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Abstract We present a novel multistage hybrid asymptotic–direct approach to the modeling of the nonlinear
behavior of thin shells with piezoelectric patches or layers, which is formulated in a holistic form for the first
time in this paper. The key points of the approach are as follows: (1) the asymptotic reduction in the three-
dimensional linear theory of piezoelasticity for a thin plate; (2) a direct approach to geometrically nonlinear
piezoelectric shells as material surfaces, which is justified and completed by demanding the mathematical
equivalence of its linearized form with the asymptotic solution for a plate; and (3) the numerical analysis by
means of an FE scheme based on the developed model of the reduced electromechanically coupled continuum.
Our approach is illustrated by examples of static and steady-state analysis and verified with three-dimensional
solutions computed with the commercially available FE code ABAQUS as well as by comparison with results
reported in the literature.

1 Introduction

Multifunctionalmaterials with sensing and actuation capabilities and their integration into systems of structural
mechanics are the basis for the development of so-called intelligent or smart structures, which are used in
mechanical, aerospace or civil engineering; for reviews and applications, see, e.g., Crawley [1], Tani et al. [2]
and Liu et al. [3].

The proper design of smart structures is strongly related to an accurate, but also numerically efficient
modeling of the system. In many cases, these structures can be assumed as thin plates or shells with integrated
multifunctional materials. In such problems, a three-dimensional modeling is often inefficient and mostly not
necessary. Here, the theories of structural mechanics come into play, which must be extended with respect
to the effect of the structurally integrated multifunctional materials. A prominent example for such materials
with sensing and actuation capabilities is piezoelectric materials, for which the electromechanical coupling
must be accounted for. Various approaches are reported in the literature, including equivalent single layer
theories (Krommer [4], Batra and Vidoli [5]) or layer-wise and hybrid ones (Carrera and Boscolo [6], Moleiro
et al. [7]). In these theories, a priori assumptions concerning the mechanical displacements and the electrical
field in certain directions aremade to reduce the three-dimensional continuum to a lower-order one.With respect
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to nonlinear formulations for piezoelectric plates and shells, we refer to the rich literature, e.g., Zheng et al. [8],
Tan and Vu-Quoc [9], Klinkel and Wagner [10], Marinković et al. [11] and Lentzen et al. [12]. In this paper,
we develop a novel hybrid approach to the modeling of the nonlinear behavior of piezoelectric shells, which
is here presented in a holistic form for the first time; the approach is illustrated by two numerical examples.

The key point of the novel multistage hybrid asymptotic–direct approach for thin piezoelectric shells is
as follows. The geometrically nonlinear shell theory, obtained with a direct approach to shells as material
surfaces, is justified and completed by demanding the mathematical equivalence of its linearized version to the
asymptotically reduced equations of the three-dimensional linear theory of piezoelectricity. This provides the
constitutive relations of the dimensionally reduced continuum, allows for restoring the stressed state through
the thickness with the solution of the reduced problem and, finally, leads to consistent solutions of challenging
problems of the nonlinear behavior of thin shells with complex properties.

The first component of the hybrid approach is the procedure of asymptotic splitting in the form suggested
by Eliseev [13], which we apply to the three-dimensional linear problem of deformation of piezoelectric
plates. The approach has been systematically used for the dimensional reduction in the theories of curved
and twisted thin rods with an inhomogeneous cross section [14], of thin-walled rods of open profile [15], of
curved composite strips [16] and of thin piezoelectric plates with an inhomogeneous material structure through
the thickness [17]. The main idea is that the leading-order terms of the series expansion of the solution are
determined from the conditions of solvability for the minor terms.

The second component is the direct approach, based on the principles of Lagrangian mechanics extended
to the electromechanically coupled continuum: The system of equations of a dimensionally reduced theory
follows from an extended equation of virtual work. The procedure is compact and formal, as soon as the degrees
of freedom of particles of the reduced continuum are determined and the constraint conditions are formulated.

The third component of the approach is the numerical analysis, which is based on the developed model
of the reduced continuum. The kinematics of a material surface is approximated according to the theory, and
the corresponding strain measures and the expression for the virtual work are used. We will compare the
outcome of our numerical simulations against results computed with three-dimensional electromechanically
coupled elements using ABAQUS software,1 to semi-analytical solutions using the linearized version of the
proposed shell theory and to results from the literature. The developed coupled shell theory is verified in the
geometrically linear and the finite deformation regime by convergence studies.

The paper is structured as follows. After this introductory section, the governing equations of the three-
dimensional linear theory of piezoelectricity are shortly reviewed in Sect. 2. The application of the procedure of
asymptotic splitting—the first component—in Sect. 3 results in a linear two-dimensional electromechanically
coupled theory for thin piezoelectric plates. Section 4 presents the direct approach—the second component—
for geometrically nonlinear thin piezoelectric shells asmaterial surfaces withmechanical and electrical degrees
of freedom. The FE implementation—the third component—is described in Sect. 5. The paper is completed
with two example problems in Sects. 6 and 7.

2 Piezoelastic continuum: electromechanically coupled theory

A coupled system of equations for mechanical and electrical field entities needs to be considered, when the
material of the structure exhibits piezoelectric effects; see Nowacki [18]. Using the index ‘3’ where appropriate
to distinguish the three-dimensional fields from their counterparts in the two-dimensional plate or shell theory,
we write the equations of balance in the volume of the body V and the corresponding condition at the boundary
� = ∂V with the outer unit normal n:

∇3 · τ3 + f 3 = 0, n · τ3
∣
∣
�

= p. (1)

Here, τ3 is the symmetric stress tensor, f 3 is the external body forces (which may include inertial terms in
dynamics), p is surface tractions, and the differential (Hamilton) operator in three dimensions is denoted ∇3.
In the linear theory, the strain tensor ε3 is the symmetric part of the gradient of displacements u3:

ε3 = ∇3uS
3 . (2)

1 http://www.3ds.com/products-services/simulia/products/abaqus/.

http://www.3ds.com/products-services/simulia/products/abaqus/


Hybrid asymptotic-direct approach to piezoelectric shells 955

Strains, for which a suitable field of displacements exists, fulfill the condition of compatibility:

�3ε3 + ∇3∇3 tr ε3 = 2 (∇3∇3 · ε3)S ,

�3 ≡ ∇3 · ∇3. (3)

Either displacements u3 or tractions p are to be prescribed at � as mechanical boundary conditions.
The constitutive relations in Voigt’s linearized theory of piezoelasticity involve also the electric displace-

ment vector D and the electric field vector E:

τ3 = 4C· ·ε3 − E · 3e, D = 3e· ·ε3 + ε · E. (4)

The elastic properties of the material are defined by the fourth-rank tensor 4C, ε is the tensor of dielectric
constants, and the third-rank tensor of piezoelectric constants 3e is nonzero only in materials exhibiting the
piezoelectric effect.

