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Abstract This contribution focuses on bending moment tracking in slender beam-type structures that are
equipped with piezoelectric actuators. Bending moments are associated with the axial stress, which is the
dominant stress component of laterally excited beam structures. If the maximum value exceeds a certain tensile
stress limit, the structures will crack or be irreparably damaged. In the present contribution, a piezoelectric
bimorph beam is considered and it is investigated in which manner the piezoelectric actuation devices have
to be distributed along the beam length, such that a certain bending moment distribution is obtained. This is
called bendingmoment tracking. First, the basic equations of a piezoelectric bimorph beam are recalled and the
differential equations for the bending moment are derived. Then a positive semi-definite integral depending on
the error of the bending moment is defined, which is the difference between the actual and the desired bending
moment. The results of the derivations are conditions for the eigencurvature due to the piezoelectric actuation,
such that a certain bending moment distribution is achieved. Approximate solutions for the eigencurvature are
also presented for the lower- and for the high-frequency domain. The theory is verified by a support-excited
piezoelectric bimorph. First, the frequency response curves for the deflection, the bending moment and the
axial stresses are calculated. Then the responses due to a sinusoidal excitation are computed, showing that
the suggested control algorithm enables the reduction of the bending moment and also of the axial stress in a
satisfactory manner.

1 Introduction

Engineering mechanics deals with the solution of engineering problems in terms of displacements, strains and
stresses. The stress and the displacement fields may be determined from the partial differential equations if
external loadings or eigenstrain sources are prescribed. The content of this contribution is restricted to the linear
theory of elasticity. For the basics, the reader is referred to Hetnarski and Ignaczak [1], Gurtin [2] Lurie [3].

One possibility of eigenstrain sources is due to the piezoelectric effect. This effect is well established in
control engineering, sensing and structural health monitoring, see e.g. Moheimani and Fleming [4]. A further
overview of piezoelectricity is given by Crawley [5], Miu [6] and Tzou [7]. The notion of eigenstrain was
first introduced by Mura [8] and means a non-elastic strain, e.g. an initial, plastic or misfit strain. Non-elastic
strains can also be caused by thermal variations or by piezoelectricity. In the last three decades, piezoelectric
transducers became popular candidates for vibration control or displacement tracking, see e.g. Schoeftner and
Krommer [9], Krommer and Irschik [10,11], Han et al. [12] or Benjeddou and Deü [13].

One particular application of displacement tracking is known under the notion shape control, when the
displacement to be tracked is nullified. A literature review on this topic is presented by Irschik [14]. Further
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discussions on shape control can be found in Hubbard and Burke [15], Hafka and Adelman [16], Irschik et
al. [17,18], Nader [19], Irschik and Pichler et al. [20], Schoeftner et al. [21–23], Austin et al. [24] and Agrawal
and Treanor [25]. Displacement tracking is a feed-forward control method, where one asks for the eigenstrain
sources in order to obtain a certain deflection. Thismeans that one faces an inversely posed problem, in contrary
to the ordinary problem, where one wants to calculate the displacement when imposed forces and moments
are known. For some recent formulations, see Irschik et al. [26].

It is obvious that one may try to track the stress field instead of the displacement field: replacing the
displacement in the equations of motion by the stress, one may ask how to obtain a certain stress distribution.
Then the notion of stress tracking is used. Surprisingly, stress annihilation or stress reduction has been rarely
treated in such a systematic way as displacement tracking or shape control, although mechanical stress is
understood as the driving factor for the collapse, material fatigue and damage of structures when exceeding a
certain stress level. Irschik [27] discusses how to achieve a certain stress or displacement fieldswhen prescribing
the spatial and temporal control actuation. The link between shape control and stress tracking is presented
in Irschik et al. [28], where it was found that the stress distribution in a body, where the displacements are
completely annihilated by eigenstrain actuation, is equal to the quasi-static stress distribution caused by the
external load.

