses, the solution computes also the travel
times and propagation paths for the spherical and head waves.
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Fig. 1 Geometry of the wedge of fluid (c = 1, ρ = 1) over the rigid, fast-speed fluid (cp = 1.2, ρ2 = 2), or fast-speed elastic
(cp = √

3cs , cs = 2.19, ρ2 = 2.5) bottom. The point source is located in the wedge at xo = (0, 0, zo)

On comparing the relative strengths of various partial waves, one can ascertain which contributions and
mechanisms of propagation are significant andwhich are not, in particular, one can determinewhether backscat-
tered arrivals are significant. This is an important issue, since some numerical modeling approaches are intrin-
sically unable to account for backscattering. Another important practical issue is the presence of head, pseudo-
Rayleigh, and Scholte waves in the solution, since in situ measurements of the arrivals of these waves in a
sloping-bottom environment might be compared with theoretical simulations to determine the geoacoustic
properties of the bottom.

As mentioned above, Pao et al. (Ref. [59]) developed the generalized ray solution for acoustical signals
emitted from a point source in a penetrable wedge. However, their solution was applicable to the case of a
slow-speed fluid bottom and a fast-speed fluid bottom only. Hence, Borejko et al. (Ref. [60]) extended the
solution given in Pao et al. (Ref. [59]) to treat also the case of a fast-speed elastic bottom, but they did not
evaluate the complete acoustical signal recorded by a receiver.

In this paper, the solution given in Borejko et al. (Ref. [60]) is further extended to evaluate the complete
time records of received acoustical signals including the contribution of the entire acoustic field (with the
omission of the effect of diffraction at the wedge apex) at the locations down-, cross-, and up-slope at equal
radial range in the horizontal from the point source in the rigid-bottom, fast-speed fluid-bottom, and fast-speed
elastic-bottom wedge, thus illustrating 3-D acoustical propagation effects in the penetrable wedge of fluid.
The solution is also supplemented by a detailed discussion of evaluation of the ray integrals for partial wave
motions.

The paper is organized as follows: In Sect. 2 we define the geometry of the wedge of fluid, summarize the
governing equations for the field, and recall the boundary conditions for the perfect and penetrable wedge.
Section 3 presents a brief discussion of the field, including decomposition of the image field, mechanism
of excitation of the head waves, and phenomena of horizontal refraction and backscattering. In Sect. 4 the
generalized ray solution for the image field for the case of a fast-speed elastic bottom is summarized, in Sect. 5
numerical examples of complete time records of received acoustical signals are given, and our conclusions are
presented in Sect. 6.

2 Mathematical formulation of the problem

The geometry for the present wedge problem is illustrated in Fig. 1. A wedge-shaped layer of fluid, formed by
two inclined planes that intersect along the line of apex, overlies a bottom that may be a rigid, fluid, or elastic
medium. The apex angle (wedge angle) is α, and it may lie anywhere between 0 and π/2.

Two Cartesian coordinates systems (x, y, z) and (x ′, y′, z′) are employed in the analysis. The x , y, and
z are the range (normal to the apex), the cross-range (parallel to the apex), and the depth coordinate axes,
respectively. The x ′ and z′ axes are obtained by rotating the x and z axes, respectively, through the angle α
about the y axis. The common origin 0 of the two coordinate systems is located at the horizontal boundary
plane of the wedge z = 0, and its range from the apex line is d .

The point source is situated in the plane y = 0 (main vertical plane) within the wedge at a depth zo directly
below the origin 0, so that its range from the apex line is also d , and its position vector is xo = (0, 0, zo) in
the unprimed system. The sloping interface separating the wedge from the bottom is defined by z′ = h cosα,
where h is the fluid depth measured vertically at the source location, thus d = h cosα/ sin α. Our task is to
derive and analyze the field at any point receiver situated within the wedge.
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2.1 The governing equations

In a wedge of fluid, the field is specified by the velocity potential function φ(x, t), which satisfies the quiescent
initial conditions

φ = 0,
∂φ

∂t
= 0, at t = 0, (2.1)

and the 3-D inhomogeneous wave equation,

c2∇2φ − ∂2φ

∂t2
= − f (t)δ(x)δ(y)δ(z − zo). (2.2)

The c is the sound speed in the wedge, and the causal function f (t) (that is, f (t) = 0 for t < 0) specifies
the time history of φ at the source. The excess acoustic pressure p(x, t) above the ambient pressure and the
velocity v(x, t) are given by

p = −ρ
∂φ

∂t
, v = ∇φ, (2.3)

respectively, where ρ is the density. It is assumed that the fluid in the wedge is homogeneous, that is, c and ρ
are independent of the position.

In a fluid bottom of density ρ2, the wave field is defined by the velocity potential function φ2(x, t), which
satisfies the 3-D homogeneous wave equation,

c2p∇2φ2 − ∂2φ2

∂t2
= 0,

where cp is the sound speed. The pressure p2(x, t) and the velocity v2(x, t) are p2 = −ρ2(∂φ2/∂t) and
v2 = ∇φ2, respectively.

In an elastic bottom having a density ρ2, the wave field is characterized by the displacement vector u(x, t),
which satisfies the Navier-Cauchy equation of motion,

(c2p − c2s )∇∇ · u + c2s ∇2u − ∂2u
∂t2

= 0,

where cp and cs are the P and S wave speeds, respectively, and the external body forces are supposed to
be absent. The stress tensor σ (x, t) in an elastic bottom is related to the displacement gradient ∇u(x, t) by
Hooke’s law for an isotropic elastic solid.

It is assumed that both the fluid and elastic bottoms are homogeneous, that is, cp, cs , and ρ2 are independent
of the position.

2.2 The boundary conditions

The horizontal surface of the wedge z = 0 is pressure-release (Dirichlet boundary) so that the boundary
condition for p(x, t) is

p = 0 at z = 0. (2.4)

Since the bottom is assumed to be a rigid, fluid, or elastic medium, there are three different sets of boundary
conditions at the sloping interface z′ = h cosα.

Case A Rigid sloping interface (Neumann boundary) At the Neumann boundary, the normal derivative of the
velocity potential function is zero,

∂φ

∂z′ = 0, at z′ = h cosα. (2.5.1)

Case B Fluid–fluid sloping interface For the case of a fluid bottom, the boundary conditions are

p = p2, v′
z = v′

2z at z′ = h cosα, (2.5.2)

where the first and second conditions ensure the continuity of pressure and normal velocity, respectively.
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Case C Fluid-elastic solid sloping interface For the case of an elastic bottom, the boundary conditions are

p = −σ ′
zz, v′

z = ∂u′
z

∂t
, σ ′

zx = σ ′
zy = 0 at z′ = h cosα (2.5.3)

where the first and second conditions ensure the continuity of normal stress and normal velocity, respectively,
and the third condition ensures the vanishing of shearing stresses. The tangential components of the velocity
vectors in the two adjacent media, that is, in case B, fluid and fluid, and, in case C, fluid and elastic solid, are
discontinuous at the sloping interface z′ = h cosα.