The electric field is defined as the negative gradient of the electric potential ϕ3,

E = −∇3ϕ3, (5)

such that ∇3 × E = 0 holds, and the divergence of the electric displacements vanishes in the volume:

∇3 · D = 0. (6)

Electric voltage, prescribed on a part of the surface, provides a boundary condition for ϕ3. The complementary
boundary condition is written in terms of the free charge density σ per unit surface area:

n · D ∣
∣
�

= −σ. (7)

The constitutive relations (4) may be rewritten using the enthalpy function:

H3 = 1

2
ε3 · ·4C· ·ε3 − E · 3e· ·ε3 − 1

2
E · ε · E,

τ3 = ∂ H3

∂ε3
, D = −∂ H3

∂E
. (8)

Hamilton’s principle for piezoelectric continua is formulated with the following counterpart to the total
potential energy:

HΣ =
∫

V

(

H3 − f 3 · u3
)

dV +
∫

�

(σϕ3 − p · u3) d�. (9)

This is a functional over the fields of displacements and electric potential: HΣ = HΣ [u3, ϕ3]. Transform-
ing the variation

δH3 = τ3 · ·δε3 − D · δE = τ3 · ·∇3δu3 + D · ∇3δϕ3

= ∇3 · (τ3 · δu3) + ∇3 · (D δϕ3)

−∇3 · τ3 · δu3 − ∇3 · D δϕ3, (10)

we seek the static equilibrium as a stationary point of (9):

0 = −δHΣ =
∫

V

((∇3 · τ3 + f 3
) · δu3 + ∇3 · D δϕ3

)

dV

+
∫

�

((n · τ3 − p) · δu3 + (n · D + σ) δϕ3) d�. (11)

The variations δu3 and δϕ3 are independent, and the equations of balance (1), (6) as well as all kinds of
boundary conditions follow from (11). In a purely mechanical problem, δHΣ = 0 is the principle of virtual
work—also denoted as Gibb’s principle for a conservative problem; see, e.g., the textbook by Ziegler [19].
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3 Asymptotic solution for a thin plate

Within this section, the first component of the hybrid approach—the procedure of asymptotic splitting—is
discussed. The literature concerning the solution of equations for the three-dimensional model of a plate
with the help of various asymptotic methods is exhaustive. The three-dimensional solution is typically sought
as a series expansion with respect to a small parameter, which is related to the thickness of the plate; e.g.,
two-dimensional equations for the leading-order terms of the series expansion for a homogeneous plate were
obtained in [20,21]. For an advanced study of piezoelectric plates with a periodic material non-homogeneity
in all three dimensions, see [22]. Alternatively, the asymptotics can be based on variational principles as
developed in [23]. For the present paper, the works [24,25] are relevant; the equations for the components
of stresses and displacements are written for a specific material structure in a non-dimensional form, and the
analysis proceeds by assigning particular orders of smallness to different components of the stress tensor a
priori. The two-dimensional equations are obtained from the conditions of solvability for the minor terms of
the series expansion of the solution.

In this study, we rely on the advantages of the procedure of asymptotic splitting in the form suggested by
Eliseev [13,14]. All groups of equations of the theory of piezoelasticity are treated independently with the
help of the conditions of compatibility, and no assumptions concerning the orders of smallness of different
components of the stress tensor are involved. Leading terms in the solution follow from the conditions of
solvability for the minor terms. The presented theory has been numerically validated by demonstrating the
convergence to exact solutions for thin plates and curved strips in [16,17,26]. Belowwe summarize the notions
and main steps of the asymptotic analysis of piezoelectric plates, first published in [17].

3.1 Small parameter and asymptotic expansions

We apply Eqs. (1)–(7) to a thin plate. Choosing the first two cartesian axes x , y in the plane of the plate and
the third one z in the thickness direction, we write the position vector of a point of the structure:

r = λ−1x + zk, x = x i + y j , x ∈ �, z− ≤ z ≤ z+. (12)

We have introduced unit basis vectors i , j , k in the directions of Cartesian axes, � is the two-dimensional
domain, and z± are the coordinates of the upper and lower free surfaces of the plate. Its thinness is indicated
by the formal small parameter λ; hence, the magnitudes of x and z are of the same order. We will analyze
the asymptotic behavior of the solution of the problem as λ → 0. The advantage of the dimensionless formal
small parameter is that it can be set equal to 1 as soon as the dominant terms in the solution are determined.

Now, ∇3r = I is the identity tensor, and the corresponding form of Hamilton’s operator will be

∇3 = λ∇ + k∂z, ∂z ≡ ∂

∂z
, ∇ ≡ i∂x + j∂y; (13)

∇ is the differential operator with respect to the in-plane position vector x. We seek solutions, which vary
in the plane much slower than over the thickness (z is a “fast” variable), and therefore, the derivatives with
respect to the in-plane coordinates x acquire a corresponding order of smallness in (13).

Unknown fields are sought as asymptotic expansions in terms of the small parameter. Stresses grow when
z+ − z− → 0, which means that negative powers shall be included:

τ3 = λ−2 0
τ+ λ−1 1

τ+ λ0
2
τ+ · · · . (14)

We are interested in finding those terms in the solution, which dominate as the plate is getting thinner and
λ → 0. In doing so, we generally rely on the existence of the solution of the original problem for any positive
thickness of the plate. The leading power λ−2 in (14) is known from the results of the asymptotic analysis of
a homogeneous elastic plate [27].

Owing to the structure of our problem, it is convenient to separate the in-plane and out-of-plane parts of
vectors and tensors. The in-plane part will be denoted with a subscript ⊥:

I⊥ = I − kk, τ3⊥ ≡ τ⊥ = I⊥ · τ3 · I⊥, r⊥ = λ−1x,

ε3 = εzkk + γ k + kγ + ε⊥, τ3 = σzkk + τ k + kτ + τ⊥, (15)

in which γ and τ are the out-of-plane shear strain and stress vectors.
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3.2 Asymptotic splitting in the equations of piezoelasticity

We use (13), (15) in (1) and rewrite the equations of equilibrium with the small parameter; see [17,26] for
details. For the upper and lower surfaces free from tractions, which means

σz
∣
∣
z=z± = 0, τ

∣
∣
z=z± = 0, (16)

we substitute the expansion (14) and begin the asymptotic procedure. At the first step, we balance the principal
terms in the equations and boundary conditions, which have the order λ−2. From the simple equalities, it
follows that the shear and the transverse components vanish in the leading-order term of the stress tensor:

0
τ = 0,

0
σz = 0. (17)

The principal term of the in-plane stress tensor
0
τ⊥ is yet unknown and shall be determined as a final result.

At the second step, we proceed to the terms of the order λ−1, taking (17) into account. We conclude that
1
σz = 0, and

∇ · τ = 0, τ ≡
∫ z+

z−

0
τ⊥ dz. (18)

The equation of balance of the in-plane force factor (stress resultant)τ(x) appears as a result of the condition

of solvability for the shear stress
1
τ. A complete system of equations requires the third step of the asymptotic

procedure, at which the external force factors come into play. Collecting the terms of the order λ0, substituting

the results of the previous steps and writing the conditions of solvability for the minor terms
2
τ, we arrive at

∇ · Q + q = 0, q ≡
∫ z+

z−
fz dz, Q ≡

∫ z+

z−

1
τ dz,

∇ · μ + Q = 0, μ ≡ −
∫ z+

z−
z
0
τ⊥ dz. (19)

The equation of balance for the vector of transverse forces Q is the same as in the classical plate theory.
Eliminating Q, we arrive at the second classical equation of equilibrium for the tensor of internal moments
(stress couples) μ(x):

∇ · ∇ · μ − q = 0. (20)

Not only the known balance equations but rather the asymptotic structure of the components of the stress
tensor is the outcomeof the procedure. The boundary conditions at the side edges ∂� result from the asymptotics
of the edge layer; see [17].

