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Abstract Typically, structures fail due to buckling if loaded by compression. However, it is important to notice
that–especially in lightweight structures–there are several situations in which instabilities, such as buckling
or wrinkling, can be observed under tensile loads. In the present paper, a number of problems, dealing with
buckling under tensile loads, are presented. Some solutions already contained in former papers of the author
are reconsidered, compared to recent results, and extended. Further new results are presented. Bifurcation
buckling under tensile loading of beams, plates (with and without cut-outs), rolled metal strips, thin cell walls
of metal foams, and of thin metallic films on polymer substrates is treated in this paper. It is made clear that in
all cases of buckling under tensile loads eventually compressive stresses are responsible for the loss of stability.
Thus, one should carefully differentiate between “buckling under tension” and “buckling under tensile loads”.
Nonconservative loads as well as material instabilities under tension, such as necking, are not considered in
this paper.

1 Introduction

In structural mechanics, loss of stability of equilibrium is generally associated with compressive loading.
However, there are several instabilities associated with global tensile loading. In F. Ziegler’s famous book on
“Mechanics of Solids and Fluids” [1] the bifurcation of a beam, simply supported at both ends and loaded
by a rigid bar in a way that the beam is under tension, is treated as an example. This example, which was
earlier studied by H. Ziegler [2], has motivated the author of this paper to choose the topic “Buckling of elastic
structures under tensile loads” for this paper in memory of Professor Franz Ziegler, who was his esteemed
teacher and, later on, his encouraging and inspiring colleague for many years. Further motivation for choosing
this topic for this paper lies in the fact that some of the author’s papers on stability problems have been either
co-authored or at least influenced by F. Ziegler; see, for example, [3]. As the first Ph.D. student of Franz
Ziegler, to whom this paper is devoted, the author understands the presentations in this paper (some sort of
revisiting related material and extending it by new results) as devotion to Professor Franz Ziegler, who died in
2016 after a rich and fruitful life as great scientist and teacher in Mechanical Sciences.

Thinking on examples for instability under tension brings necking of a tensile specimen into mind. Similar
forms of material instabilities under tensile stresses may arise in metal forming of thin plates or shells if certain
“forming limits” are surpassed. For instance, the formation of periodically arranged necks (localized plastic
deformations) during the conical expansion of a thin circular cylindrical shell (similar to flaring of a tube [4])
represents a bifurcation from the trivial, i.e. axisymmetric deformation process.
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In contrast to the mentioned material instabilities, stability loss of structures under tensile loads is not that
much known. Thin rectangular sheets with a cut-out or a through-crack may locally buckle in the surrounding
of the cut-out and the crack, respectively, when the sheet is stretched; see, for example, [5,6]. This is due
to transverse compressive membrane forces being activated where the free edges, formed by the cut-out or
crack, are predominantly oriented perpendicularly to the loading direction. Buckling under global tension is
also observed, if a thin square plate is stretched diagonally between two corners [7] or a thin plate is stretched
by nonuniform loads [5,8]. The rather surprising buckling or wrinkling phenomenon appearing if rectangular
plates without any cut-out are stretched is treated in [8,9]. Similar situations may appear on the micro-level
of closed cell foams with thin cell walls (as, for example, metal foams [10,11]) if the foam is under tension.
In the cold-rolling process of thin strip metal, undesired waviness can emerge frequently although the strip is
under global tension [12].

In materials sciences, some other, probably less known, but interesting examples of instabilities under
global tension can be found. For instance, if a strip consisting of a thin metallic film (around 100 nm thick) on
a polymeric substrate (some μm thick) is stretched, local “film buckling” accompanied by delamination and
progressive uplift of the film from the substrate can be observed [13].

In addition to the demonstration of the possible appearance of instabilities under global tension, it is the
aim of this paper to show how stability limits can be systematically determined. In most cases, dimensionless
formulations, based on Buckingham’s π-Theorem [14], could be achieved. Furthermore, the perhaps unex-
pected post-critical behaviours related to these stability problems, calculated by computational methods, are
discussed.

In the following sections, bifurcation buckling under tensile loading of beams, plates (with and without
cut-outs), rolledmetal strips, thin cell walls of foams, and of some nanometres thickmetallic films on polymeric
substrates is treated. It is shown that in all cases of buckling under tensile loads eventually compressive stresses
are responsible for the loss of stability. Hence, it is important to differentiate between “buckling under tension”
and “buckling under tensile loads”.

2 Buckling of beam systems under tensile load

Euler buckling of beams is the paragon for bifurcation buckling of elastic structures under compression loads.
One hardly would accept it, if one affirmed that straight beams may buckle under tensile loading. Nevertheless,
inZiegler’s famous bookon “Mechanics of Solids andFluids” [1] onefinds inSection “Stability ofEquilibrium”
on pages 435–436 a brief description of the example of a straight, simply supported beam, loaded in tension
by an axial force acting on the structure via a rigid rod, and the “critical tensile force” is calculated there.

