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Abstract Tuned liquid column gas dampers (TLCGD) show excellent energy and vibration absorbing capa-
bilities appropriate for earthquake engineering. The objective of this work is to introduce a new concept of
coupled tuned liquid column gas dampers which allow an extended field of applications. In the proposed
configuration, several absorbers are connected in a spatial chain generating a multi-degree of freedom damper
system which can be tuned to a selected number of structural modes. Because all absorbers vibrate at different
natural frequencies simultaneously, the proposed design represents an improvement over conventional TLCGD
which can only be tuned to a single structural mode. Another benefit of multi-mode tuning is the significant
increase in active liquid mass compared to other damping devices. For a most effective vibration reduction, a
numerical tuning process in state space will deliver the free system natural frequency and damping ratio of all
absorbers. The capabilities of the new damping device are demonstrated on a simple laboratory structure that is
investigated numerically and experimentally. The results illustrate the excellent energy dissipating properties
of the proposed setup and emphasize the adequacy of coupled TLGCD for base-isolated structures. A notable
benefit of such types of dampers lies in their lack of moving mechanical parts, their cheap and easy imple-
mentation into civil engineering structures and low maintenance costs. Possible modifications with respect to
natural frequency and even of the damping properties can be performed with little additional expenses, and
the additional weight due to the liquid mass may be used as a possible reservoir, e.g., for fire fighting. Apart
from that, they exhibit a performance that is comparable to tuned mass dampers.

1 Introduction

The prevention of excessive or harmful structural vibrations has always been the subject of theoretical or
experimental research in many different fields of engineering, and the continuous development has led to
a variety of vibration reduction devices, most of which are based on the efficient absorption of vibrational
energy. A well-established and commonly applied technique is the application of dynamic vibration absorbers
designed to transfer and dissipate energy from critical building modes. This technique is particularly suitable
for lightly damped structures prone to resonant vibrations. Awidely usedmodel of passive vibration absorber is
the tuned mass damper (TMD), which has been applied for decades to many different kinds of structures in all
engineering disciplines. There exist, however, alternative absorber systems, like tuned liquid dampers (TLD),
also called sloshingmotion dampers or tuned liquid column dampers (TLCD). They all comprise the same basic
components, a movingmass exposed to restoring forces (spring) and energy dissipatingmechanisms (dashpot).
In case of base excitation, alternative concepts like base isolation are adequate, because the accumulation of
vibration energy is avoided by simply uncoupling the structure base from its surrounding by appropriate
elements. This strategy is very effective in earthquake protection because it reduces the energy dissipation
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demand of the higher structural vibration modes. However, base isolation of structures results in critical
rigid body type modes of vibrations, which require other energy dissipating measures to achieve a high level
of protection, such as dynamic absorbers. Although successfully applied to suppress vibrations in high-rise
buildings, TMD suffer from the difficulty of ensuring a smooth, frictionless motion of huge masses. While
active friction compensation is possible, a common way to overcome friction issues is to vertically suspend
the absorber mass on cables, thereby forming a pendulum type system, which is, e.g., installed in the Taipei
101 tower. Since pendulum type absorbers can hardly compensate for torsional vibrations, they are an ideal
TMD alternative for symmetric high-rise buildings only.

A different approach to circumvent the TMD friction problems is to substitute the rigid mass by moving
fluids. Sloshing motion dampers (TLD) have been successfully applied to reduce wind-induced vibrations of
smokestacks or wind turbines. However, difficulties in tuning, variable damping and a comparatively low active
mass prevented further successful applications. TLCD are known to overcome these deficiencies by guiding
the liquid flow in a rigid piping system. Similar to TMD, the vibration reduction results from a transfer of
structural vibration energy into a liquid movement with energy dissipation by viscous and turbulent damping.
Several innovative strategies have been developed to improve the tuning of TLCD in practical applications in
order to make these devices more competitive [1–3]. Still, TLCD operate at extremely low natural frequencies
in the range of 0.1–0.5 Hz, and consequently, the original design is only appropriate for very large structures.
However, the development of the modified tuned liquid column gas damper (TLCGD) extended the field of
possible applications to structures with critical frequencies up to several Hz, see [4].

Due to their simple design and a performance comparable to TMD, tuned liquid column (gas) dampers have
caused increased research efforts, in both analytical and experimental studies [5–7]. The conventional plane
V-shaped TLCGD design has been successfully applied to systems with dominating horizontal vibrations. In
case of large flexural vibrations, e.g., long span bridges, the novel space optimized pipe-in-pipe design of
vertical TLCGD (VTLCGD) renders additional efficient damping [8,9]. Other studies prove their efficiency
for providing additional damping for low frequency base isolation modes [10–13,29]. The combination with
base isolation is particularly promising, because it permits the installation of the heavy piping system at the
base of a structure.

In order to mitigate flexural and torsional vibrations, different configurations have been proposed [4,9,12,
14]. A promising approach to improve the performance of TLCGD makes use of active air springs by actively
adapting the pressure at the closed pipe sections of the absorber [15,16]. After applying a proper control
algorithm, the system can be used in both active and passive configurations, and it is possible to increase the
effective damping of several modes with a single device.

