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Abstract Suppressing vortex-induced vibration (VIV) has recently attracted numerous researchers due to
its practical significance in many engineering applications. Most of the previous studies have focused on a
passive or active flow control. A structurally active control approach to mitigate a two-dimensional, nonlinear
coupled, cross-flow/in-line VIV has not been well studied. This paper presents a reduced-order fluid-structure
dynamic model and combined analytical–numerical solutions for the efficient suppression of two-dimensional
VIV of a flexibly mounted circular cylinder in uniform flows. The theoretical model is based on the use of
coupled Duffing–Rayleigh oscillators with three variables describing the cylinder cross-flow/in-line displace-
ments and the strength of the fluid vortex circulation in the cylinder wake. These equations of fluid-structure
motions contain geometric and hydrodynamic nonlinearities. Closed-loop linear and nonlinear velocity feed-
back controllers are implemented in the transverse direction governing the larger cross-flow response than the
associated in-line counterpart. Approximated analytical expressions are derived by using the harmonic balance
to explicitly capture the system nonlinear dynamic features and the effects of key dimensionless parameters.
Parametric investigations are carried out to evaluate the linear versus nonlinear controller performance in terms
of the maximum response suppression capability and the power requirement in a wide range of reduced flow
velocities, mass ratios, and control gains. Over the main lock-in resonance region with coupled cross-flow/in-
line responses, the linear controller is found to be more efficient in suppressing the two-dimensional VIV by
also modifying the system frequencies and phase relationships. Nevertheless, based on the power comparison,
the nonlinear control is superior to the linear control for very small targeted controlled amplitudes of a very
low-mass cylinder. These active control strategies may be further applied to the multimode VIV suppression
of a long flexible cylinder with multi degrees of freedom.

Nomenclature

Ax/D, Ay/D Cylinder amplitude per diameter
a1 − a10 Analytical solution coefficients
CD0(CL0) Unsteady drag (lift) coefficient of stationary cylinder
cs Structural viscous damping
c f Fluid-added damping
Ca Added mass coefficient
D Cylinder external diameter
Dt Mean drift effect caused by geometric nonlinear coupling
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F∗
x , F∗

y Dimensional fluid force
Fyc Dimensionless control force
F∗
yc Dimensional control force
fo Cylinder oscillation frequency
fn Cylinder natural frequency
G Dimensional nonlinear gain
Q Dimensional linear gain
K Cylinder stiffness
ms Cylinder mass
m System total mass
m∗ Mass ratio
ma Fluid-added mass
p Wake variable transformation
P Dimensionless average power
q(q0) Dimensionless displacement (amplitude) of vortex circulation
Re Reynolds number
R Maximum amplitude reduction percentage
St Strouhal number
t Dimensional time
U Dimensional flow velocity
Vr Reduced flow velocity
X (x) Dimensional (dimensionless) in-line displacement
Y (y) Dimensional (dimensionless) cross-flow displacement
x0, y0 Dimensionless amplitude
qM , xM , yM Dimensionless amplitude at ideal lock-in frequency (δ = ω = 1)
α∗
xβ

∗
xα

∗
yβ

∗
y Dimensional geometrically nonlinear coefficients

αxβxαyβy Dimensionless geometrically nonlinear coefficients
αxq , αyq Hydrodynamic force coefficients
βK Dimensionless linear control gain
β, ε, λ Empirical wake coefficients
γ Stall parameter
γG Dimensionless nonlinear control gain
δ Cylinder-to-vortex-shedding frequency ratio
θxy x-y relative phase angle
θqy q-y relative phase angle
μ Dimensionless mass parameter
ξ Structural damping ratio
ρ Fluid density
τ Dimensionless time
ω Dimensionless oscillation frequency in analytical solution
ωn Cylinder angular natural frequency
ωst Vortex-shedding angular frequency

1 Introduction

Offshore cylindrical structures such as spar platforms, subsea risers, cables, mooring lines, flowlines, pipelines,
jumpers, and vertical tensioned legs are widely used in the oil and gas industry. To ensure their engineering effi-
ciency, integrity, and safety throughout the lifespans, the nonlinear fluid–structure interaction effects associated
with the resonant vortex-induced vibration (VIV) must be controlled. Alongside theoretical and experimental
studies which have revealed a variety of key multi-physics VIV phenomena [5,32,39], the subject of VIV
control has also drawn a considerable attention over the past decades. Several passive/active flow control
strategies have been developed and verified to justify their vibration control performances versus potential
installation, operational and maintenance costs. In particular, passive flow control devices such as strakes and
fairings have been widely used by the oil and gas industrialists for riser VIV control [9,29,31,40]. However,
it is well known that the introduction of such devices along the long slender structure modifies the structural
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configuration and increases the drag forces, apart from their high costs in manufacturing, installation, and
maintenance. Alternatively, active flow controls by introducing, for instance, a surface suction and blowing
[8], an acoustic actuation [15,21], and a neighboring rotational cylinder [14,20,24] have also been explored
with the aim of delaying, interrupting, or intervening in the vortex formation process in the wake. Nevertheless,
due to the frequent changes and uncertainties in ocean environments, it might be impractical to accurately pre-
dict the space–time-varying vortex formations and implement the active flow control methods in real time for
deep-water structures. To overcome these challenges, the structurally active controls by implementing sensors
and actuators at a critical location along the structure span and by enhancing the system damping performance
could provide alternative solutions for efficient VIV suppression [3].

