
Acta Mech 227, 3101–3112 (2016)
DOI 10.1007/s00707-015-1541-x

ORIGINAL PAPER

Piotr Maria Przybylowicz · Zbigniew Starczewski ·
Piotr Korczak-Komorowski

Sensitivity of regions of irregular and chaotic vibrations
of an asymmetric rotor supported on journal bearings to
structural parameters

Received: 31 December 2014 / Revised: 17 April 2015 / Published online: 30 December 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Rotating elements supported on journal bearings are widely encountered structures in engineering
practice. Most commonly, these are asymmetrically manufactured and loaded rigid rotors transmitting torque
and carrying transverse aswell as axial forces. Nowadays, despite high operational demands and high rotational
velocities, such systems are still expected to exhibit stable working, even in the presence of small assembly
deviations, light unbalance or external disturbances. The surrounding environment of a rotating machine may
interact with it by kinematic excitation from vibrating foundation. This, in turn, may lead to hazardous response
and the onset of irregular and chaotic motion of the rotor. The subject of the study is to find and analyze regions
of the occurrence of such vibrations in the system of a rigid rotor supported in journal bearings. The bearings
themselves are assumed to be non-perfectly mounted in the housing, i.e., their sleeves are inserted in rings
possessing some viscoelastic properties. These properties are treated as variable parameters, and the aim
is to move the regions of irregular and chaotic vibration outside the operational regime (angular velocity).
The adjustability of the viscoelastic parameters may be realized by incorporation of smart materials such as
piezoelectric ormagnetorheological ones. The considered system is an asymmetric rigid rotor supported on two
journal bearings subject to a steady kinematic excitation. The system is described by eight coupled nonlinear
ordinary differential equations of motion. Results of the examinations prove that by selecting an appropriate
magnitude of damping and stiffness of the bearing mountings, it is possible to enlarge the region of stable
operation of the rotating system and thus secure its safety. This, however, does not mean the elimination of
chaotic response at all, but only a shift of it outside the range of operational rotation speed.

1 Introduction

Journal bearing systems keep their leadership among the most popular supporting elements being applied
to machines practically of any purpose and destination for decades. They are reliable supports of turbines,
generators, and engines.However, expectations of the industry becomemore andmore rigorous and demanding.
The bearings have to work stably in regions of continuously higher rotation speeds, and any appearances of
sudden jumps of vibration amplitude are inadmissible. In the literature, one comes across a variety of concepts
toward novel solutions that follow engineers’ and researchers’ visions of what can be done about stability
of journal bearings. Recently, much attention has been paid to passive, semi-active and active methods of
stabilization and reduction of vibration of rotating shafts. These methods often incorporate smart materials
and sophisticated control algorithms to accomplish the task. For instance, Bonneau et al. [5] employed an active
method based on piezoelectric elements introduced into a journal bearing system. The researchers examined
an adaptive bearing that consisted of a mobile housing mounted on piezoelectric actuators. Four piezoelectric
jacks made of lead zirconate titanate (PZT) or lead magnesium niobate (PMN) proved to yield strain ability
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of order of the oil gap thickness under shaft loading of 30 N and operating frequency 8 kHz. Piezoelectric
materials were also used by Przybyłowicz [18] who employed two contactless sensors which traced the current
state (position and velocity) of the journal center. The signal was transformed and transmitted to a pair of two
perpendicular piezoelectric jacks counteracting the current transverse movements of the rotor via direct driving
of the bearing movable sleeve. A very interesting concept of stabilizing journal bearing systems was proposed
by Kurnik [16]. The idea consisted in adding magnetic actuators to classical bearings. The actuators generated
an attractive force that, when appropriately driven, placed the journal in regions within the oil gap characterized
by safer operating conditions. It was shown that the stabilization efficiency had a maximum corresponding to
more than a double increase in the critical rotation speed at which the system lost its stability.

