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Abstract The setting of a looped drive belt on two equal pulleys is considered. The belt is modelled as a
Cosserat rod, and a geometrically nonlinear model with account for tension and transverse shear is applied. The
pulleys are considered as rigid bodies, and the belt–pulley contact is assumed to be frictionless. The problemhas
two axes of symmetry; therefore, the boundary value problem for the system of ordinary differential equations
is formulated and solved for a quarter of the belt. The considered part consists of two segments, which are the
free segment without the loading and the contact segment with the full frictionless contact. The introduction
of a dimensionless material coordinate at both segments leads to a ninth-order system of ordinary differential
equations. The boundary value problem for this system is solved numerically by the shooting method and finite
difference method. As a result, the belt shape including the rotation angle, forces, moments, and the contact
pressure are determined. The contact pressure increases near the end point of the contact area; however, no
concentrated contact force occurs.

Mathematics Subject Classification 74K10 · 74B20 · 74M15

1 Introduction

The first systematic study of a belt drive (and elastic creep in it) was reported byReynolds in [30], where he used
the string model. Until recently, one-dimensional models of elastic strings were widely used, cf. [16,31,35].
The exact solution for nonlinear steady-state equations of the extensible string is obtained in [31] by assuming
zones of the perfect and sliding friction contact between the belt and the pulley. A spatial description of the
contour motion of the belt is suggested in [16]. An idealized point friction model allows extending this result
to the transient dynamics, see [35].

However, it turned out that the model of extensible string describes just a part of important effects in the
belt mechanics. The friction forces applied on the belt from the pulley result in a distributed moment. The
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Fig. 1 Nonlinear elastic rod with account for shear and tension. Deformed configuration, unit vectors e1, e2, tangent vector r′,
reference Cartesian coordinate system and angle of deformed configuration ϕ

string model without bending stiffness cannot resist this loading. Therefore, we should use the rod model (i.e.
the one with at least bending stiffness).

The calculation of the belt–pulley interaction can be found in [4,5,21,24,27,28,31]. It should be made
with account for transverse shear. The importance of shear in contact problems of the rod theory is known, cf.
[10,17,19,20]. The introduction of this deformation causes the absence of lumped contact forces and promotes
better understanding of the contact force distribution. The shear is also required to describe the effect of elastic
microslip, see, e.g. [8,25] for general frictionmodelling. Particularly, the shear is of importance in the operation
of the friction belt drive [1,7,18,21].

However, the shear is known to be taken into account only together with the tension (compression) if
the nonlinear theory of rods is applied. The goal of this work is to model the belt with bending and shear
stiffness in the static contact problem of setting the belt on the pulleys. One finds the system of equations of
the corresponding rod theory in [2,13,15,36] (without direct application to the belt-drive mechanics, though).

In the numerical modelling of the contact mechanics, the penalty formulation is in common use [37] and
includes the choice of the penalty coefficient or its distribution (see e.g. [12] for the application in the contact
between rods). This approach is applied for belt drives in [11,28,33].

In the present paper, we restrict ourselves to frictionless contact. We obtain the contact pressure and the
stress–strain state in a different manner describing the form of the belt lying on the rigid pulley (the constraint
formulation or the Hertz–Signorini–Moreau conditions for frictionless contact according to [37]). We assume
that the contact is full in a classical sense, i.e. it is continuous in a single interval of the belt whose length is
to be determined. In the present study, we use computer mathematics (the systems including both symbolic
computation together with a user-friendly interface and numeric capabilities) to solve the difficult boundary
value problems (BVP) for the systems of ordinary differential equations (ODE). The application of the standard
numerical methods is possible due to the introduction of the transformed material coordinate. See [9,23] for
an introduction into Mathcad and Mathematica, respectively; Wolfram Mathematica is efficiently used in the
modern mechanics of thin-walled structures in [34].

In Sect. 2, we write down the equations of the nonlinear statics of rods. Then, we apply them to describe the
belt equilibrium in the full contact segment where we assume that all points of this belt part lie on the pulley
circle. In Sect. 3, we consider the free segment, i.e. the belt span. The absence of loads results in significant
simplification of equations. The clear procedure of combining the equations for each segment into one system
of ODE is also presented here. In Sect. 4, we discuss the variants of numerical solution of the formulated BVP.
Finally, we show the results of numerical work and compare them with the previous results for the extensible
model without shear [4] and the model without extension and shear [5]. A special case of different pulleys is
studied in [6].