3 Acoustic field in a wedge of fluid

In general, the field in a wedge of fluid includes two components: the diffracted field due to scattering at
the wedge apex and the image field, which can be expressed by a sum of partial waves including the wave
emitted by the source φo(x, t) and a number of multi-reflected waves φ±k(x, t) (k = 1, 2, 3, . . .) arising
from the constraints imposed by the wedge boundaries on the field. In φ±k , the k letter indicates the number
of reflections from the boundaries, the + sign indicates that the first reflection is from the sloping boundary
z′ = h cosα, and the − sign indicates that the first reflection is from the horizontal boundary z = 0.

3.1 Decomposition of the image field

The diffracted field component is ignored in the following discussion, and the field is thus given by the image
field component of the form

φ = φo + φ±1 + φ±2 + φ±3 + · · · . (3.1)

The φ+k is the + kth partial wave that undergoes k consecutive reflections from the wedge boundaries, the
first reflection being from the sloping boundary z′ = h cosα; φ−k is the − kth partial wave that undergoes
k consecutive reflections from the wedge boundaries, the first reflection being from the horizontal boundary
z = 0.

The φo, which is the particular solution of the inhomogeneous wave equation (2.2) subject to the initial
conditions (2.1) is represented by the spherical P wave of the form

φo(x, t) = f (t − R/c)/4πc2R, (3.2)

as was shown in Ref. [61], where R2 = x2 + y2 + (z − zo)2.

3.2 Propagation of the spherical and head waves in a wedge of fluid

Between the source and the receiver, there is a minimum travel-time path for the± kth multi-reflected spherical
P wave, known as the ± kth stationary time path (± kth ray path), the broken line connecting the source with
the receiver via successive reflection points. The ray paths in a wedge of fluid can be constructed geometrically
by the method of images.

A head P wave with the conical front is generated in a wedge of fluid when the angle of incidence of the
spherical P wave, that is incident from the wedge upon a fast-speed bottom, exceeds the critical angle, that is,
when the spherical P wave is totally reflected from a fast-speed bottom (cf. Refs. [18,62–64]). Specifically, for
a fast-speed elastic bottom (cp > cs > c), two head P waves are generated in the wedge when γ > γcs > γcp,
where γ is the angle of incidence, and γcs = sin−1(c/cs) and γcp = sin−1(c/cp) are the critical angles. For
a fast-speed fluid bottom (cp > c), one head P wave is generated in the wedge when γ > γcp. The head
wave fronts propagating along the refracted ray paths arrive at the receiver ahead of the spherical wave fronts
following the stationary time paths. The refracted ray paths in awedge of fluid can be constructed geometrically
by the method of images.

In the wedge, the local angle of incidence of the ± kth multi-reflected spherical P wave changes from one
reflection to the next. On successive reflections from either one of the wedge boundaries, this angle decreases
by twice the apex angle for up-slope propagation and increases by twice the apex angle for down-slope
propagation. The ± kth spherical P wave may thus strike the bottom either at steep angles (smaller than the
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critical angle), where partial reflection occurs with energy loss into the bottom, or at shallow angles (larger
than the critical angle), where total reflection occurs with no energy loss. The head P waves are generated by
these bottom reflections, where the local angle of incidence exceeds the critical angle. The multiple bottom
interactions of the ± kth spherical P wave may thus initiate a large number of the head P waves, arriving at
the receiver ahead of the ± kth spherical P wave (cf. Refs. [13,36]). The head P wave that arrives first at the
receiver (±kth primary head P wave) is always initiated either by the first bottom reflection or the ultimate
bottom reflection of the ± kth multi-reflected spherical P wave. The head P waves that follow the ± kth
primary head P wave are referred to as the secondary head P waves.

Since a wedge of fluid is a nonparallel-sided waveguide, the stationary time paths and the refracted ray
paths are essentially 3-D. When the first reflection point is out of the main vertical plane y = 0 containing the
source, the repeated reflections at the sloping bottom introduce a curvature into the projection of the respective
path onto the horizontal surface z = 0, because the local plane of incidence is not a vertical plane for each
bottom reflection. This path curvature in the horizontal is known as the horizontal refraction (Refs. [7–12]).
Note that the whole path is in the main vertical plane y = 0 when the first reflection point is in this plane.

When the first reflection point is located in the main vertical plane y = 0 up-slope from the source, then,
in the course of successive up-slope reflections, the local angle of incidence may become so small that the
path is turned around and the wave front (spherical P wave front or the head P wave front) proceeds to
travel down-slope. This change in the propagation direction in the main vertical plane y = 0 is known as the
backscattering (Ref. [9]). Depending on the number of reflections k, the respective wave front can thus reach
a down-slope/up-slope receiver along one of the two paths: the direct path or the backscattered (indirect) path
that is turned around on approaching the wedge apex.

An example of the minimum travel-time paths for the head P waves and the spherical P wave in a wedge
of fluid with a fast-speed elastic bottom is given in Ref. [60, Fig. 5.1], where the two head P waves arrive at
the receiver along the refracted ray paths, the spherical P wave arrives at the receiver along the stationary time
path, and all three paths are horizontally refracted, since the receiver is placed out of the main vertical plane
y = 0 containing the source.

4 Solution for the acoustic field in a wedge of fluid

In this Section, we briefly summarize the generalized ray solution for the image field in a wedge of fluid. As
shown in Refs. [49,59,60], one can construct the exact integral representation (ray integral) for the Laplace-
transformed ± kth partial wave by superposition of Laplace-transformed plane wave components traveling
along the ± kth ray path, composed of k + 1 segments. The segments, the local slowness vectors of plane
wave components along each segment, and the reflection points are numbered consecutively using the index
l (l = 0, 1, 2, 3, . . ., k), so that the index 0 indicates the segment originating at the source and the local slowness
vector along it, the index 1 indicates the segment originating at the first reflection point and the local segment
along it, and so forth.

4.1 Exact integral representation for the multi-reflected wave motion

Omitting all details, we only recall here that, for each reflection from the horizontal or sloping boundary: the
amplitudes of the plane wave components are altered by the corresponding reflection coefficient, the tangential
components of the local slowness vectors along the incident and reflected segments are the same, and the
directions of the normal components are opposite (Snell’s law of reflection). The phase function g±k of the
plane wave component of the ± kth partial wave can be derived either by evaluating the total travel time along
the ± kth ray path or by the method of images, and it is given by (Ref. [60])

g±k = −ξ ′±l · x′±l (4.1)

where the dot denotes the scalar product. In x′±l = (x ′±l , y′±l , z′±l), x ′±l , y′±l , and z′±l are referred to as the
equivalent distances between the source and the receiver along the x ′, y′, and z′ axes, respectively, since the
3-D zigzag ±kth ray path can be identified as a fictitious straight ray connecting one image of the source with
one image of the receiver. The ξ ′±l = [−iξ ′±l , −iη′±l , (−1)lε′ζ ′±l ] is the local slowness vector along the lth
segment of the ± kth ray path, where i2 = −1; ζ ′±l = (a2 + ξ ′2±l + η′2±l)

1/2, and a = 1/c is the slowness in the
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wedge of fluid; ε′ = +1 and l = 0, 1, 2, 3, . . ., k for the + kth ray path; and ε′ = −1 and l = 1, 2, 3, . . ., k
for the − kth ray path.