Journal bearings are highly nonlinear systems. Their properties in terms of the inherent nonlinearity have
been already investigated round the world since, at least, the seventies of the twentieth century. Holmes et al.
[14] examined self-excited transverse vibration of a two-rotor four-bearing system subjected to misalignment
of the supporting bearings. They presented theoretical considerations enabling one to obtain limit cycles which
were in agreement with the vibration observed on large turbogenerators. A nonlinear response of a journal
bearing being close to the loss of stability was discussed by Hollis and Taylor [13] who analytically determined
the critical rotation speed using linear stability theory. They predicted that supercritical limit cycles can only
exist within a narrow range of the Sommerfeld number, and in other cases, subcritical bifurcation should be
expected. The results were also confirmed by numerical simulations. Brindley et al. [6] discussed the problem
of free vibration of a rigid rotor supported by a short bearing oil film. The authors showed the existence of Hopf
bifurcations at operating conditions close to the stability threshold and indicated that the presence of rotating
unbalance may lead to even more complex dynamical behavior of the rotor. This indication was elaborated
on by Brown et al. [7] who examined a simple model of a rigid rotor hydrodynamically supported by journal
bearings. The researchers observed that the system starts to exhibit chaotic motion when the rotating unbalance
exceeds the gravitational load. They made use of short bearing theory and found a fractal dimension of 2.15 in
the obtained Poincaré plots. The required order of the unbalance was only an order of magnitude larger than the
technologically acceptable level, thus achievable in the engineering practice. A symmetric rotor system with
suitably selected ratio between the transverse and polar mass moments of inertia so as to avoid conical modes
of vibration was studied by Adiletta et al. [2]. They confirmed numerically the onset of chaos for moderate
values of the rotor unbalance. Chaotic dynamics of short oil film bearings was also discussed by Brown et al.
[8].

In the recent past, incorporation of tilting-pad journal bearings to rotating machinery has increased because
of their stabilizing influence on rotor-bearing systems. Yet in some operational regimes they may lead to sub-
harmonic or even chaotic motion due to strongly nonlinear dynamics of such bearings [1]. Efforts to regulate
the orbit of a rotating shaft supported on an active tilting-pad journal bearing were presented by Deckler et al.
[11] who installed linear actuators with a feedback system controlling radial motion of the pads in real time.

Fundamental phenomena related to physics of flows in the lubricant itself have been investigated as well.
The mixing in quasi-steady Stokes flows with slowly varying saddle stagnation points leading to large-scale
chaos was analyzed by Kaper and Wiggins [15], whereas laminar mixing in two-dimensional time-periodic
Stokes flows between eccentric cylinders was discussed by Galaktionov et al. [12].

Dynamic behavior of a rotor-bearing system consisting of a nonlinear support, linear damping, and a
nonlinear elastic restoring force was investigated by Chang-Jian and Chen [9]. The authors assumed a turbulent
lubricant flow model in the bearing and use the Runge–Kutta method for solving the differential equations
of motion. They observed 2T-periodic, quasi-periodic and chaotic motions in the dynamical response of
the system. In the last decade, researchers focused also on the problem of self-excited vibration of rotors
supported by oil film bearings with the gyroscopic effect taken into account. Avramov and Borysiuk [4]
considered an asymmetrical single-disk rotor exposed to hydrodynamical forces from journal bearings and
observed that such interaction might lead to high-amplitude orbits of the rotor near criticality. Recently, Shi
et al. [19] presented a sophisticated method based on Wolf and Rosenstein algorithms for detecting chaotic
motion in rotor-bearing systems. The method incorporated phase space portraits together with the largest
Lyapunov exponent and introduced a correlation integral function to trace the chaotic response accurately. The
effect of application of nonlinear damping suspension to a rotor-bearing system in order to vibro-insulate the
machine from environment was examined by Yan et al. [21]. It occurred that the nonlinearity of the suspension
considerably influences the stability of the examined system depending on the kind of damping (linear, square
or cubic) as it enlarges or reduces the range of stable operation of the rotor-bearing system. Depending on
the bearing characteristics, Amamou and Chouchane [3] acknowledged that the stability threshold may occur
either at a supercritical or at a subcritical Hopf bifurcation. Possible jumping from the equilibrium position of
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the rotor to a large limit cycle as well as the hysteresis phenomenon during variation of the rotor speed near
criticality was confirmed in their study.