The salient features of TLCGD include comparatively low installation costs, easy application to new or
already existing structures, a simple tuning mechanism, no moving mechanical parts, and therefore negligible
maintenance requirements as well as little additional weight if the system is used as a water reservoir, e.g., for
the sake of firefighting. The theoretical and experimental research work of the last years has clearly indicated
that tuned liquid column dampers are very competitive when compared to the popular TMD of mass spring
dashpot type. For a comprehensive overview, see [9]. The profound understanding of TLCD has led to simple
design guidelines for optimal absorber geometry, placement and tuning, and so far all studies clearly indicate
that TLCGD could replace TMD in many fields of applications. Possible applications include, among others,
base-excited asymmetric high-rise buildings, wind, traffic or earthquake-induced bending torsional vibrations
of bridges and base-isolated systems. Temporary mobile TLCD units may be used in case of vibration-prone
construction processes of bridges and other structures as well [9,17]. Real size installations have also been
reported, e.g., a TLCD installation in a 26-story, 106-m high hotel in Japan [18], or the 48-story One Wall
Center in Vancouver, Canada [19].

Nevertheless, a considerable deficiency when compared to TMD is the incapability of individual TLCGD
to mitigate flexural and torsional vibrations simultaneously. Hence, the focus of the present work is directed
to an innovative coupled TLCGD which allows the tuning to several modes. While still using the absorber in
a passive configuration, this multi-mode tuning is of practical relevance, because it significantly reduces the
required fluid mass. This is an important extension over the TLCD, which can be tuned to a single mode only.
For example, a series of two coupled dampers may achieve the same effects with only half the active mass of
a conventional TLCD.

Finally, it must be said that TLCD like all passive devices reduce vibrations mainly by counteracting the
excitations rather than dissipating the induced energy. It will be shown in later chapters that such systems
when appropriately tuned work very well in reducing natural vibrations and consequently also resonances.
The merits in rather broadbanded excitations remain questionable, since some spectral components might even
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Fig. 1 a TLCGD of general shape with a relative streamline at a time instant t . b TLCGD as an equivalent TMDwith active mass
m∗ and dead weight load m̄ = m f − m∗

be enhanced. A study of the performance of such systems under broadband excitation can be found in [20].
Consequently, sustainable designs for earthquake protection should not rely on passive devices such as TLCD
or TMD alone, but are complemented by dissipating systems as well.

2 Description of a TLCGD

2.1 Equation of motion

The movement of the liquid column is governed by the non-stationary Bernoulli equation [21] applied in a
moving frame. Although many different TLCGD geometries have been proposed, the main characteristics can
be derived from a U- or V-shaped device, see Fig. 1a. The liquid moves inside a horizontal and two symmetric
inclined pipe sections of length B and H , respectively. We assume piecewise constant cross-sectional areas,
AH , AB . Frequently, orifice plates are inserted to increase the head loss in the moving fluid.

With u(t) being the amplitude of the liquid surface oscillation and aA(t) the horizontal acceleration of the
tube center A, the equation of motion reads [22],

ü + 2ζωu̇ + ω2u = −κaA, (1)

with g being the constant of gravity, and

ω =
√

g

L0
, (2.1)

ζ = 2λ

3π

max |u|
Leff

, (2.2)

κ = B + 2H cosβ

Leff
. (2.3)

The factor λ appearing in Eq. (2.2) accounts for the head loss in the fluid, which is given by the non-
linear expression �p = λρ |u̇| u̇/2. The damping factor ζ according to Eq. (2.2) results from an equivalent
linearization technique, where the nonlinear loss is replaced by an equivalent linear viscous damping term that
dissipates the same amount of energy during one cycle. As a consequence, the resulting factor ζ depends on
the vibration amplitude max |u|. The geometric parameters appearing in Eq. (2) are defined as follows:
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L0 = Leff

2 (sin β + h0/Ha)
, (3.1)

Leff = 2H + AH

AB
B, h0 = n p0

ρ g
, Ha = V0

AH
(3.2)

where ρ is the liquid density, and V0, p0, n denote the gas volume, the equilibrium gas pressure, and the
polytropic index, respectively [23]. The factor h0/Ha in Eq. (3.1) represents the elastic effect of the gas
volume which is acting as a spring. For extremely slow vibrations, the gas spring will operate under isothermal
conditions (n = 1), while at high frequencies an adiabatic change will occur and the polytropic index becomes
n = 1.4. For all other operating conditions, n is in the range of 1 ≤ n ≤ 1.4. The gas spring serves as a
convenient means for tuning the TLCGD resulting in an extended range of frequencies when compared to the
classical TLCD. Conventional TLCD usually are restricted to frequencies up 0.5 Hz in practical applications,
while the passive gas spring allows the application of TLCGD for frequencies up to about 5 Hz. With respect
to the validity of piston theory, the frequency will be limited by the (relative) maximum fluid speed, u̇ = ω u,
which must remain lower than a critical speed of about 12 m/s to avoid cavitation at the fluid–gas interface
[8]. Hence, for a given fluid stroke, the practicable frequency range in Eq. (1) is limited.