Here the focus lies on the control of the bending moment which represents the resultant moment of the
axial stress distribution. The paper is organized as follows:

After recalling the fundamental relations for a slender beam (the equations of motion and the constitutive
relations), a differential equation is derived for the bendingmoment in Sect. 2. In Sect. 3, the error displacement
and the error bending moment are defined, which are the differences between the actual and the desired
displacement and bending moment, respectively. A semi-positive definite time-dependent integral is defined,
which involves the squares of the derivatives of the error moment with respect to the time and the spatial
coordinate. Stating that the time derivative of this integral is zero, conditions for the control eigenstrain are
obtained. In Sect. 4, the derived control method is illustrated: a support-excited beam is studied and the desired
bending moment distribution is realized according to the derived conditions for the eigencurvature. Finally, an
outlook is given on approximate solutions in the lower or in the higher frequency range, which may become
important for the practical realization. Additionally, it is pointed out that a reduction of the bending moment
with this technique means also a reduction of the axial stress.

2 Equations of a piezoelectric beam

The partial differential equation for the lateral vibration w(x, t) of a beam can be written as, see Ziegler [29],

mẅ(x, t) = M,xx (x, t) + b(x, t). (1)

The mass density per unit length, the second derivative of the bending moment and the distributed load are
denoted by m, M,xx (x, t) and b(x, t), respectively. The axial coordinate is x and the time is t . The derivative
with respect to the axial coordinate and the time derivative of an arbitrary function g(x, t) are denoted by
g,x (x, t) and ġ(x, t). For thermomechanical, piezoelectric or elastomagnetic material, the bending moment
reads, see Schoeftner et al. [23,30],

M(x, t) = −KM
[
w,xx (x, t) + κc(x, t)

]
, (2)

where the bending stiffness is KM.The second termwithin the square bracket is influencedby the eigencurvature
κc(x, t). In case of a piezoelectric bimorph, one finds a relation between the eigencurvature and the applied
electric voltage V (x, t) (see Schoeftner et al. [23])

κc(x, t) = −e31hb

KM
V (x, t), (3)

where e31, h and b are the piezoelectric modulus, the height and the width of the piezoelectric layers. Substi-
tuting Eq. (2) into Eq. (1), one finds the equation of motion as

mẅ(x, t) = −KM
[
w,xxxx (x, t) + κc,xx (x, t)

] + b(x, t). (4)
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Differentiation of Eq. (2) with respect to the time twice and rearranging the outcome, one finds

ẅ,xx (x, t) = − M̈(x, t)

KM
− κ̈c(x, t). (5)

Substituting Eq. (5) into Eq. (1), the differential equation for the bending moment is obtained

m

KM
M̈(x, t) + M,xxxx (x, t) = −mκ̈c(x, t) − b,xx (x, t). (6)

3 Bending moment control and conditions

The goal of the present contribution is to manipulate the bending moment M(x, t), and, as a consequence, also
to reduce the axial stress σ(x, t).

In a first step, the error displacement is introduced,

we(x, t) := w f (x, t) + wc(x, t) − wd(x, t), (7)

and the error bending moment

Me(x, t) := M f (x, t) + Mc(x, t) − Md(x, t). (8)

It is noted that the actual displacement is w(x, t) = w f (x, t) + wc(x, t). In an analogous manner, this also
holds for the actual bending moment M(x, t) = M f (x, t) + Mc(x, t). The error signals are the differences
between the actual signals and the desired values (wd(x, t) and Md(x, t)). The subscripts f and c mean the
additive decomposition of the displacement and the bending moment, caused by either the external forces
(subscript f ) or the control eigencurvature (subscript c).

Based on Eqs. (7) and (8), one defines the error integral as a function of the error bending moment:

IM(t) =
∫

x

(
KMM2

e,xx + mṀ2
e

)
dx . (9)

Since themass density per unit lengthm and the bending stiffness KM are semi-positive definite properties, also
the error integral is positive definite at every time instant t . In a first step, it is shown under which circumstances
the integral remains time independent, i.e. İM(t) = 0 or IM(t) = IM(0). In a second step, it is shown that if the
integral vanishes from the beginning, i.e. if IM(0) = 0, this also means that the error bending moment is zero
Me(x, t) = 0 or that the actual and the desired bending moments are equal M f (x, t) + Mc(x, t) = Md(x, t).