2 Equations of nonlinear contact problem

Figure 1 displays a general calculation scheme of the rod with shear and tension in the plane xy.
The rod is considered as a Cosserat line [2,13,15,36]. The position vector in the deformed configuration

r(s) is a function of the material coordinate s and prime indicates differentiation with respect to s. The angular
orientation of each particle of the rod is given by the orthonormal unit vectors e1, e2. The angle ϕ denotes the
angle between the unit vector e1 and the Cartesian axis x , the latter having the unit vector i.
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For plane deformations, the system of equations of the nonlinear theory of rods is as follows [2,13,15,36]:

Q′ + q = 0, M ′ + k · r′ × Q + m = 0,

ϕ′ − ϕ′
0 = AM, r′ = P · r0′ + B · Q = e1(1 + B1Q1) + e2B2Q2. (1)

Here we denote: Q is the internal force vector, M is the bending moment, and q, m stand for the external
distributed forces and moments, respectively; k is the unit vector of the Cartesian axis z perpendicular to the
drawing plane. The index zero indicates the values in the initial state, andP = eiei0 is the rotation tensor. Elastic
characteristics of the rod in plane are determined by three scalar compliances: the bending compliance A, the
tension compliance B1, and the shear compliance B2. The unit vectors e1, e2 are directed along the principal
axes of the compliance tensor B. The compliance tensors are determined by the three-dimensional theory of
elasticity using two methods. First, we may utilize the solutions of the Saint-Venant problem comparing the
complementary energies of the one- and three-dimensional solutions [14,15].1 Second, we may provide the
asymptotic analysis of the three-dimensional problem with the small thickness [15] (this approach is more
difficult than the previous one). However, the calculation of the compliance tensors is a separate topic beyond
the scope of this work, and we use the simple formulae for them in Sect. 4.

A way of solving BVP by means of computer mathematics for the system (1) is described in [23]. The
algorithms and the results for the belt–pulley contact without shear are presented in [4,5]. The peculiarity of
the considered problem is due to the fact that the function r(s) = R(σ ) is unknown in the contact segment
because the arc coordinate σ is not yet determined.

We use the geometric relations and the expression of r′ from (1):

e1 = i cosϕ + j sin ϕ, e2 = −i sin ϕ + j cosϕ;
r′(s)ds = Ṙ(σ )dσ,

∣
∣Ṙ

∣
∣ = 1,

σ ′ = ∣
∣r′∣∣ ≡ D =

√

(1 + B1Q1)
2 + (B2Q2)

2, ṡ = D−1. (2)

The equations in the third line determine the relation of the material coordinate s with the arc coordinate σ ; a
dot indicates the derivative with respect to σ .

Consider the full contact with the pulley. We write the expression for the tangent unit vector:

Ṙ = i sin κσ + j cos κσ, r′ = DṘ (3)

and integrate it:

R = κ−1 [i (1 − cos κσ) + j sin κσ ] . (4)

Here κ is the curvature of the pulley. Then, we assume R(0) = 0 and note that

r′ · e1 = 1 + B1Q1 = D sin(ϕ + κσ),

r′ · e2 = B2Q2 = D cos(ϕ + κσ). (5)

Hence, it is possible to express the transverse force Q2 as a function of the arc coordinate, angle, and the axial
force in the following form:

Q2(σ, ϕ, Q1) = B−1
2 (1 + B1Q1) cot α,

α(σ, ϕ) ≡ ϕ + κσ. (6)

As a result, we have four unknown functions of s which are σ, ϕ, M, Q1.
We assumeno tangential contact between the belt and the pulley. Therefore, the vectorsq, r′ are orthogonal:

Q′ · r′ = 0; e1′ = ϕ′e2, e2′ = −ϕ′e1. (7)

It yields:
(Q1

′ − ϕ′Q2)(1 + B1Q1) + (Q2
′ + ϕ′Q1)B2Q2 = 0. (8)

1 See the translation of paper [14] here: https://www.researchgate.net/publication/305990842.

https://www.researchgate.net/publication/305990842
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Fig. 2 Contact of belt and pulleys. The thick line is the deformed belt, the dashed circle is the undeformed belt, and the thin
circles are the pulleys