Being linearly related to stresses via (4), the remaining fields have the same asymptotic behavior with
respect to the small parameter:

ε3 = λ−2 0
ε+ λ−1 1

ε+ · · · ,

D = λ−2
0

D+ λ−1
1

D+ · · · ,

ϕ3 = λ−2 0
ϕ + λ−1 1

ϕ + · · · ; (21)

the field of electric potential has the same asymptotic order as there is no λ in front of k∂z in the expression of
∇3 (13). Now we use the asymptotic expansion of the strain in the condition of compatibility (3). Gathering
the principal term of the in-plane component of the resulting equation, we conclude that the plane part of the
principal term of the strain tensor is linearly distributed through the thickness:

∂2z
0
ε⊥ = 0 ⇒ 0

ε⊥ = −κz + ε. (22)

The plane tensors κ(x) and ε(x) are functions of the in-plane coordinates. An asymptotic analysis of
displacements [17] shows that κ is the negative linearized curvature and ε is the in-plane strain of the plate:

ε = ∇uS, κ = ∇∇w (23)
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with u and w being the leading terms in u⊥ and uz . This is the modern interpretation of Kirchhoff’s kinematic
hypotheses.

Now, we consider the practically important case of a piezoelectric plate with two electrodes, one at the
upper and one at the lower surface. The material parameters can be arbitrarily distributed through the plate
thickness. The voltage between the electrodes is the potential difference:

ϕ = ϕ3
∣
∣
z+
z=z− . (24)

Using (6) and the differential operator (13), we find

∂z
0

Dz = 0 ⇒ 0

Dz = Dz0(x). (25)

This corresponds to the assumption which is traditionally made in deriving the theory of piezoelectric
plates with the method of hypotheses; see [4,28,29].

Writing the second constitutive relation in (4) for the principal terms, projecting on the thickness direction
and using (5) and (13), we arrive at

Dz0 = k · 3e· · 0
ε− k · ε · k ∂z

0
ϕ. (26)

The principal terms in the solution shall be influenced by both the mechanical and the electrical loadings.
The electric voltage λ−2ϕ between the two electrodes and the total charge λ−2Σ on the upper electrode need
to be two orders of smallness larger than the volumetric mechanical force fz to have comparable effects on
the behavior of the structure, and

∫ z+

z−
∂z

0
ϕdz = 0

ϕ
∣
∣z+
z=z− = ϕ,

∫

�e

Dz0 d� = −Σ. (27)

Here �e is a two-dimensional domain, occupied by the electrodes.
Now we proceed to the principal terms in the first of the constitutive relations (4). With (26), we write:

0
τ = 4C · · 0

ε+ k · 3e ∂z
0
ϕ =

(

4C + k · 3ek · 3e
k · ε · k

)

· · 0
ε− k · 3e

k · ε · k Dz0. (28)

As k · 0
τ = 0, we find

0
εz and

0
γ as linear functions of

0
ε⊥ = −κz + ε and Dz0 from (28). We substitute them

into the relation for the voltage, which follows by integration of (26) according to (27):

ϕ =
∫ z+

z−

k · 3e· · 0
ε

k · ε · k dz − Dz0

∫ z+

z−

1

k · ε · k dz. (29)

This results in a constitutive relation for the distributed charge on the electrodes:

Dz0 = −σ = p· ·ε + m· ·κ − cϕ. (30)

Integrating further the in-plane part of (28) over the thickness, we finally obtain the internal plate force
factors τ, μ as linear functions of κ, ε and ϕ:

τ = 4A· ·ε + 4B· ·κ + p̃ϕ,

μ = 4B· ·ε + 4D· ·κ + m̃ϕ. (31)

In these constitutive relations, the fourth-rank tensors 4A, 4B and 4D determine the elastic properties of
the plate at constant voltage. We also like to point out that this result accounts for electromechanical coupling,
as one can see from the definition of the effective material parameters in (28) and (29). The coefficients p̃, m̃
are equivalent to p, m from (30) for orthotropic materials, a case to which the present paper is restricted to. A
general proof of this fact for arbitrary material anisotropy, which is important for the use of these constitutive
relations in the framework of a direct approach in Sect. 4 with a function of enthalpy per unit area of the plate,
is yet to be found.

The above asymptotic procedure has resulted in the governing equations of a two-dimensional continuum,
namely a piezoelastic plate. The equations are equivalent to the ones derived in [4] by making a priori



Hybrid asymptotic-direct approach to piezoelectric shells 959

assumptions concerning the distribution of the displacements and the electric field through the thickness.
Hence, the asymptotic procedure justifies our previous results. We also note that the asymptotic procedure
has been conducted for a plate with electrodes at both sides, for which, however, the material parameters are
arbitrary functions of the thickness coordinate z. One can extend this procedure for plates with more than
one piezoelectric layer and hence multiple sets of electrodes, which can be independently used for actuation
and sensing. For the definition of material parameters in such a case, we refer to [4] as well. The asymptotic
accuracy and simplicity in applications are the benefits of the presented approach in comparison with treating
the fields in a laminate structure layer-wise [6,30].

3.3 Solution of the coupled structural problem: workflow

Two electrical unknowns exist for each pair of electrodes at the opposite sides of the plate: the total charge Σ
or the voltage ϕ; see (27). Depending on the impedance of the electric circuit, which connects the electrodes,
a relation between Σ and ϕ complements the structural equations. Two typical cases are as follows:

– Actuation. The voltage ϕ is prescribed, and the corresponding terms in (31) may be interpreted as general-
ized forces, which result in the deformation of the structure. A proper distribution (design) of these forces
can be used to assign a desired deformation to the plate (see [31,32] for applications to beam and frame
structures).

– Sensing. Themeasured voltage ϕ is interpreted by an observer in terms of structural entities: displacements,
vibration amplitudes, etc. In the simulation, ϕ is an additional unknown, and this potential difference is the
same for the whole pair of opposing electrodes. The system of equations is completed by a given value for
the total charge Σ , which remains constant as the external electric circuit is open. A proper design of the
sensor can be used to measure various kinematic entities of interest; see [32–35].

In the present paper, we solve a structural shell problem either according to the above linear equations,
or using the nonlinear shell model from Sect. 4 and applying the finite element scheme from Sect. 5. Then,
knowing the strains and the voltages in terms of the structural theory allows restoring the leading-order terms
of the three-dimensional mechanical and electrical fields through the thickness of the shell.