2 Considered system

A mechanical system whose main part is a rigid rotor of the entire mass m spinning with an angular velocity
ω is analyzed in this work. The rotor is asymmetrically loaded with an external transverse force Q applied at
a distance a and b from the left and right bearing, respectively. The rotor is supported on two journal bearings
filled up with a lubricant. The plane model of the oil bearings is assumed. The bearing sleeves are not perfectly
mounted to the rotor housing. They are attached to the rigid fundament through linearly viscoelastic elements
characterized by the stiffnesses k1 and k2 for the left and right bearing as well as damping coefficients c1 and
c2. The sleeves have masses m1 and m2, respectively. The entire length of the shaft is a + b = L . The system
is shown in Fig. 1.

Additionally, the whole system is exposed to external kinematic excitation, i.e., motion of the fundament
(floor) it is resting on. Suchmotion may be induced by operation of a neighboring rotating machine undergoing
some unbalance. Forces transmitted through the common floor lead to some independent motion of the system
under consideration. It can be treated as kind of a kinematic excitation applied to the rotor casing. In further
analysis, it will be modeled as a quasi-static sinusoidal motion of amplitude A and frequency ν applied
synchronously to both supports.

It is worth mentioning at this moment that a similar problem of dynamics of a rotor mounted on hydro-
dynamic journal bearings subject to movement of the rigid supports due to seismic excitation was examined
by Dakel et al. [10]. The authors proved that the rotor asymmetry and motions of the support generate time-
varying parametric terms in the equations of motion which can lead to lateral dynamic instability. To support
their conclusion, the researchers presented and discussed time history responses, orbits of the journal, Fourier
transforms, bifurcation diagrams, and Poincaré maps.

Derive now equations of motion of the investigated system. Let the momentum and angular momentum
laws be used for this purpose:

dB
dt

= F, (1.1)

dKC

dt
= MC (1.2)

where the momentum B is B = mvC = m[ẏC , żC ]T and the angular momentumKC = ICω, where IC denotes
the tensor ofmassmoments of inertia andω the angular velocity vector. The coordinates describing the position
of the gravity center of the rotor are shown in Fig. 2:

yC = y1 + a
y2 − y1
a + b

, zC = z1 + a
z2 − z1
a + b

. (2)

Fig. 1 The analyzed system: a rigid rotor supported on two oil film bearings with viscoelastically mounted sleeves
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Fig. 2 Basic geometrical parameters describing the position of the rotor in arbitrary operational conditions

Fig. 3 Hydrodynamical and external forces acting on the rigid rotor

Introducing (2) into the Eq. (1.1), one obtains:

m

a + b
(ÿ1b + ÿ2a) = Fy1 + Fy2,

m

a + b
(z̈1b + z̈2a) = Fz1 + Fz2 + Q (3)

where the forces Fy1, Fz1, Fy2, Fz2 are components of the hydrodynamic forces coming from the lubricant,
see Fig. 3.

Let us find now an explicit relationship for the angular momentum making use of the angular velocity
vector ω, which is, according to Fig. 2,

ωx ≈ ω, ωy = ż2 − ż1
a + b

+ ω sin γ, ωz = ẏ1 − ẏ2
a + b

+ ω sin β (4)

where

sin γ = y2 − y1
a + b

, sin β = z2 − z1
a + b

(5)

and determining all elements of the inertia tensor IC expressed in the moving coordinate system attached to
the gravity center C of the rotor with the axes parallel to the fixed coordinate system. Let ξ, η, ζ denote the
principal axes of the rotor (see Fig. 2). By transforming the tensor IC from the principal coordinate system
Cξηζ into the system Cxyz via the known formula

I (x,y,x)
kl =

3∑

i=1

3∑

j=1

I (ξ,η,ζ )
i j cos �

(
e(x,y,z)
k , e(ξ,η,ζ )

i

)
cos �

(
e(x,y,z)
l , e(ξ,η,ζ )

j

)
(6)

where e(x,y,z)
i and e(ξ,η,ζ )

i , i = 1, 2, 3 are unit vectors of the axes in theCξηζ andCxyz systems, respectively,
one finally gets:

Ixy ≈ (I2 − I1) sin γ, Iyz ≈ (I2 − I1) sin β (7)
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where I1 stands for the mass moment of inertia relative to the symmetry axis of the rotor, and I2 for the
moment relative to the other principal axes: I1 = I (ξ,η,ζ )