2.1 Ziegler’s beam

Figure 1 shows a simple beam–rod system, which probably the first time has been treated by H. Ziegler [2]
under “Buckling by Tension” and has also been used by F. Ziegler [1] as an example. Since this system is
associated with the name “Ziegler” (H. and F. Ziegler, respectively), in the present paper, this system shall be
called “Ziegler’s beam”.

In [1], the critical tensile force is expressed as

Fcrit = α2E I, (1)

where α is derived from the transcendental equation
tanh (αl) = αe/(1 + e/ l), (2)

Fig. 1 Beam system under tensile loading and schematic sketch with notations as used in [1]
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and E I is the bending stiffness of the beam; for e and l see Fig. 1.
Let us nowconsider this simple system inmore detail. In order to complywith the intention of dimensionless

descriptions, this “Ziegler’s beam” is now reformulated using dimensionless quantities:

p∗ = Fcritl2

E I
= β2, η = e/ l, ϕ (0 or l) = ∂w

∂x
(x = 0 or l) . (3)

With these notations, the characteristic equation reads:

(1 + η) tanh β − βη = 0 . (4)

When calculating the root(s) β of Eq. (4), the dimensionless critical tensile load p∗ = β2 is determined. p∗ is
shown in Fig. 2 in dependence of the dimensionless quantity η .

Apparently, the beam buckles under tensile stress. However, from a different point of view one might argue
that it is not the beam, which buckles, but the rigid rod of length e, which is elastically pinned at one end with
a rotational spring and loaded by an axial compression force F̃ at the free end, loses the stability of its trivial
equilibrium state. The rotational spring stiffness is contributed by the elastic beam as

γ̃ = M̃ (x = l)

ϕ̃ (x = l)
. (5)

For the simple problem of bifurcation buckling of an elastically hinged rigid rod of length e, the critical force
could easily be derived as F̃crit = γ̃ /e, and in dimensionless form

p̃∗ = β̃2 = F̃critl2

E I
= γ̃ l

ηE I
. (6)

If the rotational spring stiffness is calculated from the differential equationw′′ = −M/E I withM (x) resulting
from a torque M̃ acting at x = l, one gets γ̃ = 3E I/ l and p̃∗ = 3/η . The solution obtained this way is also
sketched in Fig. 2, and one can see that, especially for small values of η, it hardly matches with the correct
solution. One obvious reason for this discrepancy is the fact that the rotational spring stiffness γ̃ must be
calculated with M (x) depending on F according to 2nd order theory. This leads to

w′(x = l) = ϕ̃(l) = (β̃η coth β̃ − η)ϕ̃(l) (7)

From this equation and the requirement of a nontrivial solution, i.e. ϕ̃ (l) �= 0, we come up with the eigenvalue
equation for β̃ (η):

β̃η coth β̃ − (1 + η) = 0. (8)

Recasting this equation renders (1 + η) tanh β̃ − β̃η = 0, and comparison with Eq. (4) shows that β̃ = β.
Hence, the treated buckling problem under tensile load can be interpreted as buckling of an elastically pinned
rigid rod under compression loading. The l.h.s. of Eqs. (4) and (8), respectively, is antisymmetric w.r.t. β = 0
and β̃ = 0, respectively, and has just one positive and one negative root, both having the same absolute value
and lead, because of p∗ = β2, to the same critical load. This fact underpins the argument according to which
it is the hinged rod, which–as a system with just one degree of freedom–becomes unstable under compression
rather than the beam under tension. (Remark: As will be explained by considering the post-buckling behaviour
later on in this subsection, a closer look shows that the virtual system of an elastically pinned rod has two
degrees of freedom, a fact which has no consequence regarding the critical load; see also the Appendix.)

In order to show the fundamental difference in the buckling behaviour of this system under tensile and
compression loading, respectively, let us consider the configuration according to Ziegler’s beam with the
exception that the external force is now acting in the opposite direction, i.e. the beam is under compression and
the rod under tension. Here, the following differential equation is obtained for ϕ (0) � 1 from the distribution
of the bending moment M (x) according to 2nd order theory by using w′′ = −M/E I :

w′′ +
(

β̂

l

)2

w =
(

β̂

l

)
ϕ(0)(e − ηx). (9)
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Fig. 2 Dimensionless critical tensile loads p∗, p̃∗, p̂∗ as functions of η = e/ l for Ziegler’s beam (see Fig. 1); inserts show
bucking modes

(a) (b)

Fig. 3 Eigenvalue equations for Ziegler’s beam: a under tensile load and b under compression load; curve parameters are different
values of η = e/ l

The general solution is

w = A cos

(
β̂

l
x

)
+ B sin

(
β̂

l
x

)
+ ϕ (0) (e − ηx). (10)

From the boundary conditions, w(x = 0) = 0 and w(x = l) = 0 follows that A = −e ϕ (0) and B =
e ϕ (0) cot β̂. Using these results in (10) and deriving w′ (x), one gets from the condition w′(x = 0) = ϕ(0)
the characteristic equation

(1 + η) sin β̂ − β̂η cos β̂ = 0 (11)

for a nontrivial ϕ (0) �= 0.
In contrast to the uniqueness of the critical load of Ziegler’s beam, the corresponding eigenvalue equation

for the system with the external force acting such that the beam is under compression and the rod under tension
has an infinite number of eigenvalues (i.e., roots of Eq. (11)), see Fig. 3b, corresponding to the infinite number
of bucklingmodes of the beam, which here is the part of the structure which buckles. The dimensionless critical
buckling load, p̂∗ = β̂2, is also shown in Fig. 2. By the way, here the critical load approaches the classical
Euler buckling load for η → 0.