4 Direct approach to finite deformations of a piezoelectric shell

Weproceedwith the second component of the hybrid approach—the direct approach to thin piezoelectric shells
as material surfaces. As the curvature and geometrically nonlinear effects essentially couple the governing
equations for the membrane and bending deformations of a shell, methods of Lagrangian mechanics are
applied to enable the extension of the asymptotically validated theory of linear plates to the case of nonlinear
shells with relative ease.

4.1 Finite deformations of piezoelastic shells as material surfaces

A classical Kirchhoff–Love shell is a material surface � with five mechanical degrees of freedom of particles:
three translations δr and two rotations δn; the variation of the unit normal to the surface n lies in the tangent
plane. Each particle can be interpreted as a material unit normal (a needle), such that no virtual work is
produced on its “drilling” rotations. This determines the equation of virtual work and the resulting theory in
the purely elastic case; see [36,37]. The complete system of equations of the electromechanically coupled
problem at hand is again provided by a variational principle after assigning an electrical variable ϕ, which has
the meaning of the potential difference over the thickness, to each particle of the material surface. We extend
the three-dimensional condition of stationarity of the total enthalpy (9) to a form, which is similar to the purely
mechanical equation of virtual work:

δHΣ =
∫

�

(

J−1δH − q · δr + σ δϕ
)

d� −
∮

∂�

P · δr dl = 0. (32)

The term σ δϕ has “migrated” into the integral over the domain together with the free charge σ on the
electrodes. The area change from the reference to the actual configuration appears from d� = J d

◦
�, in which
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the small circle denotes variables in the undeformed reference state. The external forces inside the domain q
and at the boundary P are counted per unit actual area and length of the deformed contour ∂�. The enthalpy
per unit area in the reference configuration H will be determined in the course of the analysis, and the moment
loadings are ignored for simplicity. At a position of static equilibrium, the functional HΣ has a stationary
point.

Three parts of the domain � need to be considered.

– At the part of the plate, which is free from piezoelectric patches/layers, H is the strain energy, and ϕ is not
present.

– If a patch/layer works as an actuator, then some voltage is prescribed on the electrodes. This shall be
considered as a kinematic constraint for ϕ.

– The electric circuit remains open at the electrodes of the patches/layers, which act as sensors, and ϕ is an
additional unknown.

All electrodes are equipotential areas: ϕ = ϕi , δϕ = δϕi in �i , and we rewrite the variational principle
introducing total charges Σi at the electrodes:

∫

�

(

J−1δH − q · δr) d� −
∮

∂�

P · δr dl +
∑

i

Σi δϕi = 0,

Σi ≡
∫

�i

σ d�. (33)

�i are those domains of the shell, atwhich sensors/actuators are present, andwhich are electrically independent.
In the following, we shall demonstrate that the equations of balance

∇ · T + q = 0, T ≡ τ + μ · b + Qn;
∇ · μ · a + Q = 0 (34)

result as a consequence of (33). Again, τ and μ are the in-plane tensors of forces and moments in the shell,
the in-plane vector Q determines the shear force, and

a = ∇r = I − nn, b = −∇n (35)

are the first and the second metric tensors of the surface. The differential operator ∇ can be determined by the
expression of a differential of a (not necessarily scalar) field u, defined in the two-dimensional domain:

du = dr · ∇u; dr = dr · ∇r = dr · a. (36)

For a discussion of the basic notions of differential geometry of a surface, we refer to [38,39]. For a
presentation with coordinates on the surface, see [13,36] as well as the finite element implementation in
Sect. 5.2.

It is known (see “rigidity theorem for surfaces” in [38]) that a surface undergoes a rigid body motion if
(and only if) the components of both metric tensors in a local materially fixed basis (“convected components”)
remain constant. In the invariant form these conditions read

δE = 0, δK = 0, (37)

with the geometrically nonlinear strain tensors

E = 1

2
(FT · F − ◦a), K = FT · b · F − ◦

b, (38)

see (56) for a representation using components. The deformation gradient F relates an actual line element in
the deformed configuration to its pre-image in the reference one:

dr = F · d◦r, F ≡ ◦∇rT , F · G = a, G · F = ◦a; (39)

G plays the role of the “inverse” of F. In the absence of deformation, both E and K vanish owing to the metric
tensors of the reference configuration ◦a and

◦
b in (38).
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Now, for classical shells the unit normal n remains orthogonal to the surface in the course of deformation,
which imposes the constraint

δn + ∇δr · n = 0. (40)

Indeed, any differential dr is orthogonal to n. Considering δ(dr · n) = 0 and using (36) for dδr , we arrive
at (40).

Like in the purely mechanical case [26,36], we consider the variational formulation (33) for a shell,
undergoing a rigid body motion with preserved electric potentials. The enthalpy shall remain constant under
the following constraints:

δE = 0, δK = 0, δϕi = 0 ⇒ J−1δH = 0. (41)

We introduce Lagrange multipliers for the above constraints, transformed with G, and rewrite (33):
∫

�

(

q · δr − τ· ·GT · δE · G − μ· ·GT · δK · G

+ Q · (δn + ∇δr · n)
)

d� +
∮

∂�

P · δr dl

+
∑

i

(

Σi − Σ̃ i

)

δϕi = 0. (42)

In addition to the stress resultants, which already appeared in (34), we have introduced a new Lagrange
multiplier, namely the total charge at an electrode Σ̃ i (which certainly makes a difference only for open-circuit
conditions with δϕi 
= 0). Symmetry of the left-hand sides of the first and the second constraints in (41) implies
that both τ and μ are symmetric.

After mathematical transformations and the use of the divergence theorem on the surface, the variational
equation yields

∫

�

((· · ·1) · δr + (· · ·2) · δn) d� +
∮

∂�

· · · dl +
∑

i

(

Σi − Σ̃ i

)

δϕi = 0. (43)

Here · · ·1 and · · ·2 are the left-hand sides of equilibrium Eq. (34), which are thus proved because the
Lagrange multiplier Q allows treating the variations δr and δn as independent inside the domain. The contour
integral leads to the consistent static and kinematic boundary conditions, and at the open-circuited piezoelectric
patches/layers, the total electric charge needs to be equal to a prescribed value:

Σ̃ i = Σi . (44)

Further analysis leads to the general form of the constitutive relations. Considering again (33) for arbitrary
variations of unknown fields, we find

∫

�

J−1δH d� =
∫

�

(

G · τ · GT · ·δE + G · μ · GT · ·δK
)

d� +
∑

i

Σ̃ i δϕi . (45)

The prescribed charges are equal to the actual ones (denoted previously with a tilde), and

∑

i

Σ̃ i δϕi =
∫

�

σ δϕ d� (46)

as δϕ = δϕi at open-circuited electrodes and vanishes elsewhere. In a purely mechanical case, the equality of
integrals means the equality of integrated expressions. This conclusion is commonly based on a consideration
that (45) remains valid for an arbitrary sub-domain inside �, which may be justified using the principles
of Lagrangian mechanics [26]. In the present electromechanically coupled case, a non-controversial theory
follows with a similar local variational relation, which is in correspondence with (45):