In the last equation, we express the derivatives using (1), (2), and Q2 = Q2(σ, ϕ, Q1) as follows:

ϕ′ = ϕ0
′ + AM,

Q2
′ = ∂Q2

∂Q1
Q1

′ + ∂Q2

∂σ
D + ∂Q2

∂ϕ
ϕ′ = B1

B2
Q1

′cot α − 1 + B1Q1

B2sin2α
(ϕ′ + κσ ′). (9)

The combination of (8) and (9) provides the differential equation for Q1, which is not stated here for the
sake of brevity. Then, we substitute r′ from (1) into the balance of moment equation and obtain

M ′ = ((B2 − B1)Q1 − 1) Q2. (10)

The expressions σ ′, ϕ′, M ′, Q′
1 form a fourth-order ODE system:

Y ′ = F(s, Y ), Y ≡ (

σ ϕ M Q1
)T

. (11)

Finally, we determine the contact pressure p:

Dp = q · k × r′ = k · Q′ × r′ = (Q1
′ − ϕ′Q2)B2Q2 − (Q2

′ + ϕ′Q1)(1 + B1Q1). (12)

The contact pressure must be nonnegative. Unlike the case without shear, in the considered problem there must
be no concentrated contact reactions. The similar case of the classical contact between an initially straight
nonlinear shearable rod and a rigid straight obstacle is discussed e.g. in [17].2 The distributed contact moment
which plays the key role in the elastic microslip (see [7]) in loaded drive vanishes because of the frictionless
contact.

3 Contact of belt with pulleys

The scheme of setting the belt on the pulleys is shown in Fig. 2. In the initial state, the belt is the circle of
radius a0 (dashed circle). Hence, the initial angle and its derivative are ϕ0 = π/2 − a−1

0 s, ϕ′
0 = −a−1

0 . The
pulleys are equal, and their radii are a1. The centre distance (i.e. the distance between the pulley centres) is
2(a0 − a1) + δ, where the pulley displacement δ increases from zero under the force P that takes the pulleys
apart.

Another point of view on a similar problem setting with the discussion of the physical nonlinearity and
friction can be found in [26]. The belt tensioning is also studied in the encyclopaedic book [21] for an inex-
tensible and unshearable belt model with bending stiffness and the straight initial configuration. An extension
to quasi-static problem is investigated in [22].

2 See the translation of paper [17] here: https://www.researchgate.net/publication/306058324.

https://www.researchgate.net/publication/306058324
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Because of the problem symmetry, it is sufficient to consider only a quarter 0 ≤ s ≤ L = πa0/2. In the
segment 0 ≤ s ≤ s1, the full contact is assumed; however, the coordinate s1 is unknown. The formulation for
this segment is presented above in Sect. 2.

Let us turn to the free segment s1 < s < L . As follows from the force balance equation in (1), the forceQ
is constant. Using the symmetry, we can determine this force:

Q = P

2
i. (13)

The value P is prescribed; however, the dependence δ(P) should be determined. Due to the obvious absence
of concentrated contact reaction at the point s1, we have the continuity of Q (it also holds everywhere in the
free segment):

Q1 = P

2
cosϕ, Q2 = − P

2
sin ϕ. (14)

Since the force is constant, the equation of moments (1) is integrated:

M = P

2
y + M∗. (15)

The integration constant M∗ can be determined using the continuity of the moment at the point s1.
Then, we derive the following equations from (1):

ϕ′ = −a−1
0 + AM, x ′ = (1 + B1Q1) cosϕ − B2Q2 sin ϕ,

y′ = (1 + B1Q1) sin ϕ + B2Q2 cosϕ. (16)

The functions ϕ, x, y are continuous at the point s1.
To solve the formulated problem as one common BVP, we introduce the new nondimensional coordinate

0 ≤ ξ ≤ 1:

s ≤ s1 : s = ξs1 ⇒ d/
dξ = s1d

/

ds;
s1 ≤ s ≤ L : s = L − ξ(L − s1) ⇒ d/

dξ = −(L − s1)d
/

ds. (17)

We combine the equations at both segments into a single system and distinguish the values by the indices
(. . .)(1), (. . .)(2). This transformation extents the formulation for the problem of laying process of an under-
water pipeline [17] where the contact of an initially straight beam with a flat rigid surface is considered. A
similar coordinate transformation can be found also in [22]. Thus, we obtain the BVP for the ninth-order ODE
system:

Z ′ = G(ξ, Z), Z ≡ (

σ ϕ(1) M (1) Q1 ϕ(2) x y M∗ s1
)T

. (18)

Here a prime indicates the derivative with respect to the new coordinate ξ (and the functions written in (18)
are the functions of ξ ). For the first four unknown variables, we have already derived Eq. (11). The remaining
five equations are Eq. (16) and the conditions for the unknown constants: M∗′ = 0, s1′ = 0.