3.1 First step: İM(t) = 0

Differentiating Eq. (9) with respect to time yields

İM(t)

2
=

∫

x

(
KMMe,xx Ṁe,xx + mṀeM̈e

)
dx . (10)

Reformulating the first term on the right-hand side using integration by parts,

Me,xx Ṁe,xx = (
Me,xx Ṁe,x

)
,x − (

Me,xxx Ṁe
)
,x + (

Me,xxxx Ṁe
)
, (11)

and substituting Eqs. (6), (8) and (11) into Eq. (10), it follows that

İM(t)

2
=

∫

x

[
KMṀe

(
−Md,xxxx − m

KM
M̈d − mκ̈c − b,xx

)]
dx

+ KM
[
Me,xx Ṁe,x − Me,xxx Ṁe

] |∂Bk∪∂Bd . (12)
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The kinematic and dynamic boundary terms are indicated by ∂Bk and ∂Bd . The last line in Eq. (12) can be
rewritten as

[
Me,xx Ṁe,x − Me,xxx Ṁe

] |∂Bk∪∂Bd

= [
Me,xx

(
Q̇ f + Q̇c − Q̇d

) − Me,xxx
(
Ṁ f + Ṁc − Ṁd

)]∣∣
∂Bd

+ Ṁe,x
(
mẅ − b − Md,xx

) − Ṁe
(
mẅ,x − b,x − Md,xxx

)∣∣
∂Bk

. (13)

The time derivative of the error integral İM(t) vanishes, if the integrand vanishes in Eq. (12), i.e. a condition
for the eigencurvature κc(x, t) (=the control input) is obtained from the first term on the right-hand side:

κ̈c = − 1

m

(
b + Md,xx

)
,xx − 1

KM
M̈d . (14)

Time integration of the control input condition (14) yields

κc =
∫∫ [

− 1

m

(
b + Md,xx

)
,xx

]
dt dt − 1

KM
Md + K1(x)t + K0(x). (15)

The determination of the functions K1(x) and K0(x) is discussed in Sect. 3.2.
According to Eq. (13), the following relationsmust hold at the geometric (kinematic) ∂Bk and/or the natural

(dynamic) ∂Bd boundaries

∂Bd : Ṁc = −Ṁ f + Ṁd , (16)

Ṁc,x = Q̇c = −Q̇ f + Q̇d , (17)

∂Bk : ẅc = −ẅ f + 1

m

(
b + Md,xx

)
, (18)

ẅc,x = −ẅ f,x + 1

m

(
b,x + Md,xxx

)
. (19)

3.2 Second step: show that IM(0) = 0

Satisfying the conditions (16)–(19) and (14) yields that the error integral (9) remains constant, i.e. if one knows
its value at the beginning, then the value is known for all times: IM(t) = IM(0).

Substituting Eqs. (8) and (2) into the error integral (9), one finds

IM(0) =
∫

x

KM
[−KM

(
w f,xxxx + wc,xxxx + κc,xx

) − Md,xx
]2 dx

+
∫

x

m
[−KM

(
ẇ f,xx + ẇc,xx + κ̇c

) − Ṁd
]2

dx . (20)

The square brackets represent Me,xx (x, 0) and Ṁe(x, 0), see Eq. (8). The condition IM(0) = 0 is only fulfilled
if the error moment is a linear function in x , i.e. Me(x, t) = a + bx . Since the goal is to nullify the error
bending moment Me(x, t) = 0 (which is a stricter condition than demanding Me,xx (x, 0) = Ṁe(x, 0) = 0),
the coefficients a and b have to disappear. This is achieved by adjusting the initial control input in such a
manner that the following relations are satisfied:

t = 0 : Me(x, 0) = 0 → KMwc,xx (x, 0) + KMκc(x, 0)

= −KMw f,xx (x, 0) − Md(x, 0), (21)

Ṁe(x, 0) = 0 → KMẇc,xx (x, 0) + KMκ̇c(x, 0)

= −KMẇ f,xx (x, 0) − Ṁd(x, 0). (22)

These two equations are used to compute the x-dependent functions K1(x) and K0(x) in Eq. (15) for the
eigencurvature κc(x, t), because the initial conditions of the deflection w(x, 0), ẇ(x, 0), the desired bending
moment Md(x, 0) and the external loading b(x, 0) are known at the beginning.
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3.3 Analytical solution of the deflection in case of bending moment tracking