J−1δH = G · τ · GT · ·δE + G · μ · GT · ·δK + σ δϕ ⇒ H = H(E, K, ϕ); (47)
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the arbitrariness of variations at the right-hand side of a variational relation determines the list of arguments
of a state function H . The constitutive relations follow from (47):

τ = J−1F · ∂ H

∂E
· FT , μ = J−1F · ∂ H

∂K
· FT ,

σ = J−1 ∂ H

∂ϕ
, Σi =

∫

�i

σ d�. (48)

4.2 Enthalpy function for a shell

Solving particular problems, we need a function H(E, K, ϕ), which can be assumed as a quadratic form,
because the local strains remain small even at large overall displacements and rotations. Moreover, the consti-
tutive relations of the nonlinear shell theory (48) applied to the problem of small deformation of a plate shall
be equivalent to the results of the asymptotic splitting of the three-dimensional electromechanically coupled
problem in Sect. 3. Comparing with the constitutive relations of the linear plate theory (30), (31) for ε = E
and κ = K, we arrive at the following expression of the enthalpy:

H = 1

2
E· ·4A· ·E + E· ·4B· ·K + 1

2
K · ·4D· ·K

+ ϕp· ·E + ϕm· ·K − 1

2
cϕ2. (49)

The fourth-rank tensors 4A, 4B and 4C comprise the elastic properties of the cross section when the voltage
ϕ = const. The coupling between the voltage and themechanical deformations is described by the second-rank
tensors p, m and the capacity c. As discussed in Sect. 3.3, the solution of a structural problem allows restoring
three-dimensional fields in the volume of the body of the shell because the local effect of the curvature is
expected to be asymptotically negligible.

For a shell made of n rigidly/perfectly bonded transversally isotropic layers, the enthalpy can be written
as

H = 1

2

(

A1 (tr E)2 + A2E· ·E) + B1 tr E tr K + B2E· ·K

+1

2

(

D1 (tr K)2 + D2K · ·K)

+ tr E
n

∑

j=1

ϕ j p j + tr K
n

∑

j=1

ϕ j m j

− 1

2

n
∑

j=1

c jϕ
2
j . (50)

Each piezoelectric layer is assumed to be electrically independent with the potential ϕ j ; non-piezoelectric
layers are accounted for with p j = 0 and m j = 0. Explicit expressions of the coefficients and numerical
values for such a layered shell are provided in Appendix A.

5 Finite element analysis of electromechanically coupled piezoelectric shells

Commercial finite element codes such as ABAQUS or ANSYS still do not include plate or shell finite elements
that are capable of solving electromechanically coupled problems. Concerning the literature on piezoelectric
thin-walled structures, the degenerated shell approach prevails; see, e.g., [40,41]. Here, we extend a numerical
scheme, presented originally in [42], to the electromechanically coupled variational problem (33). This is the
third and final component of the present hybrid approach.

The abovemodern version of the classical Kirchhoff–Love theory of shells requires in generalC1 continuity
in the approximation of the deformed surface, which can be obtained in various ways [43–45]. We achieve this
goal using a four-node finite element with the approximation scheme, suggested for linear plates in [46]: 16
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Fig. 1 Kinematics of the element: material coordinates qα , vector of unit normal n and nodal degrees of freedom rm , rm
1 , r

m
2 and

rm
12; m = i, j, k, l

shape functions for each spatial component of the position vector exactly represent any bi-cubic polynomial.
The element has thus 48 mechanical degrees of freedom and belongs to the class of the so-called absolute
nodal coordinate formulation (ANCF, [47,48]). A constant mass matrix and smooth approximation make it
as well attractive for the transient analysis and non-material formulations for axially moving structures [49].
Despite inherent restrictions concerning the topology of the mesh and connections between shell segments, the
present finite element has a relatively broad spectrum of potential applications with respect to both research
and development.

5.1 Element kinematics and shape functions

The shell is modeled as a continuum of material normal vectors, and its configuration is defined by the field
r(q1, q2) ≡ r(qα); −1 ≤ qα ≤ 1 are two material coordinates on a finite element. The vector of unit normal
results from the natural basis:

rα = ∂ r
∂qα

≡ ∂α r, n = r1 × r2
|r1 × r2| , (51)

while the differential operator on the surface features the co-basis:

∇ = rα∂α, rα · rβ = δα
β . (52)

Rewriting the expressions for the strain measures (38) with components (56), we see that the enthalpy H
in (49), (50) will be integrable as long as the smoothness condition is fulfilled. We denote the four nodes of
the finite element as i , j , k and l and write the position vector as

r(qα) =
∑

m=i, j,k,l

(

rm Sm,1 + rm
1 Sm,2 + rm

2 Sm,3 + rm
12Sm,4) . (53)

The approximation features 12 nodal degrees of freedom: position vector rm , its derivatives with respect
to the local coordinates on the element rm

1 and rm
2 , and the mixed second-order derivative rm

12; see Fig. 1.
The conditions of smooth coupling with the approximation on the neighboring elements lead to a unique

set of the 16 bi-cubic shape functions Sm,n(qα). The element itself is isoparametric: The reference geometry ◦r
is also approximated by means of (53) and is thus C1 continuous. The validity of the presented approximation
requires that the coordinate lines qα = const are continuous across the element boundaries. This poses certain
limitations on the topology of the mesh, which restricts the range of potential applications. Releasing this
requirement is a non-trivial task, which will not be discussed here.

5.2 Elastic forces and stiffness of the element

Solving the variational problem (33), we assemble the total enthalpy integrating over the reference configura-
tions of all finite elements

◦
�el:
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δHΣ = 0, HΣ =
∑

Hel + Hext, Hel =
∫

◦
�el

H(E, K, ϕ) d
◦
� (54)

with Hext being the potential of external forces q and P . Unknowns are the nodal degrees of freedom and
electric voltages ϕk at open-circuit regions (sensors). This latter fact introduces additional coupling into the
system for all elements, which belong to the same �i . This coupling results in a non-local formulation over
the domain �i , as it has been discussed in detail in [4] for a linear plate. As in (50) c > 0 and the enthalpy H
is not positive definite, we cannot speak about the minimality problem in the presence of electrical unknowns,
but experience shows that small negative eigenvalues of the stiffness matrix do not influence the convergence
of the quasi-Newton scheme for solving the equation in (54).

Dividing the domain into finite elements, we keep in mind that the function HΣ is integrable due to the
continuity of the approximation. Numerical results in Sect. 6 were obtained by using the Gaussian quadrature
rule with 3 × 3 integration points for the integral over the element surface

◦
�el in the reference configuration.