2.2 Coupling to a single degree of freedom structure

If attached to a moving floor, the fluid massmf can be separated into an active massm∗ which accounts for the
inertia effect of the damping device while the remaining fluid mass m̄ merely acts as a dead weight, as shown
in Fig. 1b. It is shown in [4,9] that

m∗ = κκ̄mf , (4.1)

m̄ = mf − m∗, (4.2)

mf = ρAH L1, (4.3)

with

κ̄ = κ
Leff

L1
, (5.1)

L1 = 2H + AB

AH
B. (5.2)

This allows for an analogy between a TLCGD and a conventional tuned mass damper (TMD), where numerous
criteria exist for the optimal choice of the dampers’ natural frequency and damping ratio. If a TMD with mass
m, damping coefficient ζ , and natural frequency ω is attached to a base-excited single degree of freedom host
structure with mass M, damping coefficient Z and natural frequency Ω , then the coupled system reads [4]

[
1 + μ μ
1 1

] [
ẅ
ü

]
+

[
2ZΩ 0
0 2ζω

] [
ẇ
u̇

]
+

[
Ω2 0
0 ω2

] [
w
u

]
= −ẅg

[
α + μ

1

]
(6)

where w(t) is the displacement of the structure relative to the base, ẅg is the ground acceleration, and

μ = m/M, (7.1)

α = 1. (7.2)

The same equation can be used also for a TLCGD, if the following parameters are replaced by the corresponding
starred quantities.

μ → μ∗ = m∗

M∗ , Ω → Ω∗ = Ω√
M∗/M

, Z → Z∗ = Z√
M∗/M

, (8.1)

u → u∗ = u/κ, (8.2)

with m∗ according to Eq. (4.1), and
M∗ = M + m̄. (9)
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2.3 Coupling to a multi-degree of freedom structure

In multi-degree of freedom structures, it is frequently sufficient to couple the damper only to the single mode
that is to be damped. Then, again, one has to consider merely a two degree of freedom structure, where the
structural mass M is replaced by the modal mass Mj of the corresponding mode. Consider a plane N degree of
freedom structure with mass matrix M, damping matrix C, and stiffness matrix K. If the TLCGD is attached
to the i-th floor, the equations of motion for the relative horizontal story displacements w(t) and the damper
oscillation u(t) read

Mẅ + C ẇ + Kw = −Mrsẅg + Fi , (10.1)

ü + 2ζω u̇ + ω2u = −κ
(
ẅg + sTi ẅ

)
(10.2)

where

Fi = −si mf
(
ẅg + sTi ẅ + κ̄ ü

)
(10.3)

denotes the interaction force between the structure and the damper on the i-th floor.
In Eq. (10), si is a (N × 1) unit vector in the i-direction, and rS represents the projection of the ground

displacement onto the N degrees of freedom. In case of a frame type structure under a constant horizontal
ground movement of all supports, rS is a (N × 1) vector with all components equal to 1. Using the orthogonal
modes of the structureφn, n = 1, . . ., N , Eq. (10.1) can be decomposed into N modal equations. If the TLCGD
are designed to reduce the j-th mode, we restrict the coupling of Eq. (10.2) to the j-th modal equation,

φT
j M φ j q̈ j + φT

j C φ j q̇ j + φT
j K φ j q j = −φT

j M rS ẅg − φT
j si mf

(
ẅg + sTi ẅ + κ̄ ü

)
, (11)

where q j (t) is the j-th modal coordinate according to the mapping w (t) = ∑N
n=1 qn (t)φn . The last term

of Eq. (11) describes the reaction force between the damper and the j-th mode. If the structural modes are
sufficiently well separated, we may neglect all contributions other than the j-th component in ẅ; that is, we
set ẅ ≈ q̈ jφ j . Then, we obtain the following coupled system:

[
Mj + φ2

j i mf κ̄ φ j i mf

κ̄ φ j i mf (κ̄/κ) mf

] [
q̈ j
ü

]
+

[
2Z jΩ j M j 0

0 2ζω (κ̄/κ) mf

] [
q̇ j
u̇

]

+
[

Ω2
j M j 0
0 ω2 (κ̄/κ) mf

] [
q j
u

]

= −ẅg

[
φT

j M rS + φ j i mf

κ̄ mf

]
(12)

where φ j i = sTi φ j is the i-th component of the mode φ j , and the corresponding modal parameters are

Mj = φT
jMφ j , (13.1)

Ω2
j = (

1/Mj
)
φT

jK φ j , (13.2)

Z j = (
1/2Ω j M j

)
φT

jCφ j . (13.3)

Equation (12) can also be transformed into an equivalent TMD system with equations of motion similar to
Eq. (6),

[
1 + μ∗ μ∗

1 1

] [
q̈ j
ü∗

]
+

[
2Z∗

jΩ
∗
j 0

0 2ζω

] [
q̇ j
u̇∗

]
+

[
Ω∗2

j 0
0 ω2

] [
q j
u∗

]
= −ẅ∗

g

[
α∗ + μ∗

1

]
, (14)

with

μ∗ = φ2
j i m

∗

M∗ , M∗ = Mj + φ2
j i m̄, (15)
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and

Ω∗
j = Ω j√

M∗/Mj
, Z∗

j = Z j√
M∗/Mj

, (16.1)

u∗ = u

κ φ j i
, ẅ∗

g = ẅg

φ j i
, (16.2)

α∗ = φ j i φ
T
j MrS + φ2

j i m̄

M∗ . (16.3)

2.4 Tuning of the damping parameters

For the optimal tuning of a two degree of freedom TMD system, the Den Hartog criterion can be applied [24].
The same formulas may be used for the analogous system (14), which delivers the following estimates of the
optimal frequency and damping coefficient of the equivalent TLCGD:

ωopt = Ω∗

1 + μ∗ = Ω

(1 + μ∗)
√
M∗/M

, (17.1)

ζopt =
√
3

8

μ∗
1 + μ∗ . (17.2)

Choosing these parameters, the dynamic magnification factor of the absolute floor acceleration will be min-
imized under a harmonic ground excitation. According to [25], this setting also minimizes the displacement
magnification due to a harmonic force acting at the structural degree of freedom.