Now we consider the boundary conditions for system (18) and note that the right end ξ = 1 corresponds
to the unknown boundary of the contact segment s = s1, whereas the left end corresponds to the start point
s = 0 and the end point s = L . The conditions are:

ξ = 0 : σ = 0, ϕ(1) = π

2
, ϕ(2) = 0;

ξ = 1 : ϕ(1) = ϕ(2), Q1 = P

2
cosϕ, Q2(σ, ϕ, Q1) = − P

2
sin ϕ,

M (1) = P

2
y + M∗, a1(1 − cos κσ) = x, a1 sin κσ = y. (19)



4430 A. K. Belyaev et al.

Fig. 3 Belt and pulley. The thick line is the deformed belt, the thin circle is the pulley, the dashed line is the undeformed belt, the
thin line depicts the boundary of the contact segment

4 Numerical results

The formulated ninth-order BVP (18,19) is solved by the shooting method in MathCad using the standard
built-in functions sbval and rkfixed [23]. The same results are also obtained usingWolframMathematica
[9,34]. Here we apply two methods: the shooting method with the standard built-in function NDSolve and
the finite difference method following the scheme described in [17].

In the finite difference method, we divide the segments into uniform steps ε = 1/N . To approximate
the system, we use the implicit symmetric one-step difference scheme that has the second order of accuracy
[3,29,32]: (Yi+1 − Yi )/ε = (Gi + Gi+1)/2, (i = 0, . . . , N − 1). As a result of transformations, we obtain
the system of 7N difference nonlinear algebraic equations. The total number of unknowns consists of the
values of seven desired functions at the nodes 7(N + 1) and two additional constants M∗, s1. The system is
complemented with nine boundary conditions (19) (in our case the Dirichlet boundary conditions) projected
on the grid. It corresponds to the number of unknown variables: 7(N + 1) values of variables at the nodes and
two constants. The derived nonlinear algebraic system of equations is solved by Newton’s method with the
standard built-in function FindRoot of Wolfram Mathematica. We determine all the variable functions by
interpolating the obtained values at the nodes (this also holds for the shooting method).

We suggest the use of the shooting method when an appropriate initial guess is not yet found, because
we need only nine initial values here (while we need 7(N + 1) + 2 values for the finite difference method).
However, the finite difference method is faster and stabler; therefore, we advise it in any other cases.

The form of the belt before and after the deformation is shown in Fig. 3.
The parameters are: the Young modulus is E = 109 Pa, the Poisson coefficient is ν = 0.5, the sides of

the square cross section are h = 10−2 m, the initial radius of the belt is a0 = 0.25m, the pulley radius is
a1 = 0.1m, the current force is P = 200N. B1 = 1/(Eh2) is the tension compliance, A = 12/(Eh4) is the
bending compliance, and B2 = 6/(5μh2) is the shear compliance, where μ = E/(2(1 + ν)). We calculate:
the end coordinate of the contact segment s1 = 0.068m and the displacement of the pulley δ = 0.159m. The
central angle of the contact zone is introduced in Fig. 3 and β = 0.678 in the example considered.