For the structurally active control of cross-flow-only VIV with a single degree of freedom (DOF), Baz
and Ro [4] experimentally investigated the influence of a velocity feedback controller which can generate
an adversely proportional signal to the cylinder velocity. The control action on the cylinder was achieved by
an electromagnetic actuator which attenuated VIV response by more than 80% in the main synchronization
region. Their experimental results were also validated by a theoretical model based on the use of a van der
Pol-type wake oscillator. Such a wake oscillator model has recently been refined by Facchinetti et al. [13].
By tuning of empirical parameters to match experimental observations, theoretical predictions were found to
show a good agreement with controlled and uncontrolled experimental results. A velocity feedback control
for a circular cylinder with a very high mass ratio was studied by Mehmood et al. [27] where linear/nonlinear
active feedback controllers for cross-flow VIV were numerically investigated using the computational fluid
dynamics (CFD) approach in a very low Reynolds number (Re) range of 95–125. Both controllers were found
to be functional in reducingVIVwithin the lock-in range. The optimal law for the desired controlled amplitudes
was studied through the power requirement comparisons which revealed the control efficiency depending on
the targeted reduced amplitudes. In addition to experimental and CFD studies, the VIV controller analysis
was recently treated by Dai et al. [12] using a wake oscillator model and accounting for the effects of control
gain and time-delayed term. By properly adjusting the controller parameters, effective VIV reduction could be
achieved. Nevertheless, toward realistic applications, the effect of in-line VIV and combined cross-flow/in-line
VIV suppression should be considered.

As regards the 2-DOF VIV, investigation into the VIV active controller for the strongly coupled fluid–
structure interactions is still very limited owing to a lack of theoretical prediction models which have just
recently been developed and validated [1,37]. Several experimental [11,23,38] and CFD [2,30] 2-DOF VIV
studies have enabled the recently modified wake oscillator models to capture the experimentally observed
hydro-elastic phenomena governing coupled cross-flow/in-line VIV alongside the lift/drag hydrodynamic
features [41]. By using a CFD approach, Hasheminejad et al. [19] recently proposed an adaptive fuzzy sliding
mode controller for suppressing the 2-DOF VIV for a low-mass cylinder in a laminar flow with Re = 90.
The cross-flow control force was considered, and the in-line motion was suppressed due to the coupling of
cross-flow/in-line VIV, even at such a low Re. Nevertheless, practical subcritical flow applications in a higher
Re range and understanding of various aspects related to the 2-DOF VIV active controls including the effects
of control gain, cylinder mass-damping ratio and reduced flow velocity, are still needed. These aspects will be
the research focus of this study.

This paper presents theoretical models and combined analytical–numerical approaches to investigate the
structurally active linear and nonlinear controls for effectively suppressing the two-dimensional coupled
cross-flow/in-line VIV of circular cylinders. The paper is structured as follows. The mathematical model
for the structurally active controls of the 2-DOF cylinder VIV is presented in Sect. 2. By using the har-
monic balance method in Sect. 3, the analytical solution of the governing nonlinear equations is derived
to establish some closed-form expressions and parametric relationships of the dynamic system in the pres-
ence of control. In Sect. 4, the theoretical model is calibrated, and the parametric studies are carried out to
highlight several aspects related to linear/nonlinear active controls. The paper ends with the conclusions in
Sect. 5.

2 Nonlinear fluid-structure dynamic model

A structurally active controller can be represented by a mechanical device (e.g., an electromagnetic actuator)
installed inside the cylinder to avoid disturbing the external flow fields [4]. This concept is intrinsically
different from the active flow control strategy whose aim is to disrupt or interfere with the vortex formations.
Because of the two-dimensionally nonlinear coupling of cross-flow (Y ) and in-line (X ) motions, the actuator
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can be activated in either Y or X direction with a control gain function imparting an adaptive damping force
proportional to the cylinder velocity. This improvement of damping performance by the time-varying feedback
control force proves to be the most reliable scheme for the active control [22].

Attention is placed on the 2-DOF VIV suppression in the main critical lock-in region. The transverse Y
controller is implemented due to its larger response than the associated in-line motion. The X controller can be
considered in the pure in-line VIV range at lower reduced velocities. Both linear control (LC) and nonlinear
control (NC) are employed and compared in order to justify (i) whether the former is sufficient for suppressing
the VIV fluid–structure interactions with system nonlinearities, (ii) whether the latter should be accounted for
due to potential higher-order nonlinear effects, and (iii) whether both strategies can be efficiently used for the
coupled 2-DOF VIV mitigation of circular cylinders with different mass ratios and power requirements.

Figure 1a displays a schematic idealization of a flexibly mounted rigid circular cylinder placed in uniform
flow of velocity U . The cylinder consists of a spring-mass-damping and Y controller with two degrees of
freedom (DOF) of oscillations. A block diagram of the active control strategy is also displayed in Fig. 1b. The
nonlinear ordinary differential equations of coupled X-Y cylinder motions, which are subjected to in-line (F∗

x )
and cross-flow (F∗

y ) VIV excitations and control (F∗
yc) force per unit length, may be expressed as

(ms + ma)Ẍ + (cs + c f )Ẋ + K (X + α∗
x X

3 + β∗
x XY

2) = F∗
x , (1)

(ms + ma)Ÿ + (cs + c f )Ẏ + K (Y + α∗
yY

3 + β∗
yYX

2) = F∗
y − F∗

yc, (2)

where an overdot denotes differentiation with respect to the dimensional time t . ms is the structural mass, ma
the fluid-added mass, ma = CaρπD2/4, with Ca being the added mass coefficient assumed to be unity for a
circular cylinder [33], ρ the fluid density, D the cylinder diameter, K the linear elastic stiffness coefficient, cs
and c f the structural viscous and fluid-added damping coefficient, respectively.

It is worth noting that in practice K , cs and c f may be dissimilar between X and Y directions [38]; however,
they are, herein, assumed to be equal in both directions to maintain the symmetry of cylinder properties.
Following Facchinetti et al. [13], c f may be fixed and defined as c f = γωnρD2 in which ωn is the angular
natural frequency of the cylinder in still water and γ is the stall parameter [34] providing a self-limiting response
in the absence of cs . Note also that, from a phenomenological modeling viewpoint, ma and c f in Eqs. (1) and
(2) are assumed to be associated with the oscillating cylinder in still water, whereas their nonlinear dynamic
counterparts subject to VIV are captured through the wake oscillator model [41]. Separating ma and c f from
the total force expressions allows one to normalize Eqs. (1) and (2) into general dimensionless forms. The
geometrically nonlinear stiffness terms with the associated parameters (α∗

x , β∗
x , α

∗
y , β∗

y ) govern the physical
stretching and the two-dimensional displacement coupling observed experimentally [38]. These cubic-type
Duffing terms [25] are accounted for since they enable the model to capture the key hysteresis effect with a
response jump in the large-amplitude dual-resonant VIV for a low-mass cylinder [37].