The fundamental difference between tensile and compression loading of Ziegler’s beam gets evident by
considering the eigenvalue equations for both systems as shown in Fig. 3.

In order to demonstrate that this simple system exhibits a quite strange post-buckling behaviour, the results
of a fully geometrically nonlinear finite element analysis are shown in Fig. 4 for the following specific choice
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Fig. 4 Deep post-buckling behaviour of Ziegler’s beam; inserts show deformed configuration; F in mm and w in N

of parameters: l = 1.0m, e = 0.15m,E I = 0.5Nm2. With these geometrical parameters, i.e. η = 0.15, the
eigenvalue equation (4) leads to β = 7.667; hence, p∗ = β2 = 58.76, and with the given bending stiffness
E I , the critical tensile load is Fcrit = 29.4N.

Two facts to be gained from Fig. 4 should be emphasized:

(i) The support at that end of the beam, to which the rigid rod is attached, moves for a while oppositely to
the orientation of the load, but moves back towards the initial position in the deep post-buckling range.
Because of the motion of the support, the above-mentioned virtual system of an elastically pinned rod
must be built with two degrees of freedom; see the Appendix.

(ii) The transverse displacement of the midspan of the beam starts increasing after surpassing the critical
tensile load. However, after some further load increase the deflection diminishes more and more. One
might argue that a similar behaviour canbeobserved for the simply supported elastica under compression
load. However, one should notice that in the case of the tensile loaded beam a quite different deformation
mechanism leads to the reduction in the deflection, namely some sort of smoothening down, instead of
forming a loop as it happens in the case of the elastica. This smoothening effect in the post-buckling
behaviour is in a sense characteristic for buckling under tensile load (see plate buckling under global
tension in Sect. 3).

2.2 Some other beam–rod systems

Inspired by the closer investigation of Ziegler’s beam, two more beam–rod systems under tensile loading will
be considered in brief: the simply supported beam system loaded symmetrically at both ends and the cantilever
beam system, both under tensile loading.

(a) Assuming a symmetric deflection of the simply supported beam system loaded symmetrically at both
ends as depicted in the insert (a) in Fig. 5, the following differential equation is obtained:

w′′ −
(

β

l

)2

w = −
(

β

l

)2

e ϕ(0) . (12)

There, the general solution is

w = A cosh

(
β

l
x

)
+ B sinh

(
β

l
x

)
+ e ϕ (0), (13)

from which, with the boundary conditions, w (x = 0) = 0 and w (x = l) = 0, the characteristic equation is
obtained as
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Fig. 5 Dimensionless critical tensile loads p∗ as functions of η = e/ l, for the systems according to the inserts in this figure,
showing corresponding buckling modes

sinh β − ηβ (cosh β − 1) = 0 . (14)

The roots β lead, with the definitions (3), to the dimensionless critical tensile load p∗ (η) , as it is shown in
Fig. 5.

However, one has to notice that there is another deformation mode of the beam; namely, an S-shaped one
(see insert (b) in Fig. 5) might be activated, too, and the above solution might be not the relevant one. Thus,
let us consider this alternative system, for which the following differential equation is obtained:

w′′ −
(

β

l

)2

w =
(

β

l

)2

(2ηx − e) ϕ (0), (15)

which with its general solution and the above boundary conditions leads to the characteristic equation

(1 + 2η) sinh β − ηβ (cosh β + 3) = 0 . (16)

The corresponding dimensionless critical tensile loads, depending on η, are shown in Fig. 5.
Finally, for the cantilever beam system as shown in Fig. 5 (insert c) the differential equation in analogy to

Eq. (12) reads now

w′′ −
(

β

l

)2

w =
(

β

l

)2

(e ϕ (l) − w̃) (17)

with w̃ = w (x = l) . Formulating the general solution and fulfilment of the boundary conditions,w (x = 0) =
0, w′(x = 0) = 0 with w′(x = l) = ϕ(l) the following characteristic equation is achieved:

ηβ sinh β − cosh β = 0. (18)

Figure 5 shows p∗ for the cantilever beam system, too.

3 Buckling of rectangular plates under uniaxial in-plane tensile loading

In contrast to beams, which never buckle when an external axial tensile load is directly applied to the end of
the beam axis, buckling of plates under external in-plane tensile edge loading is possible.