3 Coupling of TLCGD systems

While a single TLCGD can be optimized to reduce a single mode only, the simultaneous reduction in multiple
modes requires a series of TLCGD. These might be either a sum of individual dampers or an arrangement
of coupled dampers. By a suitable design of such damping devices, excitations in different directions can be
treated simultaneously, e.g., transverse and torsional modes. In the following, we describe a system of two
coupled TLCGD’s, where the coupling is governed by the gas spring of volume V0 between the rigid pipes, as
shown in Fig. 2a. Accordingly, the two liquid columns work as a two degree of freedom oscillator with three
springs, as shown in Fig. 2b. Note, that location and orientation of the two TLCD can and should be chosen
independently within the floor for an optimal performance.

Similarly to the single TLCGD of Eq. (1), we may set up the equations of motion for the coupled device,

ük + �pk
ρLeffk

+ 2g sin (βk)

Leffk
uk = −κk aAk, k = 1, 2, (18)

where

Leffk = 2Hk + (AH/ABk) Bk, (19.1)

κk = 2Hk cos (βk) + Bk

Leffk
, k = 1, 2, (19.2)

and aAk denotes the acceleration of the respective tube center Ak . In a series formation, these accelerations
can be set equal, while in rotated configurations the values of the aAk are in general different, compare with
Fig. 3. Considering the pressure differences, we have according to Fig. 2

�p1 = p2 − p1, �p2 = p4 − p3. (20)

Since in a coupled damper p2 = p3, we have �p1 = −�p2 = �p. Using the equation of state for an ideal
gas with volume V0 at equilibrium, we obtain for the pressure difference

�p = p0

[(
V0

V0 + �V

)n

− 1

]
, (21)
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Fig. 2 a Two coupled TLCGD and b mechanical model of an equivalent two degree of freedom oscillator. Note that the loading
can no longer be applied as a common base excitation

with �V = AH2u2 − AH1u1. Since �V�V0, we may linearize Eq. (21), and assuming equal areas AH1 =
AH2 = AH , this results in

�p = n p0
V0/AH

(u1 − u2) = ρg h0
Ha

(u1 − u2) , (22)

with h0, Ha according to Eq. (3.2). The coupled TLCGD system acts as a two degree of freedom oscillator
with equivalent masses and stiffnesses

m̄ f k = (κ̄k/κk)m f k, kk = 2ρg AH sin βk, k = 1, 2, (23.1)

Kn = ρg h0
Ha

AH (23.2)

where the stiffness Kn of the air spring is found from Eq. (22). With these parameters, we obtain the following
equations of motion for the equivalent oscillator:

[
m̄ f 1 0
0 m̄ f 2

] [
ü1
ü2

]
+

[
Kn + k1 −Kn
−Kn Kn + k2

] [
u1
u2

]
= −

[
κ1m̄ f 1 aA1
κ2m̄ f 2 aA2

]
, (24)

which, alternatively, can be brought into a form similar to Eq. (18),

[
ü1
ü2

]
+

[
g
L01

− g
Leff1

h0
Ha

− g
Leff2

h0
Ha

g
L02

][
u1
u2

]
= −

[
κ1 aA1
κ2 aA2

]
, (25)

with

L0k = Leffk

2 sin (βk) + h0/Ha
, k = 1, 2. (26)

4 TLCGD systems attached to a spatial frame structure

4.1 Structural equations

We consider a frame type building with N horizontal floors under a horizontal ground acceleration ẍg(t) in
the y–z plane and a system of ND coupled dampers attached to the i-th floor, as shown in Fig. 3. The structure
has 3N degrees of freedom x = [y1, z1, ψ1, y2, z2, ψ2, . . . , ψN ]T, where ψn is the torsional angle of the n-th
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i-th floor

Fig. 3 Two coupled TLCGD attached to the i-th floor of a multiple story host structure

floor mass. The origin is chosen to be the center of mass CMi of the host structure. With the corresponding
mass, damping and stiffness matrices M, C, K, the dynamic equations of the structure read

M ẍ + C ẋ + K x = −M RS ẍg + F (27)

where ẍg = [ÿg, z̈g, 0]T is the vector of the ground acceleration, F denotes the interaction forces between
structure and the damping system, and the (3N × 3) matrix RS is given by

RS =
⎡
⎣1 0 0 1 0 0 . . .
0 1 0 0 1 0 . . .
0 0 1 0 0 1 . . .

⎤
⎦
T

. (28)

The interaction force F will act on the i-th floor, and in case of ND dampers we have

F = − Si

[
M f

(
ẍg + STi ẍ

) +
ND∑
k=1

κ̄k m f k ük gk

]
, (29)

with

Si =
⎡
⎣0 0 0 . . . 1 0 0 . . . 0 0 0
0 0 0 . . . 0 1 0 . . . 0 0 0
0 0 0 . . . 0 0 1 . . . 0 0 0

⎤
⎦
T

,

↑
3i

(30.1)

M f =
ND∑
k=1

m f k

⎡
⎣1 0 −rAkz
0 1 rAky
−rAkz rAky r2Ak + i2k

⎤
⎦ , i2k = � f k

m f k
, (30.2)

gk =
⎡
⎣ sky
skz
θk

⎤
⎦ . (30.3)