The LC force can be expressed as F∗
yc = QẎ whereas the NC one reads F∗

yc = GẎ 3, with a positive control
gain (Q,G) to be assigned and varied [28]. The cubic-type NC is considered since the cylinder nonlinearities
(Eqs. 1, 2) and the Rayleigh wake oscillator (Eq. 4) are theoretically of cubic type. As for the hydrodynamic
excitation forces associated with the two-DOF VIV of a rigid cylinder, there are a few phenomenological
models available in the literature. Herein, the fluid physics-based model—which has been derived from the
vortex strength principle and requires a single variable describing the fluid displacement circulation q—is
considered. In-depth details can be found in Bai and Qin [1] where the time-varying in-line and cross-flow fluid
forces read F∗

x (t) = −ρCD0D4q̇q̈/(32π3St3U ) and F∗
y (t) = CL0ρUD2q̇/(8π St). These force functions

contain empirical quantities, namely the Strouhal number (St), the unsteady lift (CL0) and drag (CD0) force
coefficients of the stationary cylinder. Note that the effect of static mean drag force and its amplification due to
VIV [42] is herein neglected since attention is placed on the active control of the system fluctuating dynamics,
rather than the statics.

By introducing the dimensionless time τ = tωst in which ωst is the angular vortex-shedding frequency,
and the normalized displacements x = X/D and y = Y/D, the nonlinearly coupled equations of cylinder
in-line and cross-flow motions can be expressed, in dimensionless form, as

ẍ + (2ξδ + γ /μ)ẋ + δ2(x + αx x
3 + βx xy

2) = −2αxq q̇q̈, (3)

ÿ + (2ξδ + γ /μ)ẏ + δ2(y + αy y
3 + βy yx

2) = αyq q̇ − Fyc, (4)

in which an overdot now denotes differentiation with respect to the dimensionless time τ . For LC (NC),
Fyc = βK ẏ(Fyc = γG ẏ3). Dimensionless parameters include the damping ratio ξ = cs/(2mωn), frequency
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Fig. 1 An active velocity feedback control model of an elastically mounted circular cylinder undergoing two-dimensional VIV
(a) and a block diagram of active control strategy (b)

ratio δ = ωn/ωst , geometric coefficients (αx , βx , αy, βy), force coefficients αxq = CD0/(32π2St2μ) and
αyq = CL0/(16π2St2μ), control gain βK = Q/mωst and γG = GD2ωst/m, with μ = m/ρD2 and m =
ms + ma . The nominal reduced velocity parameter Vr can be related to δ through δ = 1/(StVr ) since Vr =
2πU/ωnD. For parametric studies in Sect. 4, Vr is varied through δ in Eqs. (3) and (4). It is important to note
that the quadratic nonlinear coupling term as a function of fluid q̇q̈ appears in Eq. (3) whereas the typical
linear coupling term q̇ appears in Eq. (4). Such quadratic term in the in-line equation is responsible for the
appearance of a figure-of-eight X-Y trajectory [37] associated with a dual 2:1 resonance [10,38]. To describe
the fluid displacement circulation q , a single Rayleigh [18] wake oscillator may be written as [1]
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q̈ − ε(1 − λq̇2)q̇ + q = β ẏ, (5)

in which ε, β, and λ are the system empirical wake coefficients which can be specified or tuned by calibrating
with experimental data; see Sect. 4.1. They can also be functions of system properties such as the mass ratio
(m∗ = m/(ρπD2/4)) [35,38] and Re [36]. The form in Eq. (5) with the cylinder velocity coupling term β ẏ
is different from the van der Pol equation [16] typically employed in the literature with the wake damping
ε(1 − q2)q̇ and acceleration coupling β ÿ terms [13]. Nevertheless, through a variable transformation by
letting q̇ = p, the van der Pol oscillator of p can be rewritten [28]. For efficient numerical computations and
convenience in the analytical formulation, only Eq. (5) is considered for the 2-DOF VIV, instead of using
double van der Pol oscillators previously considered by Srinil and Zanganeh [37].

Overall, the nonlinearly coupled equations (3–5) contain several empirical parameters. Through a number
of parametric and sensitivity studies whose selected results will be presented in Sects. 4 and 5, we assign
λ = 0.2, γ = 0.5, St = 0.19,CD0 = 0.2 andCL0 = 0.3, as in Bai and Qin [1], and αx = βx = αy = βy = 0.4.
Some of these parameters may be treated as random variables [26] due to variations in different sets of
experimental data. Some values (St, CD0, CL0) are suitable for a cylinder with a smooth surface and subject
to a subcritical flow with Re < 2 × 105 [6]. Empirical wake oscillator coefficients (ε, β) will be deduced in
Sect. 4.1. For numerical integrations, a fourth-order Runge–Kutta scheme can be used with initial conditions of
x = y = ẋ = ẏ = q̇ = 0 and q = 2 and with a fixed dimensionless time step of 0.01 providing a convergence
of steady-state simulation results. Note that the present model has not yet accounted for the Re dependence
of response amplitudes as underlined by [17]. With new and substantial experimental data in a wide range of
system parameters for the 2-DOF VIV, the Re effect could be further incorporated into the model, e.g., through
the empirical wake coefficients which regulate the self-limiting (ε) and fluid–cylinder coupling (β) terms in
Eq. (5). The Re dependence of wake coefficients has been demonstrated by Srinil [35] for the cross-flow VIV
prediction of long flexible cylinders.