The invariant expression for H(E, K, ϕ) (50) can be written in components with the formulas

tr E = Eαβ
◦rα · ◦rβ = Eαβ

◦aαβ, E· ·E = Eαβ Eγ δ
◦aβγ ◦aαδ, (55)

which also holds for K = Kαβ
◦rα ◦rβ , with components

Eαβ = 1

2

(

aαβ − ◦aαβ

)

, Kαβ = bαβ − ◦
bαβ;

aαβ = rα · rβ, bαβ = rαβ · n, aαβ = rα · rβ. (56)

The components of the metric tensors in the reference configuration ◦aαβ ,
◦
bαβ shall be precomputed in the

integration points of the finite elements: They fully determine the undeformed geometry of the shell, and the
elementary surface is

d
◦
� =

√

det
{◦aαβ

}

dq1 dq2. (57)

We employ the Newton method for seeking the stationary points of HΣ , for which we need the derivatives

Fel,p = −∂ HΣ

∂ep
, Kel,pq = ∂2HΣ

∂ep∂eq
, p, q = 1 . . . N (58)

to be computable for any configuration of the shell. There are N = 48 mechanical degrees of freedom ep for
finite elements without piezoelectric properties or with prescribed electric voltage, and N = 49 for elements
in open-circuit regions, in which the electrical unknown ϕ is shared among multiple elements. The global
force vector F and stiffness matrix K result from assembling (summation) of Fel and Kel over the integration
points, where the derivatives of the distributed enthalpy H(E, K, ϕ) are computed efficiently by a chain rule.

5.3 Boundary conditions

If an edge is free from kinematic constraints, then the external force factors acting on that edge need to be
accounted for. In static problems, it is common to deal with conservative loads, which allows to speak about
the potential energy of external force factors at the boundary. The most simple case of a conservative edge load
is a force, which is distributed per unit length of the edge in the reference configuration. This means that the
force vector P changes with the extension or contraction of the edge. The contribution of the potential energy
of this force to Hext in (54) is easy to compute by integrating over the edges of the elements at the boundary.

At a simply supported edge, the particles are fixed by appropriate penalty terms for the nodal positions rm

and derivatives rm
α (α corresponds to the direction along the edge). If the edge is clamped, then the direction of

the normal vector n needs to be additionally constrained. For a straight edge, n = ◦n = const, and the constraint
will be fulfilled exactly, if we demand ◦n · rm

β = 0 and ◦n · rm
12 = 0, in which β corresponds to the direction

pointing outwards of the domain. The same conditions can be applied at curved edges with satisfactory results.
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Fig. 2 Undeformed cylindrical panel with piezoelectric patches

5.4 Extension to dynamics

The equations of motion of a shell in the form of Lagrange equations of the second kind (in which the enthalpy
replaces the potential energy) require the kinetic energy of the element Tel. The effect of rotary inertia of a
through-the-thickness element does not need to be accounted for classical shells, and we write

Tel = 1

2

∫

◦
�el

(ρh)
◦ṙ · ṙ d ◦

�; (59)

here, (ρh)
◦is thematerial density per unit area in the reference configuration, and the dotmeans a time derivative.

Rewriting the approximation (53) as {r} = eT S, in which S is the 3× 48 matrix of shape functions and e is a
column matrix of degrees of freedom ep, we obtain

Tel = 1

2
ėT Melė, Mel =

∫

◦
�el

(ρh)
◦SST d

◦
�. (60)

The time integration is simple and straightforward due to the constant mass matrix Mel, which is typical
for the absolute nodal coordinate formulation [47,48].

6 Example 1: Cylindrical panel with piezoelectric patches

Some parts of the presented approach have been earlier demonstrated in applications to simple piezoelectric
plates [17,26,28,50] and to shell problems [26,51]. In this section, we present a thorough study of the capa-
bilities of the method on the practically relevant example of the static and dynamic behavior of a cylindrical
panel; see Fig. 2.

The panel is clamped at one end and equipped with three piezoelectric patches, which are perfectly bonded
at the outer surface of the panel (with larger radius). The structure of the panel is made of aluminum, and an
orthotropic piezoelectric material PZT-5A is used for the patches.

We choose the middle of the substrate (structural layer) as a reference surface z = 0 and the thickness of
both layers equals h = 10−3 m, such that the substrate is at−h/2 ≤ z ≤ h/2 and the piezoelectric patch spans
h/2 ≤ z ≤ 3h/2; see Fig. 3.

The structural properties of the through-the-thickness element z− ≤ z ≤ z+ with z− = −h/2 and
z+ = 3h/2, which appear as coefficients in the quadratic form of the enthalpy (50), were computed according
to the procedure, described in detail in Appendix A.
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piezoelectric patch

substrate

ground

ϕ

x

z

−h/2

h/2

3h/2

Fig. 3 Through-the-thickness element of the shell in the region with a piezoelectric patch

Fig. 4 Deformed structure with finite element mesh, two projections

The length of the panel is L = 0.4m, and the radius of curvature of the middle surface of the structural
layer is R = 0.08m. The size of the piezoelectric patches in the length direction is 0.05m, and the distance
between them and the clamped edge is 0.075m. The angular size of each patch in circumferential direction is
π/6, such that the angular sizes of the two gaps between them are π/4. The panel is under the action of the field
of gravity with the magnitude g = χgmax, in which 0 ≤ χ ≤ 1 is a variable load factor and gmax = 5000ms−2

is the maximum loading. As it is indicated by an arrow in Fig. 2, the gravity force acts downwards along the
line connecting two free corners of the undeformed panel.

In the following, we consider solutions, which were obtained with the above finite element scheme based
on the hybrid approach to shells as material surfaces. The analysis is performed using the in-house software
code ShellFE3, developed by the authors. The results are compared to the solution for an equivalent three-
dimensional finite element model, which was obtained using ABAQUS software. We used the 20-nodal brick
elements with electromechanical coupling C3D20RE, and a regular mesh featuring 3 elements in the thickness
direction for each layer, 33 elements per patch in the length direction and 28 elements per patch in the
circumferential direction (136575finite elements in total). Thismesh provided solutions,whichwere converged
to a sufficient degree for the comparisons below.

6.1 Static analysis: sensing

Considering open electric circuits between the electrodes and zero total charges, we computed the static
deformation of the structure and the electric voltages at the patches, which are thus acting as sensors, whose
signals may be interpreted in terms of structural entities. The deformed model with 4 × 4 finite elements per
patch for the final value of the load factor χ = 1 is presented in Fig. 4 from two points of view.

We notice a local bulge at the upper edge near the clamping, where the shell is softer than under the patch.
The computed histories of the evolution of all three sensor signals ϕk are shown in Fig. 5.
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Fig. 5 Voltages at the piezoelectric sensors, computed for increasing load factor χ ; dashed line: shell model with 2 × 2 finite
elements per patch, solid line: shell model with 8 × 8 finite elements per patch, circles: converged ABAQUS solution

Table 1 Lower eigenfrequencies of an undeformed structure: mesh convergence of the shell model and three-dimensional
ABAQUS solutions for open-circuit and short-circuit electrodes

Model ω1/s−1 ω2/s−1 ω3/s−1 ω4/s−1

2 × 2 f. e. per patch 667.40 820.64 1637.1 1735.1
4 × 4 f. e. per patch 666.16 818.25 1630.9 1729.0
8 × 8 f. e. per patch 665.94 817.95 1630.2 1728.3
ABAQUS, o. c. 665.17 817.20 1626.1 1722.0
ABAQUS, s. c. 665.14 817.18 1625.9 1721.9

Even the coarse model with just 4 finite elements per patch produces accurate results, and refining the mesh
we converge to a solution, which is close to the results of the three-dimensional analysis.