There is some literature on local buckling in the area around cut-outs of stretched plates or strips; see [5,15].
Some papers are dealing with local buckling in the area of cracks in plates under tension [6,16]. A systematic
treatment of these phenomena, especially in terms of dimensionless quantities (based on Buckingham’s π-
Theorem [14]), is provided in Sect. 3.2 together with the consideration of the post-buckling behaviour.
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Fig. 6 Experimentally observed buckling patterns of stretched plates with and without cut-outs

It is less known that stretched plates without any cut-out or crack may buckle. This kind of buckling under
tensile loading was treated in [9], and several papers followed afterwards; see, for example, the nice analytical
treatment in [17]. In [18] and [19], where the decrease of the heights of the buckles in the post-buckling regime
are treated, too, a number of references to recent papers on stretch buckling of rectangular plates can be found.
This tensile buckling problem is shortly recalled here for the sake of completeness.

Figure 6 shows the mentioned tensile buckling phenomena in experimental considerations. There the post-
buckling deformations of the plates with a hole and with a crack, respectively, correspond to the second mode
shape. Obviously, this is due to predominantly antisymmetric imperfections, caused by the preparation of the
specimens.

3.1 Stretched plates without cut-outs or cracks

In this Subsection, buckling of stretched plates without any cut-outs or cracks is presented, based on results
achieved in [9]. Figure 7 shows the notations used as well as the distribution of the in-plane stresses σyy .
One can see the appearance of areas of tensile stresses close to each of the short edges, which results from
the Poisson effect, caused by hindering the movement in y-direction, and an area of compressive stresses in
between, appearing due to the requirement of equilibrium (consider, for example, a cut along the symmetry axis
in x-direction). For larger aspect ratios (long strips), the area of compressive stresses breaks down forming two
areas of significant compressive stresses near the tensile stress areas. The distribution of the buckling waves in
the post-buckling domain reflects this character of the compressive stress distribution; see the inserts in Fig. 8.

It becomes obvious again that bucking under tensile loading is due to compressive stresses.
In [9], from some analytical considerations and from parametric computational studies the dependence of

the dimensionless buckling stress

p∗ = σcrit

E (t/B)2
; p∗ = p∗ (ξ) with ξ = L

B
, (19)

has been found as a function of ξ for a fixed value of the Poisson’s ratio, ν = 0.33, which is typical for most
of the metals used in lightweight design. In Eq. (19), σcrit is the global tensile stress acting at the short edges
as loading at the instant of buckling, t is the plate thickness and E is the Young’s modulus.

B

L L

tension tension tensioncompression compression
y

x

Fig. 7 Geometric notations of the stretched rectangular plate, clamped at both short edges, and the distribution of the in-plane
stresses σyy ; see also [9]



888 F. G. Rammerstorfer

0         2         4       6       8

3

2

1

0

Fig. 8 Dimensionless critical tensile load as function of the aspect ratio of the plate; inserts show typical buckling patterns for
short and long strips; compare [9]

By the way, p∗ represents the buckling factor k in the formulation

σcrit = kE (t/B)2 , (20)

as typically used in the engineering plate buckling literature; see, for example [20].

Buckling phenomena as described here can be also observed on the micro-level of lightweight closed cell
foams under tensile load, leading to a macroscopic, i.e. homogenized stress strain behaviour appearing as if
plastic deformations would take place; see Fig. 9.

3.2 Stretched plates with circular cut-outs or cracks

For configurations as shown in Fig. 10 one hardly can obtain analytical estimates for critical tensile loads at the
short edges of the plate. There computational methods have been applied [21] for calculating both the stress
field and the critical load intensities. However, based on the π-theorem dimensionless quantities can be found

global tensile strain

gl
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al
 u
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ax

ia
l t

en
si

le
 s

tre
ss

global tension

global hydrostatic 
compression

Fig. 9 Macroscopic tensile stress-strain diagram for a closed cell metal foam; microbuckling as possible reason for pseudoplastic
behaviour. Cell buckling under hydrostatic pressure is shown, too; compare [10,11]
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Fig. 10 Geometric notations of stretched plates with a circular cut-out or a crack

Fig. 11 Distribution of the in-plane stresses σyy and numbers represent dimensionless stress levels, normalized by the tensile
stress load σ at the short edges of the plate

which allow results of parametric finite element studies to be used in a general way, as long as linear elasticity
can be assumed.

The following dimensionless quantities are used in addition to those already defined in Eq. (19):

ρ = r

B
; ϑ = a

B
. (21)

Figure 11 shows, for a given set of geometric parameters, areas of compressive stresses σyy , which eventually
are responsible for local buckling under global tensile loading.