In Eq. (30.2), � f k is the mass moment of inertia of the fluid with respect to Ak . The orientation of the k-th
damper is given by the unit vector sk = [sky, skz]T, and its center Ak is located at rAk = [rAky, rAkz]T, see
Fig. 3. With these vectors, we define

r2Ak = rAk · rAk, (31.1)

θk = (ex × rAk) · sk, k = 1, . . ., ND, (31.2)

where ex is the unit vector in x-direction that is normal to the floor plane.
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Eventually, Eq. (27) has to be combined with the dynamic equations of the individual damping devices.
For two coupled dampers at the i-th floor, we have to use Eq. (24) with the following values of the floor
accelerations:

aAk = gTk
(
ẍg + STi ẍ

)
, k = 1, . . . , ND. (32)

In both the expressions of F and aAk , we neglect the centripetal components of the acceleration, which due
to their dependence on ψ̇2

i will be nonlinear. For an oscillatory angle ψ = A sin ωt , we have a tangential
acceleration of the magnitude |at | = ∣∣rψ̈∣∣ ∼ ∣∣r Aω2

∣∣, while the transverse centripetal component reads
|an| = ∣∣(rψ̇)2/r

∣∣ ∼ ∣∣r A2ω2
∣∣ ∼ A |at |. Since the amplitude A of the rotation angle ψ is small, these

centripetal terms can safely be ignored.

4.2 Modal tuning of dampers in spatial structures

In a first step, we perform a modal decomposition of the host structure, x (t) = ∑3N
n=1 qn (t)φn . Again, we

assume that the structural frequencies are sufficiently well separated. Then, we may restrict the modal host
structure to the very two global modes tuned to the damping system. In case of two TLCGD, ND = 2, we
arrive at a four degree of freedom oscillator. If the tuned modes carry the numbers j1 and j2 we may set up
the equations for the displacement coordinates q = [q j1, q j2, u1, u2]T,

MR q̈ + CR q̇ + KR q = −ER ẍg, (33)

with the reduced (4 × 4) matrices

MR =

⎡
⎢⎢⎢⎢⎣

Mj1 + φT
j1M

(i)
f φ j1 φT

j1M
(i)
f φ j2 φT

j1m
(i)
f 1 φT

j1m
(i)
f 2

φT
j2M

(i)
f φ j1 Mj2 + φT

j2M
(i)
f φ j2 φT

j2m
(i)
f 1 φT

j2m
(i)
f 2

m(i)T
f 1 φ j1 m(i)T

f 1 φ j2 m̄ f 1 0

m(i)T
f 2 φ j1 m(i)T

f 2 φ j2 0 m̄ f 2

⎤
⎥⎥⎥⎥⎦ , (34.1)

CR = diag
[
2Z j1Ω j1 Mj1, 2Z j2Ω j2 Mj2, 2ζ1ω1m̄ f 1, 2ζ2ω2m̄ f 2

]
, (34.2)

KR =

⎡
⎢⎢⎣

Ω2
j1Mj1 0 0 0
0 Ω2

j2Mj2 0 0
0 0 Kn + k1 −Kn
0 0 −Kn Kn + k2

⎤
⎥⎥⎦ (34.3)

where

M(i)
f = Si M f STi . (35.1)

m(i)
f k = κkm̄ f k Si gk, k = 1, 2. (35.2)

The modal damping coefficients in Eq. (34.2) are usually identified from measured frequency spectra of the
structure and the TLCGD system. While Z j1, Z j2 are predefined values, the coefficients ζ1, ζ2 of the dampers
will be submitted to adaptions for tuning purposes, which we will discuss in Ch. 5. On the right-hand side of
Eq. (33), the impact of the ground acceleration on the different degrees of freedom will be governed by the
(4 × 3) matrix

ER =

⎡
⎢⎢⎣

φT
j1 (MRS + Si M f )

φT
j2 (MRS + Si M f )

κ1 m̄ f 1 gT1
κ2 m̄ f 2 gT2

⎤
⎥⎥⎦ . (36)
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5 Optimization and fine-tuning of TLCGD systems in state space

The Den Hartog criteria of Eq. (17) merely serve as an estimate for single mode tuning and are useful only
for well-separated frequencies. This, however, appears to be too restrictive in practical applications. Often,
the necessary cross section of the damper tubes turns out to be too large for an individual device. Then,
it becomes necessary to split up the device into several small dampers, therefore increasing the number of
degrees of freedom. Moreover, a coupled subsystem like Eq. (33) has to include all modes that are likely to
interact, which sometimes comprises a significantly large number. Consequently, an optimization procedure
has to be applied, which works for an arbitrary number of degrees of freedom. Such a method is usually
formulated in state space. With Nq structural modes and ND dampers, we have a state vector z = [q, q̇]T,
whereq = [q j1, . . . , q jNq , u1, . . . , uND ]T contains only the Nq � 3N modal coordinates of the reduced-order
model along with the damper displacements. The equations of motion in state space read [23]

ż = A z + B ẍg, (37)

with

A =
[

O I
−M−1

R KR −M−1
R CR

]
, B =

[
0

M−1
R ER

]
. (38)

Here, the reduced (NqD × NqD) matrices MR,CR,KR contain all NqD = Nq + ND coupled degrees of
freedom, which are relevant for the tuning process.