Inserting the eigencurvature solution (15) into the equations of motion (4), the analytical solution for the
displacement is

w(x, t) =
∫∫

1

m

[
b(x, t) + Md,xx (x, t)

]
dt dt −

∫∫
[K1(x)t + K0(x)] dx dx . (23)

It can be easily checked that Eq. (23) satisfies

– the equation of motion Eq. (4),
– the kinematic and dynamic boundary conditions Eqs. (16)–(19) and
– the initial conditions Eqs. (21)–(22).

4 Example: bending moment control of a support-excited cantilever

In this section, the theory for bending moment control is validated with a simple example: a piezoelectric beam
is considered, whose vertical motion is prescribed at the left end w(x, t) = wp(t) (see Fig. 1a). An external
load is not present, b(x, t) = 0. The parameters for the piezoelectric bimorph are listed in Table 1.

The desired bending moment is assumed to be

Md(x, t) = mẅp(t)g(x), (24)

where the spatial function g(x) (see Fig. 1b) is taken as

g(x) =
(

− x̄

3
+ x̄2

2
− x̄4

6

)
l2 and x̄ = x

l
. (25)

(a) (b)

Fig. 1 Support-excited piezoelectric cantilever (a); spatial distribution g(x) of the desired bendingmoment Md (x, t), see Eq. (24)
(b)

Table 1 Parameters for the numerical examples

Variable Unit Value Description

ρ kgm−3 7750 Density
h m 1.00 × 10−3 Thickness (of each layer)
b m 5.00 × 10−2 Width
e31 Asm−2 −10.43 Piezoelectric modulus
C Nm−2 6.10 × 1010 Young’s modulus
κ33 AsV−1m−1 1.33 × 10−8 Strain-free permittivity
l m 0.1 Length
d – 0.001 Modal damping (of each mode)

KM =
(

2
3C + e231

6κ33

)
h3b Nm2 2.10 Length

m = 2ρhb kgm−1 0.775 Mass density per unit length
w0 m 0.0001 Amplitude of prescribed boundary excitation
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This means that the maximum value of bending moment will occur at xmax ≈ 0.0366m, where the function
has its maximum |g(xmax)| = 5.8 × 10−4m2. At the free end at x = l, the dynamic boundary condition with
the control method is automatically fulfilled, see Eqs. (16), (17), (24) and (25):

Ṁd(l, t) = 0 (26)

Q̇d(l, t) = 0. (27)

For the vertically excited end, the desired bending moment is related to the transient excitation and thus cannot
be chosen arbitrarily due to the kinematic boundary conditions in Eqs. (18) and (19). At x = 0, the following
relations hold:

ẅ(0, t) = 1

m
Md,xx (0, t) = ẅp(t)︸ ︷︷ ︸

with Eqs. (24) and (25)

, (28)

ẅ,x (0, t) = 1

m
Md,xxx (0, t) = 0︸︷︷︸

with Eqs. (24) and (25)

. (29)

First, a harmonic analysis (Sect. 4.2) is performed and then the transient excitation is assumed to be
sinusoidal with wp(t) = w0 [1 − cos (ωt)] (Sect. 4.3).

The following four notations are used for the uncontrolled and controlled configurations, which are simu-
lated:

1. No control The control eigencurvature is zero:

κc(x, t) = 0. (30)

2. Bending moment control The eigencurvature is chosen according to Eq. (15):

κc(x, t) = 4

l2
wp(t) − m

KM
l2

(
− x̄

3
+ x̄2

2
− x̄4

6

)
ẅp(t). (31)

Note that the functions K0(x) and K1(x) will vanish if one assumes the beam to rest at the beginning
w(x, 0) = ẇ(x, 0) = 0, see Eqs. (15), (21) and (22)

3. Bending moment control with the static term only The second time derivative in Eq. (31) is neglected:

κc(x, t) = 4

l2
wp(t) (control static). (32)

4. Bending moment control with the dynamic term only The first term in Eq. (31) is neglected:

κc(x, t) = − m

KM
l2

(
− x̄

3
+ x̄2

2
− x̄4

6

)
ẅp(t) (control dynamic). (33)