The Laplace-transformed ± kth partial wave is thus given by the ray integral of the form

φ̄±k(s) = s f̄ (s)

8π2c2

∫ ∞

−∞

∫ ∞

−∞
S�±k exp(sg±k)dξ

′±ldη
′±l (4.2)

where the bar denotes the Laplace transform in time t , with transform parameter s, S is the source function,
and �±k is the cumulative product of consecutive reflection coefficients. The derivation of the ray integral in
(4.2) is described more fully in Ref. [60].

At the pressure-release and rigid surfaces (perfectly reflecting surfaces), the reflection coefficients are R =
− 1 and R = 1, respectively, and the product�±k is thus constant for a wedge of fluid with perfectly reflecting
boundaries. For the fluid-fluid and fluid-elastic solid sloping interfaces (penetrable bottoms), the reflection
coefficients are expressed in terms of the slowness vector of the locally incident plane wave component, and
are given in Refs. [59,60].

The sum of a number of ray integrals,

φ̄o + φ̄±1 + φ̄±2 + · · · ,

representing the image field φ̄ in a wedge of fluid, satisfies the boundary conditions (2.4) and (2.5) (Ref. [60]).

4.2 Transformation of the ray integral into the time domain

The ray integral in (4.2) can be transformed into the time domain by applying the Cagniard–de Hoop method,
as was shown in Ref. [60]. Here, we only summarize the key steps of this transformation.

The variables of integration in (4.2) are changed from (ξ ′±l , η
′±l) to (p′, q ′):

ξ ′±l = p′ cos θ ′±l − q ′ sin θ ′±l , η′±l = p′ sin θ ′±l + q ′ cos θ ′±l

where sin θ ′±l = y′±l/r ′±l , cos θ ′±l = x ′±l/r ′±l , and r ′2±l = x ′2±l + y′2±l . The phase function g±k in (4.1) is thus
rewritten as

g±k(p′, q ′) = i p′r ′±l − z′±l [a2 + p′2 + q ′2 ]1/2. (4.3)

Subsequently, the prime attached to p and q will be omitted. The integration variable p is further transformed
to a new variable t , defined by the phase function g±k in (4.3), that is,

− t = g±k(p, q). (4.4)

In the above q is held as a real parameter, p is allowed to be complex, and t has the dimension of time.
The integrand of the ray integral has the branch points corresponding to the wave speeds c, cp, and cs . To

make it a single-valued function of p in the complex p-plane,we introduce somebranch cuts. The p-integration,
which is now along the half-axis Rep ≥ 0, is equivalent to that along the Cagniard–de Hoop contour in the
complex p-plane, parameterized by t , and defined as p = g−1

±k (t, q), the inverse transformation of (4.4).
Interchanging the order of integration and assuming f (0+) = 0, we then find the inverse Laplace transform
of the ray integral by inspection,

φ±k(t) =
∫ t

0
ḟ (t − τ)I±k(τ )dτ ,

where a dot denotes the time differentiation, and

I±k(t) = a2

2π2 H(t − tA)Re
∫ q(t)

0
S�±k

dg−1
±k

dt
dq. (4.5)

In the above, H(t) is the Heaviside step function, tA = az′±l , Re denotes the real part, the upper limit for the
q-integration is q(t) = [(t/z′±l)

2 − a2]1/2, and
dg−1

±k

dt
= i[a2 + p2 + q2]1/2

[(a2 + q2)(r ′2±l + z′2±l) − t2]1/2 . (4.6)
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The ray integral I±k in (4.5) is exact, and thus it represents the exact time domain response of the entire wave
motion due to the φ±k partial wave.

For a perfect wedge of fluid with the mixed Dirichlet–Neumann boundaries (2.4) and (2.5.1), the product
�±k is constant, and the transformation of the ray integral in (4.2) into the time domain is greatly simplified,

φ±k(t) = (−1)n f (t − R′±l/c)/4πc2R′±l , (4.7)

[cf. Eq. (3.2)] where n is the number of reflections from the pressure-release surface z = 0, R′2±l = r ′2±l + z′2±l ,
and R′±l is the “equivalent distance” between the source and the receiver for the ± kth ray path.

Assuming ḟ (0+) = 0, the partial pressure response p±k(x, t) of the ± kth wave is

p±k(t) = −ρ

∫ t

0
f̈ (t − τ)I±k(τ )dτ . (4.8)

4.3 Arrival times for the spherical and head waves

The arrival time tM of the ± kth multi-reflected spherical P wave propagating along the ± kth ray path is
determined from those values of p and q that make t in (4.4) maximal, and it is given by (Ref. [60])

tM = a(r ′2±l + z′2±l)
1/2.

In a wedge of fluid, the ± kth multi-reflected spherical P wave undergoes a series of bottom reflections before
it reaches the receiver. The head P wave is initiated at that instant in the wedge by the particular bottom
reflection, when the tangential component of the slowness vector of the spherical P wave impinging on the
sloping interface is equal to one of the slownesses in the fast-speed bottom ap or as , that is,

(−iξ ′±l)
2 + (−iη′±l)

2 = a2
f f = p, s,

where ap = 1/cp and as = 1/cs . The arrival time t±l f of the head P wave propagating along the refracted
ray path is then given by (Ref. [60])

t±l f = a f r ′±l + z′±l(a
2 − a2

f )
1/2 f = p, s.

For a fast-speed elastic bottom, two head P waves are initiated, and t±lp and t±ls are the arrival times of the
faster and slower waves, respectively. For a fast-speed fluid bottom, one head P wave is initiated, and it arrives
at the receiver at time t = t±lp.

4.4 Evaluation of the ray integral

The evaluation of the ray integral in (4.5) depends on the receiver location x and the time of observation as
compared with the critical times tA, tM , and t±lp (tA < t±lp < tM ). For tA ≤ t < tM , the integrand of the
q-integral in (4.5) is nonsingular. For t ≥ tM , the q-integral in (4.5) contains a singularity, since dg−1

±k /dt in
(4.6) is singular of half-order at q = qM (t), where

qM (t) = [t2/(r ′2±l + z′2±l) − a2]1/2,
and 0 < qM (t) < q(t) when t ≥ tM .