For obtaining the critical tensile load, the following eigenvalue problem

(K0 + λiK�)φi = 0, (22)

has to be solved. The eigenvalue λi corresponds to the ith buckling mode, represented by the eigenvector
φi . Here, K0 is the tangent stiffness matrix at a load intensity σ0, chosen to be close enough to the critical
intensity σ ∗

i in order to avoid the calculation of negative eigenvalues as absolute smallest ones, which would
correspond to critical compression loadings. K� is the change in the tangent stiffness matrix due to a chosen
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Fig. 12 Dimensionless critical tensile loads p∗ in dependence of the geometrical parameters

load increment �σ . Hence, the smallest critical load intensity σ ∗
1 = σcrit = σ0 + λ1�σ is relevant for

buckling. This formulation has been chosen in order to avoid calculation of eigenvalues corresponding to
buckling under compression loading as resulting from formulations of eigenvalue problems common in linear
buckling analyses under compression loading,

(KL + λ̂iKg)φ̂i = 0, (23)

with KL being the linear initial stiffness matrix and Kg the linearized geometrical stiffness matrix at reference
load.

In Fig. 12, the dimensionless critical loads p∗, together with the corresponding buckling modes, are shown
in dependence of ρ and ϑ , respectively, with the plate’s aspect ratio ξ as parameter. As one can see, for ξ > 3.0
the influence of the aspect ratio L/B diminishes, and again we come up with typical buckling factor diagrams,
where, in contrast to usual buckling of plates, the dimensionless geometric parameters of the cut-out and the
crack, respectively, are values at the abscissa.

Studying the deep post-buckling behaviour by fully geometrical nonlinear analyses [21] reveals the inter-
esting effect that at a certain load intensity the amplitudes of the buckles start decreasing, an observation
already made in Sect. 2 for Ziegler’s beam and mentioned in Sect. 3.1.

While this behaviour is shown in [18] and [19] for rectangular plates without any cut-out or crack, in the
following this has now been investigated here for a plate with a circular cut-out, see Fig. 13a, and for a plate
with a crack, see Fig. 13b. The plates considered here have a width of B = 190.5mm. The other geometrical
parameters are for the plate with cut-out: L/B = 3.0, t/B = 0.0063, r/B = 0.157 and for the plate with
crack: L/B = 2.5, t/B = 0.0052, a/B = 0.157.

Similar to the observation described for Ziegler’s beam in Sect. 2 of this paper, immediately after bifurcation
from the trivial equilibrium path, the amplitudes of waves in the post-buckling deformations grow rapidly with
slowly increasing tensile load. This first process is followed by a reduced growth rate of the buckles, and
finally, the waves start to flatten out. One should, however, note that the results presented in Fig. 13 are based
on the assumption of linear elastic material behaviour. Thus, they are rather of demonstrative value, because
plastic or viscous effects would come into play and, at least, for the plate with a crack fracture might happen
before reaching sufficiently large load intensities for observing the flattening.

4 Buckling of thin strips with residual stresses and global tension

In Sect. 3, strips, free of initial stresses, under global tensile loading are considered. In the present section, the
objects of consideration are thin (infinitely long) strips with stress states resulting from residual stresses and
global tension. The treatment of such situations is of great importance for a proper control of strip rolling and
levelling processes. Figure 14 demonstrates schematically that deviations from a parallel rolling gap (in reality,
just a few hundredth of a millimetres are sufficient to produce problems) may lead to residual stresses, large
enough in order to lead to waviness of the strip if the global strip tension is reduced to a critical value. Since
here it is not the increase in tensile loading, but its decrease the reason for buckling, this kind of “instability
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Fig. 13 Development of the amplitude of the buckles—specified example of a plate with circular cut-out and of a plate with a
crack; p := σ/

[
E (t/B)2

]
, ω := W/t

under global tension” is not really in the same line as the other stability problems discussed in this paper.
Nevertheless, not only in papers by the author, see, for example, [12], but also in papers which have followed,
as, for example, [22] and citations therein, such phenomena are mentioned in relation to “buckling under
tension”. This is the reason for including this small section in this paper.

In [12,24], the critical values of the global tension, at which for different intensities of the residual stresses
and shapes of their distribution buckling appears, are calculated analytically. The notations are shown in Fig. 15.

centre waves

edge waves 

Fig. 14 Schematic demonstration of the evolution of residual stresses during rolling, leading to wavy strips during release of the
global strip tension
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Fig. 15 Notations used in the analytical models

The strip has a bending stiffness K = E t3

12(1−ν2)
(with E being Young’s modulus, ν Poisson’s ratio, t the

thickness), which is loaded by a self-equilibrating residual membrane force distribution Rnxx (y) = N ĝ(y)
and a constant global tensile force N0 (all being forces per unit length); see Fig. 15. Hence, the membrane
force distribution is given by

nxx (y) = N ĝ(y) + N0. (24)

With
η = y/B, −B/2 ≤ y ≤ B/2, −1/2 ≤ η ≤ 1/2, (25)

one gets
ĝ(y) → g(η), nxx → nxx (η) = N g(η) + N0. (26)

The distribution shapes g(η) of the residual membrane forces are described in [12,23] as follows:
For situations prone to centre wave buckling, cosine-type distributions are described as:

gc(η) = 1 − Cm cosm(πη) with m = 1, 2, . . . and − 1/2 ≤ η ≤ 1/2, (27)

with

Cm = 1

2

⎡
⎣ 1/2∫

0

cosm(πη)dη

⎤
⎦

−1

, (28)

in order to ensure that the residual stresses Rnxx (η) are self-equilibrated.
Polynomial-type distributions, fulfilling the equilibrium requirements, are given by:

gp(η) = 1

m

[
(m + 1)(2 |η|)m − 1

]
with m = 1, 2, . . . (29)

Both distributions, i.e. the cosine and the polynomial one, lead to g(η = ± 1/2) = 1.Hence, N can be defined
as intensity of the residual membrane force distribution.