Since damping is considered (modal damping of 0.1% for eachmode is assumed), the beamproblem is solved by
means of numerical methods, where the beam is discretized into 50 finite elements. The interpolation functions
for each element areHermite ansatz functions, see also Schoeftner andBuchberger [31]. The analytical solution
of the displacement in case of bending moment control is given in Eq. (23) for the undamped configuration.
For the example, the analytical displacement reads

w(x, t) = (
1 − 2x̄2

)
wp(t), (34)

see Eq. (23). Defining the relative displacement as the difference of the absolute displacement and the boundary
excitation, one finds

wrel(x, t) = −2x̄2wp(t). (35)

It is noted that damping is neglected in analytical solution (34), but since the modal damping coefficient is
low, it is expected that the numerical and analytical solutions hardly will differ. In order to check the results,
one may insert the analytical solution for displacement (34) and for eigencurvature (31) into the constitutive
relation on beam level (2) and obtains the desired bending moment distribution, cf. (24) and (25).
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4.1 Axial stress distribution in case of bending moment control

As was pointed out in the introduction, the local stress is responsible for the collapse of structures. In this
section, it is shown that the maximum stress is also reduced if the bendingmoment control technique is applied.
The axial stress σxx (x, z, t) requires the knowledge of the second derivative of the displacement w,xx and the
electric field Ez(x, t):

σxx (x, z, t) = −Czw,xx (x, t) − e31Ez(x, t). (36)

By means of the relations for piezoelectric beams given, e.g. in Schoeftner et al. [23,30], the stress can be
calculated as follows: the electric field is related to the z-derivative of the electric potential φ(x, z, t),

Ez(x, t) = −φ,z(x, z, t), (37)

and the potential depends on the electric voltage across the electrodes:

φ(x, z, t) = ±V (x, t)

h
z + e31

κ33

(
±h

2
z − z2

2

)
w,xx (x, t). (38)

The plus sign corresponds to the lower layer (0 ≤ z ≤ h), whereas the minus sign corresponds to the upper
layer (−h ≤ z < 0). Combining the eigencurvature solution (31) with (3), the actuation voltage is obtained as

V (x, t) = − KM

e31hb

[
4

l2
wp(t) − m

KM
l2

(
− x̄

3
+ x̄2

2
− x̄4

6

)
ẅp(t)

]
. (39)

Inserting Eqs. (34), (37)–(39) into (36), one finds for the axial stress

σxx (x, z, t) = 4

l2
wp(t)

[

Cz − e231
κ33

(
±h

2
− z

)
∓ KM

h2b

]

± ml2

h2b

(
− x̄

3
+ x̄2

2
− x̄4

6

)
ẅp(t). (40)

Substituting for the bending stiffness KM =
(

2
3C + e231

6κ33

)
h3b (see Table 1) and transforming the result into

the frequency domain (indicated by the hat-symbol σ̂xx ), one finds the axial stress for the lower and the upper
layer

σ̂xx (x, z, ω) =

⎡

⎢⎢
⎢⎢
⎣

4

l2

(

C + e231
κ33

)(
z ∓ 2

3
h

)
∓ ml2

h2b

(
− x̄

3
+ x̄2

2
− x̄4

6

)

︸ ︷︷ ︸
=g(x)/ l2, see Eq. (25)

ω2

⎤

⎥⎥
⎥⎥
⎦

ŵp. (41)

Taking into consideration that the function g(x) is negative (see Fig. 1b and assuming ŵp > 0), the maximal
tensile stress σ̂xx > 0 for the lower layer occurs at z = h:

σ̂xx,max(x, ω) = σ̂xx (x, h, ω)

=
[
4h

3l2

(

C + e231
κ33

)

− ml2

h2b

(
− x̄

3
+ x̄2

2
− x̄4

6

)
ω2

]

ŵp, (42)

and for the upper layer at z = 0:

σ̂xx,max(x, ω) = σ̂xx (x, 0, ω)

=
[
8h

3l2

(

C + e231
κ33

)

+ ml2

h2b

(
− x̄

3
+ x̄2

2
− x̄4

6

)
ω2

]