In order to ascertain if at the specific location x the arrival of the ± kth multi-reflected spherical P wave
is preceded by the arrival of the ± kth primary head P wave, we examine the ± kth ray path pertinent to the
± kth spherical P wave. There are no head wave arrivals if the tangential component of the slowness vector
along each segment of the ± kth ray path, that is incident upon the sloping bottom, is less than the ap slowness
in the fast-speed bottom. The arrival of the ± kth spherical P wave at t = tM is preceded by the arrival of
the ± kth primary head P wave at t = t±lp, if for the first or the ultimate bottom reflection the tangential
component of the slowness vector along the incident segment of the ± kth ray path exceeds ap. (If for both
the first and the ultimate bottom reflections the tangential component of the slowness vector along the incident
segment of the ± kth ray path exceeds ap, the ± kth primary head P wave is initiated by this reflection where
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the tangential component of the slowness vector is larger.) If additionally, for other than the first or the ultimate
bottom reflections, the tangential component of the slowness vector along the incident segment of the ± kth
ray path exceeds ap, the secondary head P waves are initiated by these reflections, and they arrive prior to the
± kth spherical P wave. Thus we consider two cases.

Case A The response begins with the arrival of the spherical P wave at t = tM , and there are no head wave
arrivals. The integral in (4.5) is vanishing for tA ≤ t < tM , since the integrand is an imaginary function of
q for 0 < q < q(t) when tA ≤ t < tM . For t ≥ tM , the integration in (4.5) may be divided into two parts,
the first from 0 to qM (t) and the second from qM (t) to q(t). The second integration vanishes, because the
integrand is an imaginary function of q for qM (t) < q < q(t) when t ≥ tM . Thus, in case A, only the first
part of integration from 0 to qM (t) contributes to the response when t ≥ tM , and the q-integral contains a
half-order singularity at the upper limit qM (t).

Case B The response begins with the arrival of the ± kth primary head P wave at t = t±lp. In the case of an
elastic bottom, this wave is referred to as the ± kth faster primary head P wave, because it is followed by the
± kth slower primary head P wave arriving at t = t±ls . The primary arrival at t = t±lp may then be followed
by the arrivals of the secondary head P waves initiated by other than the first or the ultimate bottom reflection
of the ± kth spherical P wave. Finally, the ± kth spherical P wave reaches the receiver at t = tM .

The integral in (4.5) is vanishing for tA ≤ t < t±lp, since the integrand is an imaginary function of q for
0 < q < q(t) when tA ≤ t < t±lp. For t±lp ≤ t < tM , the integration in (4.5) may be divided into two parts,
the first from 0 to qp(t) and the second from qp(t) to q(t) where

qp(t) = [(1/z′±l)
2(t − apr ′±l)

2 + a2
p − a2]1/2,

and 0 < qp(t) < q(t). The second integration vanishes, because the integrand is an imaginary function of q
for qp(t) < q < q(t) when t±lp ≤ t < tM . Thus, in case B, only the first part of integration from 0 to qp(t)
contributes to the response when t±lp ≤ t < tM , and the q-integral is nonsingular.

Since 0 < qM (t) < qp(t) < q(t) when t ≥ tM , the integration in (4.5) may be divided into three parts
for t ≥ tM : The first from 0 to qM (t), the second from qM (t) to qp(t), and the third from qp(t) to q(t). The
third integration vanishes, because the integrand is an imaginary function of q for qp(t) < q < qp(t) when
t ≥ tM . Thus, in case B, only the first and second parts of integration from 0 to qM (t) and from qM (t) to q(t)
contribute to the response when t ≥ tM , and the first and second q-integrals contain a half-order singularity at
the upper and lower limits, respectively.

In both cases, this singularity in the q-integrals can be removed by changing the integration variable from
q to u:

u = [(a2 + q2)(r ′2±l + z′2±l) − t2]1/2, dq = [(a2 + q2)(r ′2±l + z′2±l) − t2]1/2
q(r ′2±l + z′2±l)

du.

Completing this change of variable introduces a factor [(a2 + q2)(r ′2±l + z′2±l) − t2]1/2 in the numerator, which

matches the half-order singularity of dg−1
±k /dt in the denominator [(Eq. (4.6)]. The q-integrals are now suitable

for the numerical integration which is performed by Gaussian quadrature (quadrature with controllable error),
and the convolution integral in (4.8) is then evaluated numerically using Simpson’s rule.

5 Numerical examples

When the wedge angle α is an integer submultiple of π , the pressure p(x, t) due to the image field at the
receiver point x is

p = po +
N∑

k=1

p+k +
N∑

k=1

p−k (5.1)

where po and p±k are the partial pressure pulses due to the φo and φ±k waves, respectively, and N = π/α.
All physical quantities having the dimension of length are normalized by h, the thickness of the wedge

measured vertically at the source location, all quantities having the dimension of time are normalized by the
characteristic time tc, where tc = h/c, and each partial pressure pulse is normalized by a constant pc, which
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is specified as follows. In (2.2) we set f (t) = t H(t), and since po = −ρ∂φo/∂t and φo is given by (3.2), the
time history of the pulse emitted by the source is a Heaviside step function (a Heaviside unit source-pulse),

po = (pc/R)H(t − R/c), (5.2)

where pc = −ρ/4πc2, so that the normalized pressure po/pc due to the source itself equals unity at R/h = 1.
Time records of the pressure due to the image field [Eq. (5.1)] were evaluated at receivers lying down-slope,

cross-slope, and up-slope from the source for the following three wedges: the perfect wedge of fluid, subject
to the mixed Dirichlet–Neumann boundary conditions (2.4) and (2.5.1); the penetrable wedge of fluid with a
fluid bottom, subject to the boundary conditions (2.4) and (2.5.2); and the penetrable wedge of fluid with an
elastic bottom, subject to the boundary conditions (2.4) and (2.5.3). The apex angle of each wedge is chosen
to be the same α = 10◦, so that in (5.1) N = 18, and 37 partial waves contribute to the image field.

The fluid in each wedge is chosen to be the same, and we assume that c = 1 and ρ = 1. The properties
assumed for a fluid bottom are cp = 1.2 and ρ2 = 2, and those assumed for an elastic bottom are cs = 2.19,
cp = √

3cs , and ρ2 = 2.5. The critical angle for the fluid bottom is γcp = 56.44◦, and those for the elastic
bottom are γcs = 27.17◦ and γcp = 15.29◦. We thus consider the fast-speed fluid and elastic bottoms with
discontinuities at the sloping interface both in the velocity and in the density.