If buckling in terms of edgewave buckling is the problem, the typical residualmembrane stress distributions
can be described in the same way as for centre wave buckling problems if multiplied by − 1.

In the applied Ritz–Galerkin approach, the Ritz-ansatz with just a single degree of freedom, q , for the
nontrivial displacement field is, depending on whether centre or edge wave buckling is considered, again
described by several parameters.

For centre wave buckling,

w (x, η) = qwa (x, η) , wa (x, η) = cos (aπη) cos
(πx

l

)
(30)

or
w (x, η) = q wn (x, η) , wn (x, η) = (

1 − 12η2 + 16η3
)n

cos
(πx

l

)
, (31)

and for edge wave buckling

w (x, η) = q wn (x, η) , wn (x, η) = (2 |η |)n cos
(πx

l

)
(sign η)k
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with k = 1 for the antisymmetric buckling mode and k = 2 for the symmetric buckling mode.
The parameters c, p,m and a, n, k as well as the still unknown half wavelength l allow a quite large

variability of the shape of the residual stress distribution and of the buckling mode shapes, respectively.
The following further dimensionless quantities have been introduced:

Ñ = N B2

Kπ2 , Ñ0 = N0B2

Kπ2 . (32)

The critical intensity of the residual stress field with a given distribution shape g(η) is determined by c, p,m,
and a given global tensile load is obtained by deriving the strain energy in the system

U = UB +UM +UN0 (33)

with

UB = K

2

∫
�

{(
∂2w

∂x2
+ ∂2w

∂y2

)2

− 2 (1 − ν)

[
∂2w

∂x2
∂2w

∂y2
−

(
∂2w

∂x∂y

)2
]}

d�, (34)

UM = 1

2

∫
�

(
Rnxx + N0

)(
∂w

∂x

)2

d� , (35)

UN0 = −N 2
0 LB

2Et
, (36)

and looking for its stationary value by
∂U

∂q
= 0. (37)

This leads the strip tension for first appearance of a nontrivial solution. However, this critical global strip tension
is yet a function of the still unknown wavelength as well as the other parameters describing the Ritz-ansatz
for the buckling mode. Determining the minimum w.r.t. these parameters leads to the critical intensity of the
residual stresses Ñ (Ñ0) and, vice versa, to the critical strip tension Ñ0(Ñ ), for a given intensity of the residual
stresses.

Again, the formulae and diagrams have been derived in dimensionless form in order to allow a quite general
use of the achieved results.

From Fig. 16, as derived in [23], the critical value of the global strip tension can be deduced for given
residual stresses (determined by the shape of their distribution and their intensity). This means that from these
diagrams one immediately can find to which level the global tension has to be reduced in order to cause
instability of the plane configuration of the strip and development of waviness with further release of the strip
tension. Furthermore, the buckling mode shape as well as the wavelength can be deduced. Let us denote this
procedure, which is described in detail in [12,24], as “forward problem”.

However, of much more practical importance is the “backward problem”, i.e. achieving knowledge of the
intensity and shape of distribution of the residual stresses in the rolled strip from observing (measuring) the
critical global strip tension as well as the buckling mode shape and wavelength. In addition to, but based on
solutions presented in the above-mentioned papers, a procedure is demonstrated now for solving this “inverse
problem” applicable to controlling the rolling and levelling process in a way, which leads to reduced residual
stresses and, hence, to improved quality of the rolled strip. Figure 17 demonstrates schematically the process
of solving the backward problem:

The global strip tension is released to the critical value, i.e. to the instant, at which the first time buckles
are observed (measured). This can be done even during the strip rolling process in the plant by a roller system
with appropriately controlled rolling speeds. This critical global strip tension value, transformed into the
dimensionless form, together with measured wavelength (again expressed in dimensionless form) and the
observed (measured) shape of the buckles, i.e. either centre or edge waves, is sufficient for estimating the
intensity and the distribution shape of the residual stresses in the strip.

Now, for the sake of completeness, as done so far in the previous sections of this paper, the post-buckling
behaviour, i.e. the process of strip tension release and the increase in the wave amplitude, shall be demonstrated
here as some further new interesting result. For this purpose, in Fig. 16 a tensile load path is added as a horizontal
line at a chosen level of intensity of the residual stresses Ñ , starting from a global tensile load Ñ0, which is large
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Fig. 16 Diagram showing curves representing critical combinations of residual stress intensities Ñ and global strip tension Ñ0
for different shapes of the distribution of the residual stresses along the width of the strip, characterized by specific values of the
shape parameters of the residual stress distribution–shown for centre waves as example (compare [23]). The line from β = 0 to
β = 1 is used in Fig. 18
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Fig. 17 Graphical representation of the solution strategy for solving the inverse problem (photograph by courtesy of Voestalpine,
Linz)

enough to prevent the strip from showing wavy deformations (the β values correspond to those in Fig. 18),
and moving along the path from right to left towards full release (i.e. β = 1.0).