Owing to the symmetry of the problem, it is easy to conclude that the signal of the middle patch ϕ2(χ)
would vanish in a linear formulation, which is shown in Fig. 5 for small χ . Geometric nonlinearity results in
ϕ2 
= 0 later on. One notices also a visible nonlinearity in the other two signals starting at χ ≈ 0.7, which
corresponds to the beginning of the formation of the bulge. The local additional stiffness of the perfectly
bonded patches slightly shifts the location of the bulge and increases the critical load, but the supercritical
behavior remains nearly the same as in the structure with no patches. The location of the bulge also determines
the fact that the nonlinearity is most prominent in the signal ϕ1, which can be used for drawing conclusions
concerning the location of defects in the structure [34,35].

6.2 Evolution of eigenfrequencies

Having the stiffness matrix K and the mass matrix M of the finite element model at hand, we can solve a
generalized eigenvalue problem and find eigenfrequencies ωk of lower vibration modes, which are roots of the
equation

det(K − ω2M) = 0. (61)

For an undeformed structure at χ = 0 and with all three patches in open-circuit conditions, the results of
computations with different meshes and in ABAQUS are compared in Table 1. The small difference between
the converged eigenfrequencies in the shell and in the three-dimensional solutions is nevertheless higher than
the effect of the electric circuit at the patches, which can be observed by comparison with the ABAQUS
solution with prescribed voltages ϕ1,2,3 = 0.

We also computed the variation of eigenfrequencies with respect to the above static solution. Increasing
the load factor χ typically reduces the stiffness along with the eigenfrequencies due to the corresponding
pre-stresses and pre-deformation, which can be observed in Fig. 6. Again, a qualitative change in the behavior
is seen as χ > 0.7.

6.3 Steady-state vibrations: sensing and actuation

We performed a steady-state vibration analysis for the model, which was linearized in the vicinity of the
undeformed state. Harmonic vibrations were actuated by the voltage at the first patch ϕ1 = ϕ̄1 sinωt varying
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Fig. 6 Evolution of the first three eigenfrequencies at increasing load factor χ ; dashed line: shell model with 2×2 finite elements
per patch, solid line: shell model with 8 × 8 finite elements per patch, circles: converged ABAQUS solution

Fig. 7 Steady-state response: variation of amplitudes of signals at the 2nd and 3rd patch at increasing frequency of the harmonic
excitation at the 1st patch; dashed line: shell model with 2 × 2 finite elements per patch, solid line: shell model with 8× 8 finite
elements per patch, dash dotted line: converged ABAQUS solution

in time t with unit amplitude: ϕ̄1 = 1V.Analyzing the linearized dynamics of forced oscillations, we computed
the amplitudes of the signals ϕ̄2,3 sinωt at the other two patches, which acted as sensors, by solving a linear
problem with the matrix K − ω2M . The right-hand side corresponds to the chosen actuation, and the matrices
K and M differ from those used in (61) as the variable ϕ1 is now excluded from the set of unknowns.

The computed variations of amplitudes of the measured signals are plotted against the excitation frequency
ω in a logarithmic scale in Fig. 7. We again observe a good correspondence to the three-dimensional solution
even at a coarse finite element mesh. The second resonance peak is missing in the first plot as the corresponding
vibration mode is symmetric and not measured by the second sensor, placed in the middle.

7 Example 2: Static actuation of a hemispherical shell with an opening

In the second example, we study a hemispherical shell with a circular hole of 18◦, shown in the left plot of
Fig. 8. The same problem has been studied by Klinkel et al. [52], using a solid shell finite element formulation.
The sphere has an inner radius of 0.1m and consists of a steel kernel sandwiched between two PZT-4 ceramic
layers with the thickness values (0.25; 0.5; 0.25) × 10−3 m; perfect bonding of the layers is assumed. The
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Fig. 8 Hemispherical shellwith an opening: undeformed state (left), electromechanically loaded state immediately before buckling
with the load factor χ = 0.824 (middle) and supercritically deformed configuration at χ = 1 (right)

Table 2 Radial deflection at the lower edge of the hemispherical shell at χ = 3.57 · 10−3

Model w/m

Semi-analytical solution 13.0537 × 10−6

Shell finite elements 13.0544 × 10−6

Klinkel et at. [52] 12.51 × 10−6

upper edge of the shell (the boundary of the opening) is clamped, whereas the lower edge is free to deform
under the action of an electrical voltage, applied to the outer and inner piezoelectric layer of the shell: The
electrical voltage equals ϕ at the outer piezoelectric layer and−ϕ at the inner piezoelectric layer. This actuation
contracts the outer layer and extends the inner one, which is comparable to a change in the curvature of the
shell

◦
b in the reference configuration; see (38) and (56). On the other hand, the reference configuration in-plane

metric of the shell ◦a remains unchanged, such that the resulting undeformed state becomes incompatible, and
the shell deforms as shown in the middle plot of Fig. 8.

7.1 Rotationally symmetric deformation

We start with a semi-analytical solution of the rotationally symmetric problem of small deformation. The
geometrically linear counterpart of the system of Eqs. (34), (44), (48), three kinematic boundary conditions at
the upper edge (vanishing displacements and no rotation about the edge) and three static boundary conditions
at the lower edge (no applied mechanical forces and no moment about the edge) provide a linear boundary
value problem. The small thickness of the shell results in narrow boundary layers, in which the moment
effects are concentrated, and the membrane stresses dominate in the interior part of the domain. This results
in an ill-conditioned boundary value problem, such that particular care had to be taken in order to obtain
numerically accurate results when solving it using the shooting method. For the sake of comparing the results
to the literature, we used the material parameters from [52] when computing the structural properties of the
through-the-thickness element of the shell according to the procedure presented in Appendix A.

Afinite element simulation again featured the in-house finite element code ShellFE3. The entire hemisphere
was modeled using 64 × 64 elements; we did not make use of the symmetry of the problem to preserve the
generality for the subsequent buckling analysis. The applied electrical voltage ϕ = χϕmax was varied from
zero to the maximum magnitude ϕmax = 1.4 × 105 V using a load factor χ .

At small voltages, the linear semi-analytical solution is nearly identical to the finite element one, as it is
demonstrated by comparing the radial deflection of the lower edge for a particular load factor in Table 2.

The results are also sufficiently close to the value, obtained in [52] using a solid shell model.
Increasing the load factor, we observed the geometrically nonlinear effects by computing the relative

deflection difference

e = (w − wlin)w
−1
lin , (62)

in which the linear solution wlin is proportional to χ .
The plot in Fig. 9 demonstrates the increasing role of the geometric nonlinearity, as the relative deflection

difference increases steadily and reaches approx. 8% at a critical value of the load factor χ∗, after which the
solution changes qualitatively, the rotational symmetry is lost and the deflectionw cannot be uniquely defined.
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Fig. 9 Relative deflection difference between the linear and nonlinear solutions at increasing load factor

Fig. 10 Strain energy computed for the load factor χ ; solid line: loading path in the finite element analysis, dashed line: unloading
path, dash dotted line: semi-analytical solution of the linear shell model

7.2 Buckling and supercritical behavior

At χ = χ∗ ≈ 0.825 the equilibrium path eventually bifurcates into a buckling mode with waves in the
circumferential direction. We studied this behavior with the help of the energy norm of the solution. In the
finite element simulation, we integrated the mechanical part of the enthalpy H , i.e., the first three terms in the
quadratic form (50) with the coefficients A1,2, B1,2, D1,2 over the entire domain to compute the strain energy
of the shell UFEM. Its variation with an increasing load factor is shown in Fig. 10 in comparison with the linear
solution Ulinear, which is quadratic in χ .