We assume ẍg to be time harmonic with amplitude a0 and forcing frequency ω, directed along the unit
vector eS = [cos γ, sin γ, 0]T, as shown in Fig. 4,

ẍg = a0 eS eiωt . (39)

Then, the complex steady state solution derived from Eq. (37) reads

ẑ (ω) = [iω I − A]−1 a0 BeS . (40)

The optimal tuning parameters result from a minimization of the response over the entire frequency range ω.
This is done by minimizing the functional

J = ∫∞−∞ ẑT (ω) S ẑ (ω) dω = 2π a20 e
T
S B

T PB eS (41)

valve

accelerometer

supporting columns

leaf
spring

variable volume

accelero-
meter

Fig. 4 Two degree of freedom frame, translation w in z-direction, rotation Ψ around x-axis



Design of coupled tuned liquid column gas dampers 921

where S is a (2NqD × 2NqD) weighting matrix, which accounts for possible differences in the weighting of
the states. In the present problem, for example, only the Nq modes of the host structure will be regarded in the
integral (41), since only their amplitudes are to be reduced. Hence, the weights of the damper amplitudes and
velocities in the matrix S will be zero. The remaining weights are chosen to optimize the structural response
with respect to certain system states, e.g., floor displacements. In case of time harmonic excitation, the matrix
P is defined as the solution of the Ljapunov equation, see, e.g., [26],

ATP + PA = −S. (42)

The state space response optimization is also important with respect to stochastic vibrations. Then, P as defined
by Eq. (42) is the covariance matrix of the dynamic system, if the excitation is characterized by a stationary
random white noise process with zero mean [26]. Since the variance of the system’s states is defined by
the diagonal elements of P, the covariance matrix can be applied directly for a stochastic optimization by
minimizing a properly weighted sum of its diagonal elements.

The formulation of the system’s dynamics in state space is very flexible, and it is straightforward to include
additional frequency weightings of the cost functional (41), see, e.g., [27]. When filtering the white noise
system input before applying it as structural excitation, any colored noise characteristics can be realized by
combining the structural system with the filtered input, which increases the system order by the dimension of
the corresponding filter. Similarly, it is possible to increase the system dynamics to account for filtered system
states. However, if stochastic optimization is performed for optimal absorber tuning, the frequency response
function will show minor deviations from a structure optimized according to traditional design guidelines,
e.g., Den Hartog tuning. A closer look at the structural resonance characteristics reveals a minor asymmetry
compared to well-established design guidelines like Eq. (17), which aim to minimize the response peak only,
without taking into account the frequency range outside of resonance. Therefore, it may seem reasonable to
minimize the functional with respect to velocities rather than amplitudes, since this puts more weight on higher
frequencies. Then, each pair of resonance peaks in the final response spectrum will be leveled more uniformly.

The minimization of the functional J , Eq. (41), is performed numerically and delivers the desired primary
TLCGD tuning parameters, i.e., the natural frequencies and the damping ratios for a set of independent TLCGD.
A proper choice of the initial conditions is obtained by the TMD-TLCGD analogy which renders a preliminary
design in accordance with well-established TMD design criteria. If, e.g., an absorber system should be tuned to
specific structural modes, the individually selected absorber locations within the host structure must have large
displacements of the respective vibration mode for proper performance. For each absorber, a tuning frequency
slightly below the structural frequency, and an initial damping ratio dependent on the modal mass ratio μ∗, is
obtained from the analogy, see Eq. (17). However, in case of coupled TLCGD, the tuning frequencies obtained
from the analogy must be in accordance with the natural frequencies of coupled absorber systems defined by
Eq. (25), thereby, again, defining basic geometric relations. Nevertheless, in order to find the optimal tuning
frequency numerically, the TLCGD geometry must be predetermined to some extent, and commonly the length
of the horizontal pipe section B, the cross-sectional areas AH and AB , as well as the angle β are set manually.
The coupled TLCGD form a systemwith several potential design parameters. However, it is beneficial to select
those which are easy to adapt in a given setup, e.g., the amount of liquid defined by the liquid column length H
or the coupling air spring stiffness Kn . Since it is not possible to select the modal damping ratios of the coupled
TLCGD independently, it is recommended to use the same damping ratio ζ for each absorber. Adapting H
will also ensure that the geometries of both TLCGD remain equal during the optimization process. Depending
on the specific problem, though, other combinations of design parameters might be beneficial. It is certainly
possible to extend the numerical optimization to include further TLCGD parameters, e.g., the optimal position
at a selected floor or the most effective liquid mass distribution when installing several TLCGD. To avoid
non-physical solutions, a constrained optimization may be applied, but with the proper initial conditions this
will rarely be necessary.

6 Application to a single-story structure under combined translational and rotational vibrations

6.1 Experimental setup

As an example, we consider a simple spatial frame with two degrees of freedom. The frame may move in a
translation along the z-axis and rotate around the x-axis, while the displacement in the y-direction is suppressed
by a leaf spring, as shown in Fig. 4.
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Fig. 5 Two degree of freedom frame, translation w in z-direction, rotation ψ around x-axis

The two coupled TLCGD are placed collinear to the z-axis. The two tubes are diagonally connected by
an air chamber with volume V0. Hence, a synchronous movement of the liquid might be used to reduce the
translational mode, while an out of phase displacement of the fluid level will act on the torsional oscillation.
Altogether, this is a four degree of freedom system with x = [w, ψ, u1, u2]T. According to the setup shown
in Fig. 5, we have

rA1 =
[
rA1
0

]
, rA2 =

[−rA2
0

]
, (43.1)

g1 =
⎡
⎣ 0

1
rA1

⎤
⎦ , g2 =

⎡
⎣ 0

1
−rA2

⎤
⎦ , (43.2)