3 Analytical prediction of controlled responses

To gain insights into the two-dimensionally controlled VIV responses and explicitly capture the nonlinear
coupling of key physical parameters, analytical expressions are derived which can complement numerical
integration results. To capture the most influential effects of system nonlinearities, the first-order harmonic
balance approach is applied. Due to the natural occurrence of a periodic 2:1 resonance of the cylinder X-Y
response in a wide range of Vr [11,38], it is reasonable to assume a periodic solution of cross-flow response
(y) and vortex wake circulation (q) with a dimensionless resonant oscillation frequency (ω) as in Facchinetti
et al. [13], whereas the cylinder in-line motion (x) can be treated as a harmonic motion at 2ω. Accordingly,
the approximated motions for x, y and q may be expressed as

x = x0 sin
(
2ωτ + θxy

)
, (6)

y = y0 sin (ωτ) , (7)

q = q0 sin
(
ωτ + θqy

)
, (8)

in which x0, y0, and q0 are the dimensionless oscillation amplitudes and θxy(θqy) is the associated x− y(q− y)
phase relationship. The LC system is first considered. By substituting Eqs. (6–8) into Eqs.(3–5) with Fyc =
βK ẏ, expanding and balancing the trigonometric terms in the forms of sin(2ωt+θxy), cos(2ωt+θxy), sin(ωt),
cos(ωt), sin(ωt+θqy) and cos(ωt+θqy), and neglecting the higher harmonic terms, the associated expressions
can be obtained, respectively, as

−4ω2x0 + δ2

(

x0 + αx
3x30
4

+ βx
x0y20
2

)

= αxqq
2
0ω

3 cos
(
2θqy − θxy

)
, (9)

2

(
2ξδ + γ

μ

)
ωx0 = αxqq

2
0ω

3 sin
(
2θqy − θxy

)
, (10)

−ω2y0 + δ2

(

y0 + αy
3y30
4

+ βy
x20 y0
2

)

= −αyqωq0 sin
(
θqy

)
, (11)

(
2ξδ + γ

μ

)
ωy0 + (βKωy0) = αyqωq0 cos

(
θqy

)
, (12)
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q0
(
1 − ω2) = βωy0 sin

(
θqy

)
, (13)

3

4
ελq30ω

3 − εωq0 = βωy0 cos
(
θqy

)
. (14)

The pairs of Eqs. (9) and (10), Eqs. (11) and (12), and Eqs. (13) and (14) are derived from Eq. (3), (4) and
(5), respectively. By dividing Eq. (10) by Eq. (9) and summing the squares of them, Eqs. (15) and (16) are
obtained, respectively. Similarly, the combination of Eqs. (11) and (12) gives rise to the first expression in Eq.
(17) and to Eq. (18), whereas the combination of Eqs. (13) and (14) entails the second expression in Eq.(17)
and Eq. (19), respectively. These are written as follows.

tan
(
2θqy − θxy

) = 2(2ξδ + γ /μ)ω

−4ω2 + δ2
(
1 + αx

3x20
4 + βx

y20
2

) , (15)

(
αxqq

2
0ω

3)2 =
[
2

(
2ξδ + γ

μ

)
ωx0

]2
+

[

−4ω2x0 + δ2

(

x0 + αx
3x30
4

+ βx
x0y20
2

)]2

, (16)

tan
(
θqy

) =
ω2 − δ2

(
1 + αy

3y20
4 + βy

x20
2

)

(
2ξδ + γ

μ

)
ω + (βKω)

=
(
1 − ω2

)

3
4ελq

2
0ω

3 − εω
, (17)

(
αyqωq0

)2 =
[(

2ξδ + γ

μ

)
ωy0 + (βKωy0)

]2
+

[

−ω2y0 + δ2

(

y0 + αy
3y30
4

+ βy
x20 y0
2

)]2

, (18)

y0
q0

=
√(

1 − ω2
)2 + (

εω − 3
4ελq

2
0ω

3
)2

βω
. (19)

Due to the nonlinear X-Y displacement coupling term (xy2) in Eq. (3), the associated mean drift effect (Dt ) is
generated which can be expressed in dimensionless form as

Dt = −δ2βx x0y20 sin(θxy)

4
. (20)

This drift effect is dependent on the cylinder properties including amplitudes (x0, y0), frequency ratio (δ),
stiffness (βx ), and phase difference (θxy) associated with the figure-of-eight orbital X-Y motion. From Eq.
(20), the zero or maximum |Dt | occurs when θxy = nπ(n = 0, 1, 2. . .) or (n + 1)π/2(n = 0, 2, . . .),
respectively, with a negative (positive) Dt suggesting an in-line downstream (upstream) drift. This Dt value
should be recognized when performing numerical simulations and experiments [38].

Equations (17) and (18) are further rearranged as

(
2ξδ + γ

μ
+ βK

) (
1 − ω2

)

ε − 3
4ελq

2
0ω

2
= −ω2 + δ2

(

1 + αy
3y20
4

+ βy
x20
2

)

, (21)

(
αyqω

q0
y0

)2

=
[(

2ξδ + γ

μ

)
ω + (βKω)

]2
+

[

−ω2 + δ2

(

1 + αy
3y20
4

+ βy
x20
2

)]2

. (22)

Then, by combining Eqs. (21) and (22), we obtain

(
αyqω

q0
y0

)2

=
[(

2ξδ + γ

μ

)
ω + (βKω)

]2
+

⎡

⎣

(
2ξδ + γ

μ
+ βK

) (
1 − ω2

)

ε − 3
4ελq

2
0ω

2

⎤

⎦

2

. (23)
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By substituting Eq. (19) for q0/y0 into Eq. (23), and analytically solving the resulting equation, the closed-form
expression for the two possible values of q0 reads

q0 =

√√√
√√4εω + 2

(
1 ±

√
1 − 4a21a

2
2

)
/a2

3ελω3 , (24)

a1 = 1 − ω2, a2 = 2ξδ + γ /μ + βK

αyqβω
. (25)

It can be appreciated that the vortex force amplitude q0 is controlled through a2 with a series of damping terms.
Once a positive real value of q0 is obtained from Eq. (24), that of y0 can be determined via Eq. (19). To derive a
closed-form expression for x0, Eq. (16) is further rearranged as a sixth-order polynomial equation governing x0.
From numerical simulation checks, it is found that the x60 term is negligible (<0.02) since generally xo < 0.5;
hence, by considering the resulting equation accounting for the next highest order of x40 , the unique solution
for x0 can be derived as

x0 =

√√
√√2

√
a23
4 + a3a24

2 + a44
4 + 2a6a5a4 − a24 − a3
4a4a5

, (26)

a3 = 4ω2
(
2ξδ + γ

μ

)2

, a4 = −4ω2 + δ2 + βx
y20δ

2

2
, a5 = αx

3δ2

4
, a6 = (

αxqq
2
0ω

3)2 . (27)

Depending on the system parameters and empirical coefficients, it can be appreciated that both y0 (Eq. 19)
and x0 (Eq. 26) are nonlinear functions of q0, and the reduction of x0 is dependent on the suppressed y0 due
to their nonlinear coupling. Subsequently, the system phase differences θqy and θxy can be obtained through
Eqs. (17) and (15), respectively.