The equilibrium path becomes slightly different from the linear solution at higher electrical voltages, but
remains continuous until χ = χ∗. Here, the stability of the rotationally symmetric solution is lost and the
numerical solver jumps to a neighboring solution branch.We resolved the details of the behavior of the structure
using very small load factor increments between sequential computations of the equilibrium states. Shortly
after, another jump in the solution is observed (see the loading path in the zoomed area in Fig. 10), and the
supercritical deformation mode with 8 waves in the circumferential direction is established. This branch of the
solution remains stable as the loading increases further and the buckling mode is becoming more pronounced;
the deformed shell for χ = 1 is shown in the right plot of Fig. 8. The unloading branch (dashed line in Fig. 10)
is not identical with the loading one, which can be attributed to phenomena such as snap-through and snapback
or snap-buckling; see Krommer and Irschik [53] and Krommer et al. [54] for the discussion of such phenomena
for the simpler problem of a piezoelectric plate. In any case, we found multiple equilibria in the vicinity of
χ∗, and we observed a small hysteresis loop.

8 Conclusions

We have presented a novel multistage hybrid asymptotic–direct approach to the modeling of the nonlinear
behavior of thin piezoelectric shells in a holistic form.All three components of the approach, namely asymptotic
splitting, direct approach to geometrically nonlinear shells and numerical analysis with a FE scheme, result in
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a consistent method for the dimensional reduction and analysis of the coupled three-dimensional continuum.
For two example problems, numerical results have been computed, verified with three-dimensional solutions
obtained with ABAQUS and compared to results from the literature as well as semi-analytical solutions of a
linearized version of the developed shell theory.
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Appendix A: Material parameters of the shell model

For a material which belongs to the crystal class 2mm with the polarization in the 3 directions (such as PZT ),
the linearized 3D constitutive relations can be written in matrix form as:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ11
σ22
σ33
σ23
σ13
σ12
D1
D2
D3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Q11 Q12 Q13 0 0 0 0 0 −e31
Q12 Q11 Q13 0 0 0 0 0 −e31
Q13 Q13 Q33 0 0 0 0 0 −e33
0 0 0 Q44 0 0 0 −e15 0
0 0 0 0 Q44 0 −e15 0 0
0 0 0 0 0 Q66 0 0 0
0 0 0 0 e15 0 ∈11 0 0
0 0 0 e15 0 0 0 ∈11 0
e31 e31 e33 0 0 0 0 0 ∈33

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε11
ε22
ε33
γ23
γ13
γ12
E1
E2
E3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; (63)

here, the (1, 2) plane is the isotropic plane, and Q66 = (Q11 − Q12)/2 holds. All materials used in the two
example problems in the paper belong to this class, and the thickness direction of the shell is the 3 directions.
In the following, we use effective material parameters defined as

Y = Q11 − Q13Q13

Q33
, Yν = Q12 − Q13Q13

Q33
,

E = Y (1 − ν2) , e = e31 − e33Q13

Q33
, ∈ = ∈33 + e233

Q33
. (64)

For isotropic materials, E and ν are actual material parameters and the piezoelectric parameter e vanishes.
Expressing the electric displacement through the electric voltage according to (29), using the asymptotically
justified plane stress condition and integrating the enthalpy for given ε, κ and Dz0 over z− ≤ z ≤ z+, we
arrive at the quadratic form (50). The coefficients A1, A2, B1, B2, D1, D2, p, m and c in the quadratic form are
then integral properties of the through-the-thickness element, which are computed according to the procedure
below.
We assume the shell to be made of layers i = 1, . . . , n, and the thickness coordinate z varies within each

layer between zi−1 and zi ; we have z0 = z− and zn = z+ in terms of Sect. 3.1. The coefficients A1, A2, B1
and B2 are found as

A1 =
n

∑

i=1

∫ zi

zi−1

Yiνi dz , A2 =
n

∑

i=1

∫ zi

zi−1

Yi (1 − νi ) dz,

B1 = −
n

∑

i=1

∫ zi

zi−1

Yiνi z dz , B2 = −
n

∑

i=1

∫ zi

zi−1

Yi (1 − νi )z dz. (65)

http://creativecommons.org/licenses/by/4.0/
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To compute D1 and D2, we first introduce the parameters

D =
n

∑

i=1

∫ zi

zi−1

Yi z
2 dz , Dν =

n
∑

i=1

∫ zi

zi−1

Yiνi z
2 dz,

Dem =
n

∑

i=1

∫ zi

zi−1

(

e2i
∈i

z − 1

hi

∫ zi

zi−1

e2i
∈i

z dz

)

z dz ,

νD = Dν + Dem

D + Dem
, hi = zi − zi−1, (66)

with the aid of which we have

D1 = (D + Dem)νD , D2 = (D + Dem)(1 − νD). (67)

Finally, we compute pi , mi and ci , which must be done for each piezoelectric layer:

pi =
∫ zi

zi−1

ei

hi
dz = ei , mi = −

∫ zi

zi−1

ei

hi
z dz , ci = ∈i

hi
. (68)

In the examples, four materials were used. The elastic material parameters for aluminum and steel are

Eal = 71 × 109 Nm−2 , νal = 0.33 ,

Est = 210 × 109 Nm−2 , νst = 0.3. (69)

The material parameters for PZT-5A used in the first example are given as

Q11 = 121 × 109 Nm−2 , Q12 = 75.4 × 109 Nm−2 ,

Q13 = 75.2 × 109 Nm−2 ,

Q33 = 111 × 109 Nm−2 , Q44 = 21.1 × 109 Nm−2 ,

e31 = −5.46Cm−2 , e33 = 15.8Cm−2 , e15 = 12.32Cm−2 ,

∈11 = 1730ε0 , ∈33 = 1700ε0 , ε0 = 8.854 × 10−12 A sV−1 m−1. (70)

For the dynamic simulations, we used the value of the mass density ρ = 2700 kgm−3 for aluminum and
ρ = 7750 kgm−3 for PZT-5A.

Concerning PZT-4 as used in the second example problem, we use the material parameters from Klinkel et
al. [52], to which we compare the results of our simulations. In [52], the material was assumed mechanically
isotropic, but still to exhibit piezoelectricity. The corresponding material parameters are

E = 81.3 × 109 Nm−2 , ν = 0.33 ,

e31 = −5.203Cm−2 , e33 = 15.08Cm−2 ,

e15 = 12.72Cm−2 , ∈33 = 6.752 × 10−9 A sV−1 m−1. (71)
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