M f =
ND∑
k=1

m f k

[
1 rAky

rAky r2Ak

]
=

[
m f 1 + m f 2 rA1m f 1 − rA2 m f 2

rA1m f 1 − rA2 m f 2 r2A1m f 1 + r2A2 m f 2

]
. (43.3)

With these parameters, we obtain for the mass matrix MR

MR =
⎡
⎢⎣
M + m f 1 + +m f 2 rA1m f 1 − rA2m f 2 κ1m̄ f 1 κ2m̄ f 2
rA1m f 1 − rA2m f 2 Θ + r2A1m f 1 + r2A2m f 2 κ̄1m f 1rA1 −κ2m̄ f 2rA2

κ1m̄ f 1 κ1m f 1rA1 κ1m̄ f 1 0
κ2m̄ f 2 −κ2m̄ f 2rA2 0 κ2m̄ f 2

⎤
⎥⎦ (44)

where M1 = M and M2 = Θ are the story’s mass and mass momentum of inertia, respectively. In Eq. (43.3),
we neglected i2k compared to r2Ak , cf. Eq. (30.2).

We assume both TLCGD to be equal in size and fluid mass and their location to be symmetric with respect
to the mass center CM , that is, m f 1 = m f 2, s1 = s2 = [0, 1]T, rA1 = rA2. Consequently, the first damper
mode will be tuned to the translational mode of the structure, while the second damper mode is tuned to the
torsional mode. Only the second mode activates the gas spring between the tubes, and therefore, the volume
V0 can be used only for the damping of the rotational oscillations.

6.2 Structural parameters

The relevant parameters of the host structure are given in Table 1. The natural frequencies Ω1 and Ω2 were
identified from Fourier spectra of the free vibration, and the corresponding translational and rotational mode
shapes are fully decoupled and shown in Fig. 6.

The geometrical properties of the damping system are given by
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Table 1 Parameters of the host structure

j = 1 j = 2

Mj 4.62 kg 8.12 × 10−2 kg m2

Ω j 7.38 rad/s 14.14 rad/s
Z j 0.0072 0.0113

(a) (b)

Fig. 6 Fully decoupled mode shapes of host structure a bending mode Ω1, b torsional mode Ω2

rA1 = rA2 = 0.125m, β1 = β2 = π/2. (45)

The frequency and the damping coefficient of the absorber are to be found from an optimization procedure
according to Ch. 5 with the diagonal weighting matrix S = diag(0, 0, 0, 0, 1, 0.01, 0, 0) selected to minimize
ẇ and ψ̇ . During the optimization of the amount of liquid, its damping as well as the air spring volume V0 are
optimized, still assuming identical parameters for both TLCGD. For the present host structure with identical
dampers, we obtain the individual values of frequency and damping ratio as

ω01 = ω02 = 7.15 rad/s, (46.1)

ζ01 = ζ02 = 13.90 × 10−2. (46.2)

Now it will be important to achieve desired values of ω and ζ for the coupled TLCGD system, since they
have to match the properties of the relevant structural modes. The corresponding results are

ω1 = 7.15 rad/s, ω2 = 14.04 rad/s, (47.1)

ζ1 = 13.90 × 10−2, ζ2 = 7.07 × 10−2. (47.2)

Since both dampers are identical and collinear, they move synchronously in the first mode where the air spring
will not be activated. Hence, ω1 and ζ1 of the coupled system are equal to the corresponding values of the
individual damper in Eq. (46).

From the optimization, one obtains a liquid mass of mf = 0.270 kg for each tube. The corresponding
parameters are summarized in Table 2, which holds for both dampers.

Table 2 Parameters of the dual TLCGD system

mf (kg) Leff (m) κ κ̄ h0/Ha L0 (m)

0.270 0.40 0.85 0.68 2.19 0.20
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Fig. 7 Acceleration measurement (mode 1) of free decay ẅ(t) of the two degree of freedom host structure. a, b Time response
ẅ(t) and spectrum Ẅ (ω) of the original system. c, d Time and spectral response of the system with coupled TLCGD attached.
The dashed line in 7 d shows the simulated results for comparison

6.3 Results

The performance of the damping system is investigated numerically and compared to experimental results
carried out in [28]. The latter are recorded frommeasurements by accelerometers applied at the platform of the
structure, as shown in Fig. 5. Starting from the design criteria defined in Ch. 6.2, the experimental fine-tuning
yields a final liquid mass of mf = 0.274 kg.

6.3.1 Experimental results

The excellent performance of the final configuration is demonstrated in a free decay experiment, where the
initial structural displacements, w(0) = 0.03m and ψ(0) = 0 rad, correspond to the first mode shape and
excite the translational mode only. For the liquid columns initially in equilibrium u1(0) = u2(0) = 0m, the
time response and the spectrum of the acceleration ẅ(t) of the original system with the water mass added are
given in Fig. 7a, b. The measurement is repeated with the optimally coupled TLCGD installed, as shown in
Fig. 7c, d.When compared to the original system, the increase in damping and the improvement in the dynamic
behavior is apparent in both the time response ẅ(t) and its spectrum Ẅ (ω). In Fig. 7d, also the simulated
result of the spectral response is shown for comparison. A satisfactory coincidence can be observed. Numerical
results in the time domain are given in Ch. 6.3.2.