For NC system, by substituting Eqs. (6–8) into Eqs. (3–5) with Fyc = γG ẏ3 and applying the harmonic
balance, Eqs. (9–22) from the LC system can be used with γG(3ω3y30)/4 replacing βKωy0 in Eqs. (12) and
(18), γG(3ω3y20 )/4 replacing βKω in Eqs. (17), (22) and (23), and γG(3ω2y20 )/4 replacing βK in Eq. (21). By
combining the resulting Eqs. (21) and (22) with the above substitutions, the following expression reads

(
αyqωq0

)2 =
[(

2ξδ + γ

μ

)
ωy0 + γG

3ω3y30
4

]2

+

⎧
⎪⎪⎨

⎪⎪⎩

[(
2ξδ + γ

μ

)
y0 + γG

3ω2y30
4

]
(
1 − ω2

)

ε − 3
4ελq

2
0ω

2

⎫
⎪⎪⎬

⎪⎪⎭

2

. (28)

Accordingly, due to the presence of nonlinear amplitudes (y20 , y
3
0 ), it is unfeasible to further derive analytical

expressions. Nevertheless, for a specific Vr and ω, Eqs. (16), (19) and (28) can be simultaneously solved for
the key unknown q0, y0 and x0. Both θqy and θxy can then be obtained from Eqs. (17) and (15), respectively.

Next, by imposing the ideal perfect resonance or lock-in condition with ω = δ = 1 for which Vr = 1/St
[13], the linearly controlled vortex force and Y response, based on Eqs. (23) and (24), can be predicted,
respectively, by

qM = 2

√ [ε + αyqβω/(2ξ + γ /μ + βK )]
3ελ

(29)

yM = 2αyq

(2ξ + γ /μ + βK )

√[
1 + β

ε

αyq

(2ξ + γ /μ + βK )

]
1

3λ
. (30)

Correspondingly, with Eqs. (26) and (27), the linearly controlled X response reads

xM =

√√
√√2

√
a27
4 + a7a28

2 + a48
4 + 2a10a9a8 − a28 − a7
4a8a9

, (31)

a7 = 4

(
2ξ + γ

μ

)2

, a8 = βx
y2M
2

− 3, a9 = 3

4
αx , a10 = 16α2

xq

⎡

⎣1 + αyqβ(
2ξ + γ

μ
+ βK

)
ε

⎤

⎦

2

. (32)
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Fig. 2 Comparisons of response amplitudes in the absence of control with numerical (triangles), analytical (circles) and experi-
mental (squares) results for cylinder with m∗ = 2.6 and ξ = 0.00361

Fig. 3 Comparisons of non-controlled and controlled amplitudes for cylinder with m∗ = 2.6 and ξ = 0.00361: lines with circles
(crosses) and triangles (stars) denote numerical (analytical) results

In the NC case, based on Eqs. (16), (19) and (28), the nonlinearly controlled force and displacement amplitudes
with ω = δ = 1 can be simultaneously solved through

qM = 1

αyq

[(
2ξ + γ

μ

)
yM + γG

3y3M
4

]

, (33)
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Fig. 4 Comparison of oscillation frequency ratios (a, b) and resonant frequencies (c, d) for cylinder withm∗ = 2.6, ξ = 0.00361
and βK = γG = 0.5: lines (symbols) denote controlled (non-controlled) results. Higher x and lower y frequencies are shown in
(a, b) with Strouhal rule (dotted lines)

yM = 1

β

(
3

4
ελq3M − εqM

)
, (34)

(
αxqq

2
M

)2 =
[
2

(
2ξ + γ

μ

)
xM

]2
+

[

−4xM +
(

xM + αx
3x3M
4

+ βx
xM y2M

2

)]2

. (35)

Above LC (Eqs. 29–31) and NC (Eqs. 33–35) systems can be helpful for parametrically investigating the
effect of system parameters without performing numerical integrations, as demonstrated in Sect. 4.3. It is also
noticed that, for this particular frequency ratio case (ω = δ = 1), the geometrically nonlinear αy and βy terms
do not affect the controlled responses since (1 − ω2) = 0, whereas the associated αx and βx terms do. In the
following, the parametric studies are presented and discussed.

4 Parametric investigation and discussion

Several aspects in linear and nonlinear active controls of the 2-DOF VIV of circular cylinders with geometric
and hydrodynamic nonlinearities are discussed through the cases of varying reduced velocities (0 < Vr < 14).
For the cylinder with a given m∗ and ξ , the control gains βK and γG are realistically specified such that their
terms have the same order of magnitude as other damping (ξ, γ ) effects, see Eqs. (25) and (28). Accordingly,
it is deduced that βK and γG should be of the order of unity.
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Fig. 5 Phase plane portraits for cylinder with m∗ = 2.6, ξ = 0.00361, βK = γG = 0.5 and Vr = 7: a dot represents the moment
of control activation

4.1 Model calibration and validation

Because the three nonlinearly coupled equations (3–5) are used for the first time as a 2-DOF VIV prediction
model, being the extended version of the linear cylinder model proposed by Bai and Qin [1] and being different
from other models with typical four equations [37], a model calibration is required to determine appropriate
empirical coefficients (ε, β). This can be achieved by validating the obtained analytical and numerical results
with experimental data. In this study, ε and β are tuned such that the dynamic model captures the main lock-in
range, maximum cross-flow (Ay/D), and in-line (Ax/D) amplitudes associated with the upper branch, and
possible response jump due to the nonlinear hysteresis effect.
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Fig. 6 Two-dimensional X-Y motion trajectories at Vr = 7 (a, b) and Vr = 4 (c, d) for cylinder with m∗ = 2.6, ξ = 0.00361
and βK = γG = 0.5: a dot represents the moment of control activation