In each of the three wedges, the source and the receivers are located on the bisecting plane of the wedge.
Thus, the source depth is zo = d tan(α/2), and the coordinates of each receiver are

x = r cos γ, y = r sin γ, z = (d + r cos γ ) tan(α/2). (5.3)

In the above r is the radial range in the horizontal plane z = 0, and γ is the azimuthal angle measured
clockwise in this plane from the x axis (Fig. 1). The normalized range of the source from the apex line is
d/h = cot 10◦, and the normalized source depth is zo/h = cot 10◦ tan 5◦ for α = 10◦. The thickness of each
wedge measured vertically at the source location is chosen to be the same, h = 1. We select five receivers
having the same radial range, but different azimuthal angles. In (5.3) we thus assume that α = 10◦, r = 5h,
and γ = 0◦, 45◦, 90◦, 135◦, 180◦ for each wedge, and five receiver positions are:

x1 = [5, 0, (cot 10◦ + 5) tan 5◦], γ1 = 0◦,
x2 = [5 cos 45◦, 5 sin 45◦, (cot 10◦ + 5 cos 45◦) tan 5◦], γ2 = 45◦,
x3 = (0, 5, cot 10◦ tan 5◦), γ3 = 90◦,
x4 = [−5 sin 45◦, 5 cos 45◦, (cot 10◦ − 5 sin 45◦) tan 5◦], γ4 = 135◦,
x5 = [−5, 0, (cot 10◦ − 5) tan 5◦], γ5 = 180◦ (5.4)

where the components of x1, x2, etc. are normalized by h. Relative to the source, x1 and x2 are the down-slope
positions, x3 is the cross-slope position, and x4 and x5 are the up-slope positions.

The time records of the pressure due to the image field [Eq. (5.1), N = 18], which comprises contributions
from 37 partial waves, were evaluated at five locations (5.4) for each of the three wedges, as is shown in Figs. 4,
5, 6, 7, 9, and 10, where the normalized pressure p/pc is plotted against the normalized time t/tc. At each
receiver, the partial waves are arranged in ascending order according to their minimum arrival times. Since
the source and the receivers are located on the bisecting plane of each wedge, the + kth and − kth spherical P
waves arrive simultaneously.

Two source-pulses were used for the evaluation of the time records of the pressure, which are presented in
Sects. 5.1, 5.2, and 5.3.

First, we assume that the source emits the Heaviside unit pulse (5.2), that is, in (2.2) we set f (t) = t H(t).
In this case, the partial pressure responses are (Ref. [60])

po = −ρ Io(t), p±k = −ρ I±k(t) (5.5.1,2)

where Io is the ray integral due to the φo wave, and the first of (5.5) reduces to (5.2) since f̄ (s) = 1/s2. For
instance, when R/h = 5, the normalized response po/pc due to the pulse (5.2) sets up at time t/tc = 5, and
then it remains constant at 0.2 for t/tc > 5, as is shown in Fig. 2, where po/pc is plotted against t/tc. The
numerical integration of the ray integral Io in (5.5) renders po which is in total agreement with the analytical
result provided by (5.2).

Second, we assume that f (t) in (2.2) is a Heaviside unit function with rounded shoulders (Refs. [49,65]),
that is, f (t) = 0 for t ≤ 0, f (t) = t2/2 for 0 < t ≤ �, f (t) = t2/2 − (t − �)2 for 0 < t ≤ 2�, and
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Fig. 2 Normalized source-pulse at the distance R/h = 5 from the point source emitting the Heaviside unit pulse. The source is
located in the wedge of the fluid (c = 1, ρ = 1) at xo = (0, 0, cot 10◦ tan 5◦)

f (t) = �2 for t > 2�, where the rise time 2� is a measure of the sharpness of f (t). The pressure pulse
emitted by the source has thus a triangular shape (a triangular source-pulse), that is,

po(t) = 0, t ≤ R/c,
= (pc/R)(t − R/c), R/c < t ≤ R/c + �,
= −(pc/R)(t − 2� − R/c), R/c + � < t ≤ R/c + 2�,
= 0, t > R/c + 2�.

(5.6)

Note that, for � → 0, f (t)/�2 approaches the Heaviside unit function and po becomes the Dirac delta
function. The pressure responses shown in Figs. 3, 5, 7, 8b, and 10 were obtained for �/tc = 0.05. For
instance, when R/h = 5, the normalized response po/pc due to the pulse (5.6) has a triangular shape with
the peak value 0.01 at t/tc = 5.05, as is shown in Fig. 3, where po/pc is plotted against t/tc. The numerical
evaluation of po/pc according to (4.8), where p±k and I±k are replaced by po and Io, respectively, is in total
agreement with the analytical result provided by (5.6).

5.1 Perfect wedge of fluid subject to the mixed Dirichlet–Neumann boundary conditions

Figures 4 and 5 show the pressure records due to the image field [Eq. (5.1), N = 18] at five locations, x1, x2,
x3, x4, and x5 [Eq. (5.4)], for the perfect wedge of fluid, subject to the mixed Dirichlet–Neumann boundary
conditions (2.4) and (2.5.1). The records shown in Fig. 4 were evaluated for the Heaviside unit source-pulse
(5.2), and those shown in Fig. 5 for the triangular source-pulse (5.6).

In the present case of the perfect wedge of fluid, subject to the mixed Dirichlet–Neumann boundary
conditions (2.4) and (2.5.1), the diffracted field is identically zero if the wedge angle α is an integer submultiple
of π/2 (Refs. [2,6]). Since α is set at α = 10◦, Figs. 4 and 5 show the exact pressure records (benchmark
pressure records) due to the 3-D field.

For the perfect wedge of fluid, subject to the mixed Dirichlet–Neumann boundary conditions (2.4) and
(2.5.1), and for the Heaviside unit source-pulse (5.2), Eq. (5.5.2) reduces to

p±k(t) = (−1)n(pc/R′±l)H(t − R′±l/c) (5.7)

[cf. Eq. (4.7)]. At each receiver, the numerical values of po/pc and p±k/pc evaluated accordingly to (5.5) are
in excellent agreement with the analytical values of po/pc and p±k/pc provided by (5.2) and (5.7).
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Fig. 3 Normalized source-pulse at the distance R/h = 5 from the point source emitting the triangular pulse. The source is located
in the wedge of fluid (c = 1, ρ = 1) at xo = (0, 0, cot 10◦ tan 5◦)

Since the source and the receivers are located on the bisecting plane of the wedge, the + kth and − kth
spherical P waves arrive simultaneously, as has already been noted before; and the values of p+k/pc and
p−k/pc are identical when k is even, and the values of p+k/pc and p−k/pc are opposite when k is odd.
Thus, the contributions from the odd-order partial waves cancel out, and those from the even-order partial
waves add up, so that the subsequent breaks in the pressure records shown in Fig. 4 are due to even-order
multiple reflections, and each of the five pressure records shown in Fig. 5 includes 10 pulses, where some
pulses following the source-pulse are more peaked than the source-pulse itself.

Each record shown in Fig. 5 can be divided into twoportions: the first portion (early time response) including
the contributions from pulses arriving along the direct ray paths, and the second portion (late time response)
including the contributions from pulses arriving along the indirect ray paths. Note that, at x3 (Fig. 5c), only
the pulses po and p−1 arrive along the direct ray paths, and all the other pulses arrive along the indirect ray
paths.