11 = Iξξ = Iξ , I2 = I (ξ,η,ζ )
22 = Iηη = Iη and also

I2 = I (ξ,η,ζ )
33 = Iζ ζ = Iζ . Having the above set forth, one concludes:

KC = ICω =
⎛

⎝
Ix −Ixy −Ixz

−Iyx Iy −Iyz
−Izx −Izy −Iz

⎞

⎠

⎛

⎝
ωx
ωy
ωz

⎞

⎠ =
⎛

⎝
I1ω

I2
ż2−ż1
L − I1ω

y2−y1
L

I2
ẏ1−ẏ2
L − I1ω

z2−z1
L

⎞

⎠ . (8)

The above result (8) holds if the rate of lateral motion of the rotor is negligible with regard to the spin ω, i.e.,
when Iyzωy ≈ 0 and Iyzωz ≈ 0. Differentiating (8) with respect to time, one equals the result with the moment
of forces as stated by the angular momentum law, see Eq. (1.2). This yields:

I2
a + b

(ÿ1 − ÿ2) + ω
I1

a + b
(z̈1 − z̈2) = Fy1a − Fy1b,

I2
a + b

(z̈2 − z̈1) − ω
I1

a + b
(ÿ2 − ÿ1) = −Fz1a + Fz2b, (9)

which, together with Eqs. (3), constitute the set of four governing equations of the rotor. Solving (3) and (9)
with respect to accelerations ÿ1, z̈1, ÿ2 and z̈2, one finally arrives at:

ÿ1 = I1
I2

a

a + b
ω(ż2 − ż1) +

(
1

m
+ a2

I2

)
Fy1 +

(
1

m
− ab

I2

)
Fy2,

z̈1 = I1
I2

a

a + b
ω(ẏ1 − ẏ2) +

(
1

m
+ a2

I2

)
Fz1 +

(
1

m
− ab

I2

)
Fz2 + Q

m

a

a + b
,

ÿ2 = I1
I2

b

a + b
ω(ż1 − ż2) +

(
1

m
− ab

I2

)
Fy1 +

(
1

m
+ b2

I2

)
Fy2,

z̈2 = I1
I2

b

a + b
ω(ẏ2 − ẏ1) +

(
1

m
− ab

I2

)
Fz1 +

(
1

m
+ b2

I2

)
Fz2 + Q

m

b

a + b
, (10)

The explicit forms of Fy1, Fz1, Fy2, Fz2 are derived in the following Section.
Obviously, the whole system has eight degrees of freedom. Elastically mounted bearing sleeves contribute

to the entire system dynamics by introducing four additional dofs and kinematic excitation, see Fig. 4.
The corresponding equations of motion of the i-th sleeve in both transverse directions are:

mi ÿsi + ci ẏsi + ki ysi = −Fyi ,

mi z̈si + ci żsi + ki zsi = A(ciν cos νt + ki sin νt) − Fzi . (11)

i = 1, 2,where ysi and zsi are transverse displacements of the i-th sleeve in the y and z direction, respectively, A
is the amplitude of kinematic, excitation and ν is its frequency. Isotropic properties of the viscoelastic mounting
of the sleeves are assumed: cyi = czi = ci and kyi = kzi = ki . Fyi and Fzi are of course hydrodynamic forces
from the lubricant.

Fig. 4 A single journal bearing sleeve subject to sinusoidal kinematic excitation in the vertical direction z
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Fig. 5 Hydrodynamic uplift forces acting on the journal

Fig. 6 Components of motion of the journal with respect to the bearing sleeve

3 Hydrodynamic forces

Assume journal bearings in which the axial flow of the lubricant is neglected with respect to the circumferential
one. In such a case, hydrodynamic forces generated within the oil film can be explicitly determined by inte-
grating the pressure field calculated with the aid of the simplified Reynolds equation written for the dynamic
regime. Reynolds equation has the following form in the polar co-ordinates α−β for the plane (infinite length)
bearing:

∂

∂θ

[
H3 ∂

∂θ

(
p

μδ2

)]
− 6

(
ω

∂H

∂θ
+ 2

∂H

∂t

)
= 0 (12)

where θ is the current angular position with respect to circumferential is the position α of the journal θ = ϕ−α,
see Fig. 5, p is the oil pressure, μ is the dynamic viscosity of the lubricant, R is the journal radius, � is the
absolute bearing clearance, δ = �/R is the relative oil gap, H is the current thickness of the lubricating film:
H = �(1+β cos θ), β is the relative eccentricity of the journal center,ω is the angular velocity of the journal,
t is time.