Accordingly, the low-mass-damping 2-DOF cylinder (m∗ = 2.6, ξ = 0.00361) tested by Jauvtis and
Williamson [23] is considered. Comparisons of analytical (circles), numerical (triangles) and experimental
(squares) results are displayed in Fig. 2 where Ax/D (Fig. 2a) and Ay/D (Fig. 2b) responses are plotted versus
Vr . The tuning trials are carried out with a criterion by which the predicted maximum cross-flow and in-line
amplitudes in the upper branches, as well as the associated lock-in ranges, are matched satisfactorily with the
associated experimental results. This is deemed suitable as attention is placed on the most critical response and
excitation range for a given m∗ and ξ [37]. The most satisfactory calibration is found in Fig. 2 with a single
set of ε = 0.058 and β = 12: the model predicts the first pure in-line VIV (1.5 < Vr < 3), the self-limiting
maximum amplitudes (Ay/D ≈ 1.5 and Ax/D ≈ 0.3) in the main lock-in range (4 < Vr < 10), and the
response jump at Vr ≈ 9. Greater differences in maximum Ay/D between analytical and numerical results
are also noticed in Fig. 2b due to the omitted higher-order harmonic contributions in the analytical solution
(Eqs. (6–8)). Nevertheless, such discrepancies are reduced for smaller Ax/D as shown in Fig. 2a. The effect
of high-order harmonics would become negligible for the controlled system with decreased responses. To also
capture the maximum Ay/D in the lower branch (Vr > 8), another set of ε and β may be introduced. If tuning
with different and large set of experimental data is required, an optimization algorithm could also be employed
for optimal calibration [7]. Herein, we use ε = 0.058 and β = 12 across the Vr range.

Since the proposed model can predict the 2-DOF VIV in the absence of control, both LC and NC are
now considered. By triggering the active Y control with βK = γG = 0.25 versus the uncontrolled case
(βK = γG = 0), analytical and numerical X-Y responses are compared in Fig. 3a, c (LC) and in Fig. 3b, d
(NC). It can be seen that both Ax/D and Ay/D are reduced with increasing βK and γG . The response jumps
also disappear. Such suppression improves overall analytical–numerical comparisons enabling almost identical
results due to the diminishing effects of high-order harmonics and nonlinearities. With the same control gain
(βK = γG), the LC system (Fig. 3a, b) entails a greater reduction in both X and Y responses. This trend is
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Fig. 7 Comparisons of phase relationships (a–d) and mean drift effect (e, f) for cylinder with m∗ = 2.6, ξ = 0.00361 and
βK = γG = 0.5: lines (circles) denote non-controlled (controlled) results; squares denote experimental free-vibration data

similar to the CFD study of Mehmood et al. [27] who considered, however, a 1-DOF VIV active control of
a much higher m∗ = 149.10 and very low Re = 106. They showed a greater Ay/D suppression by LC. Our
focus is placed on the low-mass (m∗ < 6) cylinder undergoing 2-DOF VIV whose problems are found in a
wide range of offshore applications. It should also be noted that the first in-line VIV peak is unaffected by
either LC (Fig. 3c) or NC (Fig. 3d) due to the negligible Ay/D within that region. Instead, an in-line control
could be applied for 1.5 < Vr < 3. Based on results in Fig. 2 and 3, ε = 0.058 and β = 12 are used in the
following studies.
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Fig. 8 Influence of control gain on response amplitudes (a–d) and maximum amplitude reduction percentage R (e, f) for cylinder
with m∗ = 1.2, ξ = 0.00361, βK and γG being increased from 0 to 0.1, 0.2, 0.3, 0.4 and 0.8, respectively

4.2 Controlled frequencies, motion trajectories, phases, and static drifts

With m∗ = 2.6 and ξ = 0.00361, Fig. 4 presents the cylinder X-Y oscillation frequencies normalized with
respect to the natural frequency ( f0/ fn) as well as the resonant frequency normalized with the vortex-shedding
frequency (ω), see Eqs. (6–8), based on LC (Fig. 4a, c) and NC (Fig. 4b, d) with βK = γG = 0.5. Controlled
versus non-controlled frequencies are plotted with lines and symbols, respectively, with higher f0/ fn values
in Fig. 4a, b corresponding to X responses. It can be seen that, in general, LC has a greater effect on f0/ fn
and ω than NC, especially with respect to the upper (4 < Vr < 9) and lower (Vr > 9) branches. With linear
control, the fo/ fn (Fig. 4a) and ω (Fig. 4c) trends remarkably deviate from those without a control. The fo/ fn
plots of the controlled X-Y responses exhibit qualitatively similar features to the Strouhal-based dotted lines
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Fig. 9 Influence of geometrically nonlinear coefficient (αy) on controlled amplitudes for cylinder with m∗ = 1.2, ξ = 0.00361
and βK = γG = 0.1

whose slopes represent the estimation of the vortex-shedding frequency in cross-flow (St ≈ 0.2) and in-line
(St ≈ 0.4) directions for a stationary smooth cylinder in subcritical flows [6]. Accordingly, ω values of the
controlled responses become close to the unity, suggesting the desynchronization state [13]. As a result, the
associated responses aremore reduced; see Fig. 3a versus b (Ay/D) and Fig. 3c versus d (Ax/D).With a higher
gain, both LC andNCwould entail a greater departure of f0/ fn andω, and subsequently greater X-Y amplitude
reductions. Nevertheless, the controlled X-Y frequencies in Fig. 4a, b still maintain their dual-resonant 2:1
frequency ratios across the Vr range and regardless of the control scheme. This suggests how the associated
hydrodynamic added masses are controlled too.