Figures 4 and 5 show the effect of the receiver location on the pressure records, where the five receivers
have the same radial range, but different azimuthal angles [Eq. (5.4)]. It is seen that the time interval between
the arrivals of the 0th (wave emitted from the source) and the ± 18th spherical P waves diminishes, and the
pulses following the source-pulse become more peaked (Fig. 5) as the azimuthal angle increases, as is to be
expected.

5.2 Penetrable wedge of fluid with the fast-speed fluid bottom

Figures 6 and 7 show the pressure records due to the image field [Eq. (5.1), N = 18] at five locations, x1,
x2, x3, x4, and x5 [Eq. (5.4)], for the penetrable wedge of fluid with the fast-speed fluid bottom, subject to
the boundary conditions (2.4) and (2.5.2). The records shown in Fig. 6 were evaluated for the Heaviside unit
source-pulse (5.2), and those shown in Fig. 7 for the triangular source-pulse (5.6).

Although the arrival times of the spherical P waves are here the same as those for the case of the rigid
bottom treated in Sect. 5.1, the pressure records are more complex due to the presence of the head P waves, the
total reflection of the spherical P waves from the fast-speed fluid bottom, and the penetration of the acoustic
energy into the bottom.

At each of the five locations, the pressure response begins with the arrival of the + 1st primary head P
wave, and the + 1st spherical P wave is thus totally reflected from the fast-speed fluid bottom. This is a
wide-angle reflection (a low grazing angle reflection) with the angle of incidence exceeding the critical angle
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Fig. 4 Normalized pressure in the perfect wedge of fluid (c = 1, ρ = 1) with the rigid bottom due to the point
source emitting the Heaviside unit pulse; a at location x1 = [5, 0, (cot 10◦ + 5) tan 5◦], γ1 = 0◦; b at location x2 =
[5 cos 45◦, 5 sin 45◦, (cot 10◦ + 5 cos 45◦) tan 5◦], γ2 = 45◦; c at location x3 = (0, 5, cot 10◦ tan 5◦), γ3 = 90◦; d at loca-
tion x4 = [−5 sin 45◦, 5 cos 45◦, (cot 10◦ − 5 sin 45◦) tan 5◦], γ4 = 135◦; e at location x5 = [−5, 0, (cot 10◦ − 5) tan 5◦],
γ5 = 180◦. The source is located in the wedge at xo = (0, 0, cot 10◦ tan 5◦)

γcp. At each of the five locations, when the source emits the Heaviside unit pulse (5.2), the time record of the
partial pulse p+1 exhibits a singularity of the form 1/(τ − τM ) at the arrival time τ = τM of the + 1st totally
reflected spherical P wave, where τ = t/tc and τM = tM/tc. For instance, at x1, this singularity is shown in
Fig. 8a, where p+1/pc is plotted against t/tc. However, the record shown in Fig. 8a is finite at τM = 5.2004,
since the numerical evaluation of the ray integral I+1 provides data for the pulse p+1 at a finite number of
equidistant points of a fixed time interval (constant time-step), and the singularity is very narrow and sharp
at τM = 5.2004. It was found that, when the values of the ray integral I+1 were evaluated using the smaller
time-step, only the peak value of p+1/pc at τM = 5.2004 increased substantially, otherwise, the response
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Fig. 5 Normalized pressure in the perfect wedge of fluid (c = 1, ρ = 1) with the rigid bottom due to the point
source emitting the triangular pulse; a at location x1 = [5, 0, (cot 10◦ + 5) tan 5◦], γ1 = 0◦; b at location x2 =
[5 cos 45◦, 5 sin 45◦, (cot 10◦ + 5 cos 45◦) tan 5◦], γ2 = 45◦; c at location x3 = (0, 5, cot 10◦ tan 5◦), γ3 = 90◦; d at loca-
tion x4 = [−5 sin 45◦, 5 cos 45◦, (cot 10◦ − 5 sin 45◦) tan 5◦], γ4 = 135◦; e at location x5 = [−5, 0, (cot 10◦ − 5) tan 5◦],
γ5 = 180◦. The source is located in the wedge at xo = (0, 0, cot 10◦ tan 5◦)

curve did not differ from that shown in Fig. 8a. A similar singularity was previously noted by Pekeris and
Longman [66]. They found that, for a Heaviside unit pulse applied at a point in a horizontal fluid layer with a
fast-speed fluid bottom, the partial pressure p+1 becomes logarithmically infinite at the time of arrival of the
+ 1st totally reflected spherical P wave.

Thus, each of the five pressure records shown in Fig. 6 exhibits the narrow and sharp peak at the arrival time
of each spherical P wave that undergoes one total reflection, or multiple total reflections, from the fast-speed
fluid bottom. For instance, at x1, the record shown in Fig. 6a clearly exhibits such a peak at the arrival times
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Fig. 6 Normalized pressure in the penetrable wedge of fluid (c = 1, ρ = 1)with the fast-speed fluid bottom (cp = 1.2, ρ2 = 2)
due to the point source emitting the Heaviside unit pulse; a at location x1 = [5, 0, (cot 10◦ + 5) tan 5◦], γ1 = 0◦; b at location
x2 = [5 cos 45◦, 5 sin 45◦, (cot 10◦ + 5 cos 45◦) tan 5◦], γ2 = 45◦; c at location x3 = (0, 5, cot 10◦ tan 5◦), γ3 = 90◦; d at
location x4 = [−5 sin 45◦, 5 cos 45◦, (cot 10◦ −5 sin 45◦) tan 5◦], γ4 = 135◦; e at x5 = [−5, 0, (cot 10◦ −5) tan 5◦], γ5 = 180◦.
The source is located in the wedge at xo = (0, 0, cot 10◦ tan 5◦)

τM = 5.2004, τM = 5.7050, and τM = 6.4445 of the + 1st, − 2nd, and + 3rd totally reflected spherical P
waves, respectively.

The narrow and sharp peak at the arrival time of each of the totally reflected spherical P waves stems
from the severe time input, as represented by the Heaviside unit source-pulse (5.2). When, at each of the five
locations, the convolution integrals in (4.8) were evaluated to obtain the partial pressure pulses due to the
triangular source-pulse (5.6), no singular behavior was found at the arrival time of each of the totally reflected
spherical P waves. For instance, at x1, there is no singularity at τM = 5.2004 in the time record of the partial
pulse p+1, as is shown in Fig. 8b, where p+1/pc is plotted against t/tc. In this Figure, the response immediately
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Fig. 7 Normalized pressure in the penetrable wedge of fluid (c = 1, ρ = 1)with the fast-speed fluid bottom (cp = 1.2, ρ2 = 2)
due to the point source emitting the triangular pulse; a at location x1 = [5, 0, (cot 10◦ + 5) tan 5◦], γ1 = 0◦; b at location
x2 = [5 cos 45◦, 5 sin 45◦, (cot 10◦ + 5 cos 45◦) tan 5◦], γ2 = 45◦; c at location x3 = (0, 5, cot 10◦ tan 5◦), γ3 = 90◦; d at
location x4 = [−5 sin 45◦, 5 cos 45◦, (cot 10◦ − 5 sin 45◦) tan 5◦], γ4 = 135◦; e at location x5 = [−5, 0, (cot 10◦ − 5) tan 5◦],
γ5 = 180◦. The source is located in the wedge at xo = (0, 0, cot 10◦ tan 5◦)