Neglecting the inertia forces of the lubricating medium and simplifying that the flow is isothermal, and
then taking into consideration all components of the journal bearing motion, i.e., rotation around its own axis
(ω), precession around the bearing axis (α̇)—corresponding to the wedge effect, and radial motion (β̇)—
corresponding to the squeeze effect, see Fig. 6, one can determine the hydrodynamic forces acting in the radial
(β) and circumferential (α) direction via double integration of (12).

For the i-th bearing, these forces are found to be [16,17]:

Fβi = −12μi Ri Li

�2
i

⎡

⎣ β2
i (ω − 2α̇i )

(1 − β2
i )(2 + β2

i )
+ βi β̇i

1 − β2
i

+ 2β̇i√
(1 − β2

i )
3
arctg

√
1 + βi

1 − βi

⎤

⎦ ,

Fαi = 6πμi Ri Li

�2
i

βi (ω − 2α̇i )√
(1 − β2

i )(2 + β2
i )

(13)

where Li denotes the length of the i th journal. Equation (13) is valid provided that the oil film exists in the
region (0, π) for the wedge effect, and in (−π/2, π/2) for the squeeze one. Such restrictions are known
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as Gümbel’s boundary conditions. For further convenience, the above expressions are then transformed into
relationships described in the Cartesian coordinates. Having already introduced the horizontal and vertical
displacement of the i th bearing yi and zi , respectively, which are related with the polar coordinates by the
formula:

βi = 1

�i

√
Y 2
i + Z2

i and αi = arctan
Zi

Yi
, (14)

one obtains:

Fαi (Yi , Ẏi , Zi , Żi ) = 6πμR3L[ω(Y 2
i + Z2

i ) + 2(Ẏi Zi − Yi Żi )]
(2�2 + Y 2

i + Z2
i )

√
Y 2
i + Z2

i

√
�2 − Y 2

i − Z2
i

, (15)

Fβi (Yi , Ẏi , Zi , Żi ) = −12πμR3L

⎧
⎪⎪⎨

⎪⎪⎩

Yi Ẏi + Zi Żi

�2(�2 − Y 2
i − z2i )

− ω(Y 2
i + Z2

i ) − 2(Ẏi Zi − Yi Żi )

(2�2 + Y 2
i + Z2

i )(�
2 − Y 2

i − Z2
i )

+ 2
Yi Ẏi + Zi Żi√

Y 2
i + Z2

i

√
(�2 − Y 2

i − Z2
i )

3
arctan

√√√√√√
� +

√
Y 2
i + Z2

i

� −
√
Y 2
i + Z2

i

⎫
⎪⎪⎬

⎪⎪⎭
(16)

where, additionally, it has been simplified that all geometrical and material parameters of both bearings (clear-
ances, lengths, radii, oil viscosities) are the same. In the above equations, Yi and Zi are relative displacements
of the journal centers:

Yi = yi − ysi , Zi = zi − zsi (17)

while yi and zi are absolute displacements of the journal centers, ysi , and zis, of the sleeves. At the end, let us
finally write down the expressions for forces appearing in the equations of motion (10). They are as follows:

Fyi = Fβi cosαi − Fαi sin αi ,

Fzi = Fβi sin αi + Fαi cosαi (18)

where
sin αi = zi√

y2i + z2i

, cosαi = yi√
y2i + z2i

. (19)

Now the complete system of eight equations of motion—four (10) with supporting (14–19) and the other four
(11) containing kinematic excitation- has been determined. It is a basis for further numerical exploration.