At the instant at which in Fig. 16 the path crosses the Ñ (Ñ0) line, the instability happens. This situation
represents the bifurcation point in the diagram in Fig. 18. During continued release of the strip tension the
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(a) (b)

Fig. 18 Development of post-buckling deformations during release of the global strip tension; left: centre waves (see also Fig. 16);
right: edge waves

amplitude of the waves increases, and under certain circumstances post-buckling bifurcations may appear, as
shown in Fig. 18. Another kind of post-buckling process, in which the strip is laid down onto a plane surface
during tension release (as done in practice for the sake of quality inspection) is simulated in [24].

The post-buckling bifurcations in Fig. 18b are the consequence of initial imperfections introduced as a
random pattern in the simulation.

Here, the correctness of the statement according to which buckling under tensile load is caused by local
compressive stresses is obvious and needs no further discussion.

5 Thin films

In materials sciences, some other, probably less known, but interesting examples of instabilities under global
tensile load can be found. For instance, if a strip consisting of a thin metallic film (some nanometres thick) on
a polymeric substrate (some micrometres thick) is stretched, the following observations can be made.

At a certain global tensile strain of the strip specimen, the metallic film starts cracking with so-called
channel cracks running perpendicularly to the loading direction. With further stretching, the crack density
grows up to eventual saturation [25].

Further stretching leads to local “film buckling”, accompanied by delamination and progressive uplift of
the film from the substrate; see Fig. 19.

Certainly, also in this buckling problem under global tensile loading local compressive stresses in the film
are the reason for the instabilities. Where do these, let’s call them “transverse compressive stresses”, come
from?

(i) One reason could be a mismatch in the Poisson’s ratios between film and substrate, νf �= νs (subscript
f stands for film and s stands for substrate).
Based on experimental observation and on computational results [25], it can be assumed that, due to the
clamping boundary conditions, the stretched, but still uncracked specimen does not show any curvature
in the area under consideration (i.e., in the middle of the specimen) during the experiment. Thus, as
long as the film, the substrate, and the interface are intact, in-plane strain coupling exists between film
and substrate in both longitudinal and transverse directions. This, in combination with the equilibrium
condition (no resultant force in transverse direction), allows the estimation of the transverse film stress
σf as a function of the global stretch εL of the specimen in longitudinal direction:

σf = (νf − νs) Ef

1 − ν2f + (
1 − ν2s

) Ef tf
Ests

εL . (38)

In situations, in which νf < νs, transverse compression stresses develop, when stretching the specimen.
However, much more important and nearly independent of any Poisson’s mismatch is the following
reason for transverse compressive stresses in the film.
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4 µm

channel cracks

global strain

Fig. 19 Cracking and buckling of a thin metallic film on a polymeric substrate under global tensile loading (photograph—see
[26]—by courtesy of ESI, Leoben)

(ii) Since in the experiments no local buckling is observed before saturation of the crack density is achieved,
another model can be developed for explaining the appearance of transverse compressive film stresses
and determining their intensity as function of the amount of stretch. The film cracking process leads to a
continued stress redistribution in the system, and after saturation further stretching of the specimen will
not lead to significant increase in the longitudinal stretch in the film substrips, each of them between
two adjacent channel cracks, but simply enlarges the width of the channel cracks between them. Just for
the sake of simplicity, let us assume that then the channel cracks are narrow enough so that the in-plane
stresses in longitudinal direction of the specimen, L , are negligibly small. Under this (certainly rather
roughly simplifying) assumption, the transverse compression stresses develop with further stretching
the specimen as follows:

σf = Efνf
Ef
Es

+ (
1 − ν2f

) tf
ts

εL. (39)

Both Eqs. (38) and (39) overestimate the transverse compression stress. In (38), no cross-bending is taken into
account, and in (39) very narrow substrips are assumed, i.e. the minimum crack distance, which is determined
by shear leg considerations (see [25] is small enough to hinder the development of substantial membrane
stresses in the global longitudinal orientation. Anyway, in the following considerations these simplifications
are no longer used.

The experimental treatment and computational simulation of the above-mentioned cracking and stress
redistribution processes are published in detail in [25]. Figure 20 shows some new results of extended simu-
lations.

In [26], it is shown how from experimental considerations in combination with an analytical model or, more
precisely, using computational models [13] interface strength parameters can be deduced, again in terms of
solving an inverse problem. The knowledge of the interface strength parameters of such compounds, which due
to the small geometrical conditions hardly can be measured directly, is crucial for the design and manufacture
of electronic devices, particularly of flexible electronic devices.