With βK = γG = 0.5 and Vr = 7, the phase plane plots of x , y and q variables are exemplified in Fig. 5
for LC (Fig. 5a, c and e) and NC (Fig. 5b, d and f). By turning on the control actuator (the dots in Fig. 5) after
initial transient oscillations, limit cycles of periodic motions are stabilized for overall controlled responses.
These plots justify the assumption made in Sect. 3 for which a primary harmonic motion with ω(y, q) and
2ω(x) is postulated in Eqs. (6–8). To further visualize dual resonances in the presence of control, Fig. 6
compares X-Y motion trajectories in the case of Vr = 7 (Fig. 6a, b) and Vr = 4 (Fig. 6c, d). It can be seen that,
when LC (Fig. 6a, c) or NC (Fig. 6b, d) is activated, the figure-of-eight appearances are still maintained with
appreciable repeatability in the last ten cycles shown, and with the two lobs pointing downstream (positive
x) or upstream. Results in Fig. 5 and 6 justify the negligible effect of higher harmonics in the controlled
responses.

Apart from the controlled X-Y amplitudes, frequencies, and trajectories, it is also of interest to evaluate
the associated phase differences θxy and θqy , the latter implying the fluid-cylinder energy transfer [41]. With
βK = γG = 0.5, numerical results (circles) of θxy and θqy are plotted in Fig. 7a, c for LC and in Fig. 7b, d
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Fig. 10 Influence of m∗ on controlled amplitudes for cylinder with ξ = 0.00361 and βK = γG = 0.1

for NC, respectively. Experimental θxy data (squares) of Jauvtis and Williamson [23] and numerical (θxy, θqy)
results (solid lines) in the absence of control are also overlapped in Fig. 7a–d. With varying Vr , numerical
and experimental results reveal similarly the referenced π/2 < θxy < 2π and π/4 < θqy < π within the
main excitation range of 4 < Vr < 14 covering initial, upper and lower branches, and the observed jump
in the phase responses at 8 < Vr < 10. The θxy range suggests a transition from the clockwise figure-
of-eight trajectories (π/2 < θxy < 3π/2) to the anticlockwise ones (3π/2 < θxy < 2π) with increas-
ing Vr , whereas the θqy range suggests the fluid excitation (as opposed to the damping) leading to VIV
responses. With LC, a jump disappears from Fig. 7c, and the θqy phase change is clearly observed for Vr > 9
which gives rise to π/4 < θqy < 3π/4. With NC, the jump also disappears from Fig. 7d although θqy
values are less affected. In both control cases, the figure-of-eight patterns maintain their clockwise or anti-
clockwise shapes since θxy values in both Fig. 7a, b slightly change. This is in agreement with the results in
Fig. 6.

The capability of suppressing the static drift due to the geometric nonlinear coupling can be illustrated
in Fig. 7e (LC) and f (NC) with βK = γG = 0.5. The drift, which changes its sign following θxy in Eq.
(20) (Fig. 7a, b), is almost totally eliminated with LC. This observation is hopeful since passive VIV control
devices such as strakes generally have a limitation in the mitigation of in-line force including its amplified
mean component. The active cylinder control might provide an alternative strategy to suppress the mean drag
effect, and this can be the subject of future study using a more complete three-dimensional flexible cylinder
model [42].



Two-dimensional vortex-induced vibration suppression 4385

Fig. 11 Comparisons of response amplitudes at ideal perfect lock-in condition with varying m∗ for cylinder with ξ = 0.00361,
βK and γG being increased from 0 to 0.25, 0.5, respectively

4.3 Influence of control gain, geometrically nonlinear coupling, and mass ratio

With m∗ = 1.2 and ξ = 0.00361, the controller performance in the reduction of 2-DOF amplitudes is now
displayed in Fig. 8 by varying βK or γG from 0 to 0.1, 0.2, 0.3, 0.4 and 0.8. For LC, amplitudes are suppressed
with increasing βK , leading to a large reduction up to about 88 and 70% for maximum Ay/D (Fig. 8a) and
Ax/D (Fig. 8c), respectively. Likewise, the NC demonstrates the controlling effect on the 2-DOF VIV with
about 58% (Ay/D) and 39% (Ax/D) maximum amplitude reductions (Fig. 8b, d). However, the lock-in region
does not shift since themass ratiom∗ is fixed. Similar qualitative behaviors can be found through a 1-DOFwake
oscillator model of Dai et al. [12] where the control gain of a time-delay feedback controller was increased,
yielding the decreased Ay/D. As previously discussed, the response suppression is attributed to the added
damping effect with increasing gain. To achieve greater control performance, both Ay/D and Ax/D can be
further reduced with increasing βK and γG .

The variation of control gain was also employed by Baz and Ro [4] where a 1-DOF direct velocity feedback
control was shown to suppress VIV. According to their experiments, the controller would achieve a maximum
gain and amplitude reduction. This is also demonstrated in Fig. 8a–d where the increases in βK and γG lead
to the minimum reduced responses. The histogram plots in Fig. 8e (LC) and f (NC) illustrate the maximum
amplitude reduction percentage (R) of both cross-flow (left blue bar) and in-line (right yellow bar) responses
when increasing consecutively the gain with each 0.1 increment (i.e., from 0 to 0.1, from 0.1 to 0.2 and so on).
It can be observed that both X-Y responses and both LC/NC demonstrate a gradual decreasing R as each gain
increment is applied. This confirms the existence of maximum gain value and, thus, the maximum amplitude
reduction capability for each controller. The feedback closed-loop control will reach a maximum efficiency
once the control gain is sufficiently large [22].

The effect of geometric displacement coupling is now highlighted in Fig. 9 where αy governing y3 in Eq.
(4) is varied for a given cylinder (m∗ = 1.2, ξ = 0.00361) and control gain (βK = γG = 0.1). Contour plots of
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Fig. 12 Comparisons of averaged power requirement with the targeted reduced amplitudes with LC (dots) versus NC (lines):
a m∗ = 2.6 and ξ = 0.00361, b m∗ = 6.9 and ξ = 0.00361, c m∗ = 1 and ξ = 0; d showing the zoomed results in c

the suppressed 2-DOF amplitudes with varying αy and Vr are displayed in Fig. 9a and c for LC and in Fig. 9b
and d for NC. It can be seen how the increased cylinder nonlinearities affect the main lock-in responses which
exhibit the right-bending features and widening resonance ranges due to the enhanced cubic nonlinearities in
both Ay/D (Fig. 9a, b) and Ax/D (Fig. 9c, d) plots. Owing to the intrinsic X-Y coupling, maximum Ay/D are
slightly increased, while maximum Ax/D are more decreased as αy is increased for both LC/NC. This energy
transfer between the cylinder X-Y motions, leading to the opposite increasing vs. decreasing responses, might
be useful in some applications such as cylinders placed in a tandem where greater in-line VIV reduction of the
front cylinder is required. As for other geometric nonlinear terms (βy, αx , βx ), they have a lesser effect on the
controlled responses due to the smaller contributions from the x-based (yx2, x3, xy2) terms.