ŵp. (43)
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One observes that in the lower frequency domain (i.e. ω or f is small), the maximum tensile stress occurs in
the upper layer at x = 0 and it reads

ω is small : σ̂xx,max(x = 0, ω) = 8h

3l2

(

C + e231
κ33

)

ŵp. (44)

In the higher frequency domain (i.e. ω or f is large), the maximum tensile stress occurs in the lower layer at
x = xmax and is proportional to the square of the frequency

ω is large : σ̂xx,max(x = xmax, ω) ≈ m

h2b
|g(xmax)|ω2ŵp. (45)

Comparing the order of magnitudes of the frequency-dependent and frequency-independent terms in Eqs. (42)
and (43), one may derive the following characteristic frequency, called the limit frequency:

f + ≈ 1

2π

√√
√√
√

2h2
(
C + e231

κ33

)

3l2|g(xmax)|ρ ≈ 161Hz. (46)

If the excitation frequency is below this limit, the maximum tensile stress is close to Eq. (44). If it is higher,
then it is close to Eq. (45), see Fig. 2c.

4.2 Frequency response curves

Figures 2 and 3 show the frequency responses of

– The relative displacement ŵrel(l) (Figs. 2a and 3a),
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Fig. 2 Frequency response functions of the uncontrolled Eq. (30) and controlled configurations Eq. (31) (relative displacement
ŵrel(l) (a), bending moment M̂ at x = 0.366l (b), maximum tensile stress σ̂xx,max (c) and its location (d))
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ŵ
re
l(
l)

[m
]

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

f [Hz]

M̂
(0

. 3
66

l )
[N

m
]

0 100 200 300 400 500 600 700
0

2

4

6

8

10
x 10

7

f [Hz]

σ̂
x
x
,m

ax
[N

/m
2
]

0 100 200 300 400 500 600 700

0

0.02

0.04

0.06

0.08

0.1

f [Hz]

x
σ
m
ax

[m
]

no control

control-static (see Eq.(32))

control-dynamic (see Eq.(33))

a b

c d

relative displacement bending moment

maximum stress location of
maximum stress

limit tensile stress

1.454 Nm @ 93.6 Hz

0.185 Nm @ 93.6 Hz

1.09·107 N/m2

8.55·107 N/m2

Fig. 3 Frequency response functions of the controlled configurations (control-static Eq. (32) and control-dynamic Eq. (33))
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– The bending moment M̂(0.366 l) (Figs. 2b and 3b),
– The maximum axial stress σ̂xx,max (Figs. 2c and 3c) and
– The location of the maximum stress xσmax (Figs. 2d and 3d),

when the amplitude of the boundary excitation is ŵp = 0.0001m. First, the results obtained by the bending
moment control (Eq. (31)) are compared to the uncontrolled results (Eq. (30)), see Fig. 2. Then the two
alternative control methods (bending moment control with the static (Eq. (32)) or dynamic term only (Eq. (33))
are compared in Fig. 3.

In Fig. 2a, one recognizes the fundamental eigenfrequency f1 = 93.6Hz and the second eigenfrequency
f2 = 586.7Hz for the uncontrolled configuration (blue). The result for the bending moment (finite element
discretization of the controlled case—red) is in very good agreement to the analytical solution (black when no
damping is considered): the relative displacement is ŵrel(l) = 0.0002m, see Eq. (35).

Figure 2b shows the bending moment at x = 0.366l. Close to the eigenfrequencies, the bending moment
is drastically reduced. The maximum bending moment for the uncontrolled case at f ≈ 93.6Hz is 1.28Nm
and reduced to 0.02Nm. One also observes that in the frequency domain the desired bending moment is a
quadratic function |M̂d(x, ω)| = ω2mŵpg(x), see also Eq. (24).

The maximum stress results are shown in Fig. 2c. For f < 161Hz (note this value corresponds to the limit
frequency value stated in Eq. (46)), the maximum value does not depend on the frequency and is constant
σ̂xx,max = 1.84 × 106 Nm−2 at x = 0m, see Eq. (44). This value is much lower than the limit tensile
stress for σlim = 2.5 × 107 Nm−2 (dash-dot black line), which is a typical mechanical strength value of PZT
ceramic material, see also [32]. For the uncontrolled case, the stress is σ̂xx,max ≈ 7.05× 107 Nm−2 at the first
eigenfrequency.