Next we determine the contact pressure using the formula (12). We take into account Eq. (8) and rewrite
it as follows:

p = D−1 (

Q1
′ − ϕ′Q2

)
[

B2Q2 + (1 + B1Q1)
2

B2Q2

]

. (20)

The result of the calculation is shown in Fig. 4.
In Fig. 4, we see the concentration of pressure at the boundary of the contact segment which is characteristic

for the problems with shear [17]. The pressure is positive, and its maximum equals 14.9 × 103 N/m. For
considering the shear, there is no lumped boundary reaction force as in the model without shear [4,5]. For
comparison, we draw the constant pressure from the equivalent (by the force P) problem without shear, but
with tension, see the simpler modelling for this special case in [4]. Further on, we will mainly use these results
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Fig. 4 Contact pressure over transformed coordinate. The solid line is the pressure for shearable model, the dashed line is the
pressure in model without shear, and the dot-dashed line is the pressure in model with reduced shear compliance

Fig. 5 Moment over material coordinate s in the whole belt (a) and moment over transformed coordinate (ξ ) in the contact
segment (b). The dashed linemeans the boundary between contact (left side) and free (right side) segments. The dot-dashed line
is the model with reduced shear compliance

for comparison. In Fig. 4, we use B∗
2 = B2/10 for the model with the reduced shear compliance. We need to

insert the new compliance into Eq. (20) and to obtain the new solution for the general system of Eqs. (18),
(19). The reduction in the shear compliance results in sharpening of the pressure distribution, which in limiting
case leads to constant pressure with the lumped force at the contact zone boundary.

The dependence of the moment in the belt on the material coordinate s is shown in Fig. 5. The moment
is seen to vary in the contact segment. It takes place because Q2 is not equal to zero in the shearable model
[see Fig. 6 and (10)]. In contrast, the moment in the contact segment is constant if the unshearable model is
considered.

For the problem without shear, cf. [4,5], the first component of force Q1 is constant in the contact segment,
and Q2 is equal to zero. Besides in the case without shear, we have the lumped contact force at the contact
segment boundary. As shown in Fig. 6, we have the qualitatively different results for these force components
in the case with shear.

In Fig. 7, we draw the angle γ between the tangent vector r′ and the unit vector e1. It increases at the
contact segment up to the boundary point s = s1 and decreases afterwards. The comparison with the results in
[7] reveals qualitative similarities, and moreover, the magnitudes are of the same order. For the dashed line in
Fig. 7, we use the reduced shear compliance B∗

2 = B2/10. The assumption “no shear at the beginning of the
adhesive arc” in [21] and the similar one in [18] both give different results than those shown in Fig. 7 obtained
for the frictionless contact.

Finally, we demonstrate a comparison between the loading diagrams of the models with shear and without
it. To this end, we use the finite difference scheme (Wolfram Mathematica). The load P increases from zero,
while other parameters are the same as above. We solve a number of static problems to show the dependences.
The calculation results of previous steps are useful for the choice of appropriate initial approximations.
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Fig. 6 Forces in the contact segment over transformed coordinate. First component (a) and second component (b). The solid
line is the model with shear, the dashed line is the model without shear, and the dot-dashed line is the model with reduced shear
compliance

Fig. 7 Angle γ between tangent r′ and unit vector e1 over material coordinate. The dashed line is the model with reduced shear
compliance

Fig. 8 Dependence of force on displacement of pulley. The solid line is the model with shear and extension, the dashed line is
the model without shear (coinciding), and the dot-dashed line is the model without extension and shear

The dependence of the force P(δ) on the pulley displacement δ is depicted in Fig. 8. Any noticeable
influence of shear is not observed here. For the model without extension and shear (dot-dashed line, see [5]),
we see a limiting displacement for which the force tends to infinity.

The dependence β(δ) of the angle of the contact zone on the displacement of the pulley is shown in Fig. 9.
The curve for the model with shear is smoother because of the absence of single force load at the contact
area boundary. The contact zone becomes broader if the shear is included into consideration. The dot-dashed
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Fig. 9 Dependence of contact angle on displacement of pulley. The solid line is the model with shear and extension, the dashed
line is the model without shear, and the dot-dashed line is the model without extension and shear

line shows the behaviour of the model without extension and shear, and it hardens when the displacement
approaches the limiting value.

5 Conclusion

The main results of the present work are listed below:

– a system of ODE for the belt as plane nonlinear elastic rod with account for tension and transverse shear
is derived;

– the equations for the free and contact segments which have qualitatively different formulation are combined
into a single system of ODE. This system is suitable for numerical solving by the shooting method and
finite difference method;

– computer mathematics is utilized for determining all the variables including the contact pressure;
– the important influence of shear in the belt–pulley problem is worked out clearly.

These results will be used in further work including the study of the belt–pulley interaction with friction and
the dynamical modelling, both stationary and transient.
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