after τM = 5.2004 consists of two opposite triangle-like pulses. It was found that, when the values of the ray
integral I+1 were evaluated using the smaller time-step, the evaluation of the convolution integral in (4.8) for
the partial pressure p+1 provided the same response curve as that shown in Fig. 8b. The finite slope of rise
of the time input, as represented by the triangular source-pulse (5.6), thus gives the totally reflected pressure
pulses with finite peak values. This observation supports that by Pekeris and Longman [66], who noted that
a less sharp beginning of the source-pulse, such as one with a finite but very high slope of rise, would give a
highly peaked totally reflected pulse, though with a finite maximum value.

At each of the five locations, the wave emitted from the source is preceded by the ground wave. At x1, x2,
and x3, the ground wave includes the arrival of the+ 1st primary head P wave, at x4, the ground wave includes
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Fig. 8 Normalized partial pressure in the penetrable wedge of fluid (c = 1, ρ = 1) with the fast-speed fluid bottom (cp =
1.2, ρ2 = 2) at location x1 = [5, 0, (cot 10◦ + 5) tan 5◦], γ1 = 0◦; a due to the point source emitting the Heaviside unit pulse;
b due to the point source emitting the triangular pulse. The source is located in the wedge at xo = (0, 0, cot 10◦ tan 5◦)

the arrivals of the + 1st, + 2nd, and − 2nd primary head P waves, and at x5, the ground wave includes the
arrival of the + 1st, + 2nd, + 3rd, + 4th, + 5th, − 2nd, − 3rd, and + 6th primary head P waves. At x5, the
ground wave (portion of the record for t/tc < 5.0191) is clearly distinguishable from the water wave (portion
of the record for t/tc > 5.0191), as is shown in Figs. 6e and 7e, since the earliest head wave arrival is at
τ±lp = 4.4734, where τ±lp = t±lp/tc. Note that, at each of the five locations, the water wave includes the
arrivals of the multi-reflected spherical P waves and the arrivals of the head P waves.

The ground wave changes the peak value of the source-pulse contribution in each of the five pressure
records shown in Fig. 7. At x1 (Fig. 7a), x2 (Fig. 7b), x3 (Fig. 7c), x4 (Fig. 7d), and x5 (Fig. 7e), this peak
value is 0.0106, 0.0108, 0.0117, 0.0106, and 0.0042, respectively. However, at x1, x2, x3, x4, and x5, the peak
value of po/pc due to the triangular source-pulse (5.6) alone is 0.00996, 0.00998, 0.01, 0.00998, and 0.00996,
respectively. Thus, in the records at x1, x2, and x4 the peak value of the source-pulse contribution is slightly
magnified, in the record at x3 this value is magnified, and in the record at x5 this value is reduced.

Since the critical angle for the fast-speed fluid bottom (γcp = 56.44◦) is a shallow angle, there is a large
number of partial reflections off the sloping interface, which dissipate the acoustic energy into the bottom,
thus reducing the peaks associated with the later arriving partial waves. This is clearly seen when the pressure
records shown in Fig. 5 (rigid bottom) are compared with those shown in Fig. 7 (fast-speed fluid bottom). For
instance, at x1 (Fig. 7a), only nine partial waves, φo, φ±1, φ±2, φ±3, and φ±4 contribute significantly to the
pressure record. Nevertheless, in the records shown in Fig. 7, some pulses following the source-pulse are still
more peaked than the source-pulse itself. The effect of the receiver location on the pressure records is shown
in Figs. 6 and 7, where the five receivers have the same radial range, but different azimuthal angles [Eq. (5.4)].
As the azimuthal angle increases, the time interval between the arrivals of the ± 0th and the ± 18th spherical
P waves diminishes, the time interval between the arrivals of the earliest and the latest primary head P waves
also diminishes, the pulses following the source-pulse become more peaked (Fig. 7), and the number of partial
waves contributing significantly to the record thus increases.

5.3 Penetrable wedge of fluid with the fast-speed elastic bottom

Figures 9 and 10 show the pressure records due to the image field [Eq. (5.1), N = 18] at five locations, x1,
x2, x3, x4, and x5 [Eq. (5.4)], for the penetrable wedge of fluid with the fast-speed elastic bottom, subject to
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Fig. 9 Normalized pressure in the penetrable wedge of fluid (c = 1, ρ = 1)with the fast-speed elastic bottom (cp = √
3cs , cs =

2.19, ρ2 = 2.5) due to the point source emitting theHeaviside unit pulse; a at location x1 = [5, 0, (cot 10◦+5) tan 5◦], γ1 = 0◦;b
at location x2 = [5 cos 45◦, 5 sin 45◦, (cot 10◦ + 5 cos 45◦) tan 5◦], γ2 = 45◦; c at location x3 = (0, 5, cot 10◦ tan 5◦), γ3 = 90◦;
d at location x4 = [−5 sin 45◦, 5 cos 45◦, (cot 10◦−5 sin 45◦) tan 5◦], γ4 = 135◦; e at location x5 = [−5, 0, (cot 10◦−5) tan 5◦],
γ5 = 180◦. The source is located in the wedge at xo = (0, 0, cot 10◦ tan 5◦)

the boundary conditions (2.4) and (2.5.3). The records shown in Fig. 9 were evaluated for the Heaviside unit
source-pulse (5.2), and those shown in Fig. 10 for the triangular source-pulse (5.6).

The arrival times of the spherical P waves are here the same as those for the case of the fast-speed fluid
bottom treated in Sect. 5.2. However, because the discontinuities at the sloping interface in the P wave velocity
and in the density for the elastic bottom are larger than those for the fluid bottom, and (in contrast to the fluid
bottom) the elastic bottom supports the S waves, the pressure responses are different.