With βK = γG = 0.1, contour plots of the suppressed 2-DOF amplitudes (Ay/D, Ax/D) with varyingm∗
and Vr are displayed in Fig. 10. Apart from the fact that the first resonance in-line VIV region is not affected
by any Y -controllers, Fig. 10 shows how the controlled cylinder with lower m∗ has greater X-Y responses and
lock-in ranges regardless of LC or NC. This is expected from the m∗ effect viewpoint. The effect of m∗ on the
controlled responses (YM , XM ) is further highlighted in Fig. 11 with the advantage of analytical expressions
in Sect. 3 which has been derived for the referenced resonant lock-in condition (ω = δ = 1). Two gain values
with βK = γG = 0.25 (triangles) and 0.50 (solid lines) are considered for both LC (Fig. 11a, c) and NC
(Fig. 11b, d) versus the no-control (squares) case (βK = γG = 0). In general, both linearly and nonlinearly
controlled 2-DOF responses exhibit similar trends of decreasing responses with increasing gain and m∗. The
amplitude reduction function appears to be more nonlinear in a lower mass ratio range (m∗ < 6). This could
emphasize, through an active control study, the effect of 2-DOF VIV on the low-mass cylinder. Nevertheless,
due to the limiting control performance, the amplitude reduction capability is reduced from βK = γG = 0 to
0.25 and from βK = γG = 0.25 to 0.5.
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4.4 Comparison of power requirement

Finally, it is of practical importance to examine the power requirement for each controller since the control
performance is also dependent on the forces exerted from the controllers, besides the capability of amplitude
reduction. Based on the numerically obtained steady-state responses, the dimensionless averaged power P for
linear (βK ) and nonlinear (γG)Y control may be evaluated, respectively, from [27]

P = lim
t→∞

τ∫

0

βK ẏ2(τ )dτ or P = lim
t→∞

τ∫

0

γG ẏ
4(τ )dτ. (36)

This can be evaluated for a particular number of oscillation periods (herein equal to 100 cycles). The power
demand would be particularly useful, e.g., for sizing the control actuators to handle the power requirement.
Since the force is applied in the Y direction, the power is dependent on the cylinder Y , rather than X , velocity.

Depending on the level of targeted controlled amplitudes, Fig. 12 illustrates comparisons of P based on LC
(dots) versusNC (lines) for the cylinderwithm∗ = 6.9 and ξ = 0.00361 (Fig. 12a),m∗ = 2.6 and ξ = 0.00361
(Fig. 12b) and the limiting case of m∗ = 1 and ξ = 0 (Fig. 12c). It can be seen that both LC and NC generally
require comparable P for both high (Fig. 12a) and low (Fig. 12b)m∗ as well as in both high (Ay/D > 0.9) and
low (Ay/D < 0.9) amplitude ranges, with the maximum P occurs at the targeted Ay/D ≈ 0.9. Based solely
on the maximum amplitude reduction, the LC appears to be superior to NC. However, for the neutrally buoyant
cylinder (Fig. 12c), the NC system is seen to require a lower P (about 5%) within the lower amplitude range
as zoomed in Fig. 12d. This 2-DOF control observation is similar to the CFD control results of Mehmood et
al. [27] who suggested a better NC performance when the targeted Ay/D < 0.2 for a very high m∗ = 149.1
of the 1-DOF circular cylinder.

5 Conclusions

Investigation into the effectiveness of active linear and nonlinear controls by using the cylinder transverse
velocity feedback for the suppression of two-dimensionally coupledVIVof a flexiblymounted circular cylinder
in uniform flows has been presented. The reduced-order nonlinear dynamic model simulating the cylinder–
vortex strength interaction is based on the use of coupledDuffing–Rayleigh oscillatorswhich capture basicVIV
phenomena in the absence of control. Model empirical coefficients have been calibrated with free-vibration
experimental data and then applied to the parametric studies with active controls. Combined analytical and
numerical results are presented and discussed. At lock-in oscillation frequencies, some analytical expressions
for response amplitudes have been derived to explicitly describe the resonant dynamics.

By focusing on the main synchronization range and system dimensionless parameters, the actively con-
trolled responses have been assessed in terms of response amplitudes, oscillation frequencies, phase relation-
ships, orbital motions and control power requirements in a wide range of reduced velocities. The effects of
control gain, mass ratio and geometric nonlinear displacement have also been explored. Parametric results
reveal that linear and nonlinear controllers can be implemented for mitigating the coupled cross-flow/in-line
VIV and the associated static drifts. Despite both control systems modify the oscillation frequencies and phase
relations, the suppressed two-dimensional responses maintain dual 2:1 resonance features with figure-of-eight
orbital motions. Depending on the mass-damping ratio, reduced velocity, control gain, and targeted controlled
amplitude, the linear control generally provides a better performance.However, for the limiting case of neutrally
buoyant cylinder with negligible structural damping, the nonlinear control requires lower power in the targeted
small-amplitude range. Experimental studies are needed to justify such predictions. The Reynolds number
dependence of response amplitudes should also be recognized in the prediction model through, e.g., the wake
oscillator coefficients regulating the self-limiting and fluid-structure interaction terms. This will be considered
in our future investigations. In addition, the present model may be applied to control a three-dimensional VIV
of a long flexible cylinder. This can be achieved, e.g., by embedding the smart sensors within the cylinder fabric
at locations where potential vibration modes are excited, and then signaling the responses to the actuators for
actively controlling the multimode and multi-DOF VIV.
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