The free decay test is also performed with initial conditions exciting the torsional mode of vibration only,
see Fig. 8a, b. To obtain this second mode excitation, the initial structural displacements are chosen affine to
the second mode shape, w(0) = 0m and ψ(0) = 0.12 rad, with the liquid columns in equilibrium condition,
u1(0) = u2(0) = 0m. Again, the response characteristics of a lightly damped resonance can be identified.
Repeating the experiment with the optimally tuned coupled TLCGD attached results in the expected free
decay response of a dynamic system with an absorber tuned to a single mode, as shown in Fig. 8c, d. Again
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Fig. 8 Angular accelerationmeasurement (mode 2) of free decayψ(t) of two degree of freedom host structure. a, bTime response
ψ̈(t) and spectrum Ψ̈ (ω) of original system. c, dTime and spectral response of systemwith coupled TLCGD attached. The dashed
line in Fig. 8d shows the simulated results for comparison

an acceptable coincidence between experimental and calculated results is found for the angular acceleration
spectrum, as shown in Fig. 8d.

Since both individual modes show the desired damping behavior a final measurement is performed to
demonstrate the simultaneous suppression of multi-mode excitation. This time the initial displacement is
given by an initial translation with a superimposed rotation. The free decay spectrum, as shown in Fig. 9,
proves clearly that the proposed damping device is able to reduce both modes of vibration at the same time.

The experiments also demonstrate that the concept of the passive air spring is well suited for tuning
the TLCGD to frequencies hard to implement with traditional design. Depending on the geometry of the
coupling volume, it is possible to separate V0 into sections connected by elements with adjustable pneumatic
resistances, e.g., the vertical cylindrical reservoir in Fig. 4. In this case, the choice of a suitable geometry allows
modifications in the damping of the higher mode independent from the selected fluid damping for optimal
suppression of the fundamental resonance. However, this type of additional damping is not applied in the
current experiment, and therefore, the damping coefficient ζ2 is significantly lower than ζ1, see Eq. (47).

6.3.2 Numerical results

For comparison, the free decay response ofmode 1 is also analyzed numerically.Only graphs in the time domain
are presented. Confrontations of the spectral components were already shown in Figs. 7d and 8d. As expected,
the simulation of the structural response shows excellent agreement with the experiment for both the original
system and the structure with the TLCGD installed, see Fig. 10a–d. However, a numerical simulation also
allows the estimate of quantities that are almost impossible to measure directly, e.g., the TLCGD liquid surface
accelerations. The results reveal that the liquid columns are moving in phase at the low frequency translational
mode, whereas they oscillate in anti-phase when counteracting the torsional mode, see Fig. 10e–f.
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Fig. 9 Experimental measurements of the response spectrum of combined excitation for the two degree of freedom frame. Dashed
line: original system without TLCGD. Solid line: host structure response with attached TLCGD

7 Conclusions

Tuned liquid column gas dampers (TLCGD) show excellent vibration and energy absorbing capabilities and
turn out to be appropriate for various applications in earthquake engineering. In many of the cited papers, it
has been shown by Prof. Ziegler and his co-workers that the vibration reduction is competitive to TMD-type
absorbers. Contrary to the latter, they do not rely on movable and flexible parts, and their design allows a
virtually unlimited number of possible configurations. Since the moving mass is a liquid, the device itself
consists of a fixed container only and is therefore easy to build and cost-effective. For practical purposes, the
liquid column length has to be in the range of several meters up to thirty meters and more for large structures,
causing the classical TLCD’s natural frequency to be far below 1 Hz. Due to the incorporation of the gas
springs by sealed and pressurized gas volumes, the practical frequency range can be increased to several Hz.
The application field of TLCGD can be further enlarged by coupling several devices into a spatial chain of
multiple absorbers, representing a secondary multi-degree of freedom system that can be tuned to a selected
number of structural modes. Typically, a conventional TLCGD is designed to counteract a single mode only,
where a good estimate of the damper parameters is given by Den Hartog’s formulas. By installing coupled
TLCGD, it becomes possible to reduce several modes simultaneously, even for different types of motions,
such as translation and torsion.

Frequently, it is sufficient to consider only a coupling between the absorbers and the structural modes to
be reduced. This leads to a considerable reduction in the dimension of the remaining dynamic system. Then,
a numerical tuning process yields an optimal set of parameters for the damping device. Such an optimization
can be carried out for steady state vibrations as well as for stochastic inputs.

The innovation of the proposed design lies in the substantial increase in active liquid mass, because all
absorbers vibrate at different natural frequencies at the same time. This extends the limits of conventional
TLCGD which are only able to counteract a single mode of vibration. A simple example as discussed in
Ch. 6 is sufficient to demonstrate the capabilities of the proposed damping device in practical applications.
Furthermore, it illustrates that the concept of coupled TLGCD is adequate for base-isolated structures if the
dampers are tuned to the corresponding fundamental modes. The application of TLCGD is by no means



Design of coupled tuned liquid column gas dampers 927

Fig. 10 Two degree of freedom frame, simulated free decay for translational and rotational modal response. a, bOriginal structure
without coupled TLCGD, c, d structure with TLCGD attached, e, f absorber response. Left: translational mode, right: rotational
mode

limited to frame type buildings but may be applied to all structures with dominant natural frequencies in the
range of 0–5 Hz. For a study of different applications of such devices in civil engineering, see especially
Ref. [9].
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