In order to get the basis for determining the interface parameters the whole complex process of stretching
→ cracking→ crack density saturation→ local bucklingwith delamination at the buckles, has to be simulated.
Due to the strong nonlinearities and, especially, because of the three-dimensional character of the process,
analytical solutions (as were obtained in simplified two-dimensional models in [26]) are no longer sufficient,
but nonlinear finite element modelling and analysis in combination with carefully performed experiments are
the proper choice of methods. As results of a multi-scale analysis strategy, developed in [13,25], the global
stretch, which leads to film buckling of a given film substrate specimen, can be calculated and compared
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Fig. 21 Process: mode II debonding (a) → buckling and mode I debonding → post-buckling (b, c); bifurcation diagram (d);
compare [13]

with the stretch value, at which in the experiment the instant of buckling is observed. Variation in the so long
unknown interface strength parameters, which are input to the cohesive zone elements in the simulation model,
until coincidence between calculated and measured critical stretch is achieved, leads to an estimate of the real
interface strength. This means that for the cohesive zone model used in [13], the maximum normal debonding
stress during uplift, σ̂ , at which interface damage starts, and the Griffith’ energy release rates for mode I ,Gc

I ,
and for mode II, Gc

II, respectively, have to be varied appropriately. For more advanced cohesive zone models
for simulating debonding of the film from the substrate, see [27].

Figure 21 shows, from simulation and experimental results, what happens if the global stretch approaches
the critical value and surpasses it. In Fig. 21a, the edges of the substrips curve upwards and interface failure
according to fracturemode II is initiated. In Fig. 21b, it is shown how the increase in the specimen’s stretch leads
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to localization of this interface failure and film uplift starts by forming triangular buckles. The interface failure
changes now from mode II to mode I; triangular buckles expand and develop to become rectangular buckles
accompanied by rapid delamination growth with increased specimen stretch; see Fig. 21c. The calculated
stretch–uplift diagram as shown in Fig. 21d demonstrates the character of the process as bifurcation buckling.

6 Conclusions

Buckling is a possible mode of failure of thin walled or slender structures not only under compression, but
also under tensile loading. Nevertheless, it should be mentioned that, even if the external load is tensile, the
stress state, which leads to instability, is always compressive. Thus, one should be clear in wording and talk
about “buckling under tensile loads” instead of simply saying “buckling under tension”. Buckling phenomena
under tensile loading have been demonstrated for beams with rigidly connected rods at the ends (starting with
“Ziegler’s beam”), on stretched plates with and without holes or cracks, on rolled metal strip with residual
stresses caused by the rolling process, and on thinmetallic films bonded to polymeric substrates.While buckling
in most cases is an unwanted phenomenon, in the latter example buckling and post-buckling investigations are
used for determining interface strength parameters which hardly can be measured directly.
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Appendix

In Sect. 2, a virtual system of an elastically pinned rodwith two degrees of freedom ismentioned. It is described
in Fig. 22. The post-buckling behaviour of the real system (Ziegler’s beam) shows that the moveable support
for a while moves towards the other support and at a certain load intensity turns back to the initial position.
At the same time, the deflection increases initially and at the same certain load intensity it starts decreasing. It
is shown now that the virtual system described here qualitatively represents the behaviour of the real system,
what quite obviously a rod, just pinned at one end cannot do.
From the equilibrium conditions of the nontrivial configuration with 0 < ϕ � 1:

F − S = 0, Feϕ − S f ϕ − γ ϕ = 0 (40)

(S is the tensile force in the spring), one gets the critical load

Fcrit = γ / (e − f ) . (41)

With respect to the critical load Fcrit, the second degree of freedom, i.e. the mobility of the support, does not
play any role. Hence, the existence of a second degree of freedom does not perturb the argument stated in

Fig. 22 Virtual system for Ziegler’s beam

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Fig. 23 Post-critical behaviour of the virtual two-degree-of-freedom system

Sect. 2, according to which the simple virtual pinned rod system with one degree of freedom underpins the
fact, that it is not the beam which buckles, but the rod.
However, in order to provide a simple virtual system for the post-buckling behaviour of Ziegler’s beam, the
second degree of freedom is essential.
Let us introduce the following dimensionless quantities:

κ = e/ f − 1, α = F (e − f ) /γ, μ = u/ f, ω = w/ f, and φ = γ /(ce2). (42)

With these notations, the dimensionless critical load gets αcrit = 1, and equilibrium in the post-buckling
regime, i.e. α > 1 and 0 < ϕ ≤ π , leads to the following equations for the description of the post-buckling
configuration:
For given values of κ and φ and the rotation angle ϕ as function of the load intensity α, determined by

α sin ϕ − ϕ = 0 (43)

the post-critical movement of the system with monotonically increased load (α > 1.0) is given by

μ (α) = αφ

κ
− 1 + cosϕ (α) , ω (α) = (1 + κ) sin ϕ (α) . (44)

These results are shown in Fig. 23 for κ = 2.0 and φ = 0.1.
Even so, for the sake of simplicity, the springs are modelled as linear elastic, the comparison between Figs. 4
and 23 shows that the principal characteristics of the post-buckling behaviour are captured by the virtual
system.
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