All spherical P waves interacting with the bottom undergo at least one total reflection off the bottom, and
(similarly as for the fast-speed fluid bottom) the pressure response at each of the five locations begins with the
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Fig. 10 Normalized pressure in the penetrablewedge of fluid (c = 1, ρ = 1)with the fast-speed elastic bottom (cp = √
3cs , cs =

2.19, ρ2 = 2.5) due to the point source emitting the triangular pulse; a at location x1 = [5, 0, (cot 10◦ +5) tan 5◦], γ1 = 0◦; b at
location x2 = [5 cos 45◦, 5 sin 45◦, (cot 10◦ + 5 cos 45◦) tan 5◦], γ2 = 45◦; c at location x3 = (0, 5, cot 10◦ tan 5◦), γ3 = 90◦; d
at location x4 = [−5 sin 45◦, 5 cos 45◦, (cot 10◦ − 5 sin 45◦) tan 5◦], γ4 = 135◦; e at location x5 = [−5, 0, (cot 10◦ − 5) tan 5◦],
γ5 = 180◦. The source is located in the wedge at xo = (0, 0, cot 10◦ tan 5◦)

arrival of the+ 1st (faster) primary head P wave, and the time records of the partial pulses exhibit a singularity
of the form 1/(τ − τM ) at the arrival time τ = τM of the totally reflected wave, when the source emits the
Heaviside unit pulse (5.2). Thus, each of the five records shown in Fig. 9 exhibits narrow and sharp peaks at
the arrival times of the totally reflected waves, but these peaks are not present in each of the five records shown
in Fig. 10, since these records were evaluated for the triangular source-pulse (5.6) (cf. Sect. 5.2).

At each of the five locations, the ground-wave-response of the fast-speed elastic bottom begins earlier than
that of the fast-speed fluid bottom, and thus each pressure record shown in Figs. 9 and 10 separates out into
distinct ground-wave and water-wave phases. At x5 (Figs. 9e, 10e), the ground wave is most prominent, since
it includes 70 primary head wave arrivals, and the earliest of these arrivals is at τ±lp = 1.8511.
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Similarly as for the fast-speed fluid bottom, the ground wave changes the peak value of the source-pulse
contribution in each of the five pressure records shown in Fig. 10. At x1 (Fig. 10a), x2 (Fig. 10b), x3 (Fig. 10c),
x4 (Fig. 10d), and x5 (Fig. 10e), this peak value is 0.0084, 0.0105, 0.0101, 0.0076, and 0.0065, respectively.
(The peak values of po/pc due to the triangular source-pulse (5.6) alone at x1, x2, x3, x4, and x5 are given in
Sect. 5.2.) Thus, in the record at x3 the peak value of the source-pulse contribution is almost not changed, in
the record x2 this value is slightly magnified, and in the records at x1, x4, and x5 this value is reduced.

In contrast to the case of the fast-speed fluid bottom, the two critical angles for the fast-speed elastic bottom
(γcs = 27.17◦ and γcp = 15.29◦) are steep. Hence, there are less partial reflections off the sloping interface,
so that the penetration of the acoustic energy into the fast-speed elastic bottom is much weaker, and thus
even the later arriving partial waves undergoing many bottom reflections make significant contributions to the
pressure responses (Fig. 10). Note that, at x1, the response curve shown in Fig. 9a clearly exhibits the break at
the arrival time of the wave emitted from the source and the peaks at the arrival times of all (even-order and
odd-order) spherical P waves contributing to the record, with the exception of the peak at τM = 16.3484 due
to the ± 17th spherical P waves, since this arrival time is very close to that at τM = 16.4050 due to the ± 18th
spherical P waves. Figures 9 and 10 demonstrate the dependence of the pressure responses on the receiver
position, where the five receivers have the same radial range, but different azimuthal angles [Eq. (5.4)]. As
the azimuthal angle increases, the duration of the ground-wave phase also increases, but the duration of the
water-wave phase decreases, and the pulses following the source-pulse become more peaked (Fig. 10). At x4,
two pulses in Fig. 10d (fast-speed elastic bottom) are more peaked than their two counterparts (pulses due
to the ± 4th and ± 6th spherical P waves) in Fig. 5d (rigid bottom), and, at x5, the amplification of the two
pulses is even stronger (Figs. 5e, 10e). This effect is probably due to the constructive interference, since the
fast-speed elastic bottom has a tendency to return the acoustic energy toward the upper layer (wedge of fluid)
(cf. Ref. [66]).

6 Conclusions

As mentioned in Sect. 1, the 3-D field generated by a point source in a wedge consists of two components:
the diffracted field arising from scattering at the apex of the wedge, and the image field expressed by a sum
of partial waves including the wave radiated from the source plus a finite number of waves reflected from the
wedge boundaries.

The purpose of this paper was to present the generalized ray solution for the 3-D pressure field in a rigid-
bottom, fast-speed fluid-bottom, and fast-speed elastic-bottom wedge. The contribution from the diffracted
field is not included in the solution, but nevertheless the solution is exact and complete for the image field
because no approximations were introduced into the mathematical formulation of the problem, and the ray
integrals are evaluated exactly by applying the Cagniard–de Hoop method; thus the contribution of the entire
image field is included for the complete received signal, as opposed to themethod of plane wave approximation
(geometrical acoustics approximation) evaluating the specular component of the field only (Refs. [18,67]).

Since the wedge angle α was set at α = 10◦, the complete image field included 37 partial waves, and the
diffracted field was identically zero in the rigid-bottom wedge. The source and five receivers were placed on
the bisecting plane of the wedge, each receiver had the same radial range in the horizontal from the source, but
different orientation relative to the source, measured by the azimuthal angle assuming values 0◦ (down-slope),
45◦ (obliquely down-slope), 90◦ (cross-slope), 135◦ (obliquely up-slope), and 180◦ (up-slope). Time records
of the normalized pressure due to the complete image field were evaluated at the five receivers for two transient
source-pulses: the Heaviside unit pulse and the triangular pulse.

These pressure records provided information about the 3-D image field in the wedge. For each of the three
bottoms, the time interval between the first arrival and the two ultimate arrivals diminished, and the pulses
following the source-pulse became more peaked, as the azimuthal angle of the receiver increased.

In the rigid-bottomwedge (perfect wedge), there was no penetration of the acoustic energy into the bottom,
and all pressure pulses arriving along indirect paths were significant at each of the five receivers. Some pulses
following the source-pulse were more peaked than the source-pulse itself because the source and the receivers
were located on the bisector of the wedge, so that the odd-order pulses canceled out and the even-order pulses
added up.

In the fluid-bottom wedge, at each of the five receivers, the spherical P wave emitted from the source
was preceded by the ground wave including head wave arrivals whose amplitudes were much weaker than
those of the spherical P waves (waterborne waves). The amplitudes of the later arriving (that is, higher-order)



1014 P. Borejko et al.

spherical P waves were severely reduced due to partial reflections off the sloping interface, which dissipated
the acoustic energy into the bottom. The inspection of the pressure records indicated that the pulses arriving
along indirect paths were insignificant at each of the five receivers for the fluid bottom with shallow critical
angle (γcp = 56.44◦).

In the elastic-bottom wedge, the two critical angles (γcs = 27.17◦ and γcp = 15.29◦) were steep. Hence,
there were less partial reflections off the sloping interface, so that the penetration of the acoustic energy into
the bottom was much weaker, and the pulses arriving along indirect paths made significant contributions to
the pressure records. At each of the five receivers, the ground-wave-response began earlier than that in the
fluid-bottom wedge, and thus the pressure record separated out into distinct ground-wave and water-wave
phases.
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