For higher frequencies, the stress also increases quadratically (see Eq. (45)) and the maximum stress
changes from location x = 0m to x ≈ 0.0366m at f = 161Hz, as shown in Fig. 2d. Within the shown
frequency range, the maximum stress does not exceed the stress limit, but due to the quadratic dependency on
the frequency, the stress cannot be kept below the maximum stress limit for high frequencies (i.e. f > 750Hz,
results not shown in Fig. 2c).
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0.029 Nm
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Fig. 4 Transient response due to the support excitation wp(t) = 0.0001 × [1 − cos(ωt)] (with f = 80Hz, close to first
eigenfrequency) for the uncontrolled Eq. (30) and the controlled configurations Eq. (31)–(33) (relative displacements shown in
(a, c and e), the bending moment shown in (b, d, f))

Figure 3 shows the results if only one of the two terms of the bendingmoment control solution is considered.
The case control-static (magenta and Eq. (32)) is quite interesting from a practical point of view, since no spatial
variation of the control voltage is required V (t) = −4KMwp(t)/(e31hbl2), see Eq. (39). A technological
advantageous possibility how to realize other distributions, which depend on the x-coordinate, is given in
Schoeftner et al. [22]. The results show that only in the lower frequency range, the bending moment and the
maximum stress are small: 0.185Nm is the bending moment and 1.09×107 N/m2 is the axial stress at the first
resonance. This value is half of the tensile stress limit (dash-dot black line). For the second eigenfrequency, the
stress even exceeds the stress limit. For the case control-dynamic (grey, Eq. (33)), the results around the first
eigenfrequency is similar to the uncontrolled case. Only the second mode of the stress is lowered; nevertheless,
the stress value is also higher than the allowable tensile stress. This method is not a suitable alternative for the
reduction of the bending moment or of the stress.

4.3 Transient harmonic response

Figure 4 shows the transient responses of the beam for wp(t) = w0 [1 − cos(ωt)]. The relative displacement
and the bendingmoments are shown for the uncontrolled and the three controlled configurations, see Eqs. (31)–
(33). The excitation frequency is f = 80Hz.

The stationary bending moment is reduced from 0.158Nm (uncontrolled-blue) to 0.011Nm (controlled-
red). It is noted that the suppression of the bending moment is much higher (−90%, Fig. 4b) than for the
deflection (−50%, Fig. 4b), when comparing the relative deflection and the bending moment. This shows that
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a very low bending moment does not necessarily yield very small deflections: the reduction of the deflection
and the bending moment are to two different tasks from a control engineering point of view.

Comparing the case control-staticwith the uncontrolled configuration, we observe also a significant reduc-
tion from 0.158Nm to 0.029Nm, see Fig. 4d.

As expected from Fig. 3b, the bending moment for the case control-dynamic (Fig. 4b) is hardly influenced
as long as f � f + ≈ 161Hz. The stationary amplitude is even slightly increased from 0.158Nm to 0.175Nm,
and a reduction can only be obtained around the second eigenfrequency (cf. Fig. 3b and f ≈ 585Hz).

5 Conclusion

In the present paper, an open loop control method is presented how to control the bending moment of beam
structures by eigencurvature actuation produced by the piezoelectric effect. It is shown that by manipulating
the actual bending moment, one can also control the axial stress, which is mainly responsible for the fracture
and fatigue of the material, if a certain stress limit is exceeded. After recalling the fundamental equations for
piezoelectric beams, a positive definite, time-dependent integral is defined, depending on the error bending
moment. The errormoment is the difference between the actualmoment and the desiredmoment.Bydemanding
the integral to be zero for all times, conditions for the eigencurvature are found, which also have to satisfy the
initial and the boundary conditions. This theory is verified by a simple example, a support-excited beam. The
required bending moment is achieved by means of a suitable eigencurvature actuation, which is a function of
place and time. Additionally, the maximum axial stress can be significantly decreased in comparison with the
uncontrolled support-excited beam.
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