4 Results of numerical analysis

The derived equations of motion are strongly coupled, highly nonlinear and very large in volume. To the
best of the authors’ knowledge, an exact analytical solution to them probably does not exist at all; however,
known are analytical approximations describing near-critical behavior found from Hopf’s bifurcation theory.
In this paper, only a numerical study has been carried out by making direct use of the Runge-Kutta method
of the fourth order. The main aim has been to determine bifurcation diagrams of transverse displacements of
the journal bearing centers of both rotor ends as functions of the applied amplitude of kinematic excitation.
Bifurcation diagrams are the easiest way to distinguish between regions of regular (periodic) and irregular
(including chaotic) response of the system. The amplitude variation ranged from 0 up to 8 × 10−4 m. It has
been assumed that the kinematic excitation comes from a similar machine operating within similar conditions
(e.g., a twin generator) and goes through a common fundament to the rotor system considered. The excitation
frequency has been kept constant at ν = 360 rad/s, which corresponds to the angular velocity of the analyzed
system. Three cases of the bearing sleeves mounting the rotor housing have been taken into account—very
stiff (which could be regarded as almost perfectly rigid) having the elasticity coefficient of k = 1010 N/m,
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Fig. 7 Bifurcation diagram of vibration amplitudes of both bearings for a fully symmetric system (a = b = 0.5l) and different
stiffnesses of the elastic mounting of the sleeves: a k1 = k2 = 1010 N/m, b k1 = k2 = 108 N/m, c k1 = k2 = 106 N/m

Fig. 8 Bifurcation diagram of vibration amplitudes of both bearings (1— left bearing, 2—right one) for a strongly asymmetric
system (a = 0.2l, b = 0.8l) and high stiffnesses of the elastic mounting k1 = k2 = 1010 N/m

moderate (intermediate) with k = 108 N/m, and quite soft with k = 106 N/m. The degree of asymmetry
varied from zero (a = b = 0.5l) up to strong deviation of the point of application of transverse load by 90%
(a = 0.2l, b = 0.8l). Apart from bifurcation diagrams, Poincaré sections and, in some cases, phase portraits
together with Fourier spectra have been determined. The values of main parameters of the rotor-bearing system
used in the simulations are the following: rotor length l = a + b = 1 m, journal radius R = 0.1 m, journal
length L = 0.1 m, bearing clearance � = 1 × 10−5 m, absolute viscosity of the lubricant μ = 0.319 Ns/m2,
angular velocity of the rotor ω = 360 rad/s.

In the following Figures, D stands for the displacement of the given journal center: Di =
√
y2i + z2i , V

stands for the velocity in the respective direction: Vi =
√
ẏ2i + ż2i , i = 1, 2.

In Fig. 7, bifurcation diagrams for a fully symmetric system are presented. It is clearly seen that almost
perfect mounting of the bearing sleeves leads to chaotic vibration of the rotor within a certain region of the
excitation amplitude (from 4×10−4 to 7×10−4 m). Evidently seen is the area of smooth oscillatory behavior
of the rotor as equally clear are the areas in which the system undergoes sudden bifurcations resulting in
chaotic response. Such a situation preserves until the excitation amplitude exceeds another threshold above
which the dynamics becomes smooth again. More elastic mounting slightly enlarges the chaotic zone toward
larger amplitudes, but deteriorates the irregularity at the end of it. Yet it occurs that soft mounting of the sleeves
eliminates chaos completely. A similar scenario is observed in both bearings for a strongly asymmetric system,
see Figs. 8, 9 and 10.

The effect of stiffness in the bearing sleeve-rotor housing connection on kind of the dynamic response of the
symmetric system is presented in Figs. 11, 12 and 13. Three types of diagrams are shown in that case: phase
trajectories (Fig. 11), Fourier spectra (Fig. 12), and Poincaré maps corresponding to the above trajectories
(Fig. 13).

In Fig. 14, Poincaré sections are the presented for some selected (increasing) amplitudes of the excitation
amplitude A = 3× 10−4, 5× 10−4 and 7× 10−4 m for a weakly asymmetric system and an almost perfectly
rigid mounting of the bearing sleeves to the rotor housing.

Figure 15 depicts maps for both the left and right bearing in the same conditions as in Fig. 14 but with more
elastic mounting of the sleeve (by two orders of magnitude). As can be seen, irregular motion stretches over
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Fig. 9 Bifurcation diagram of vibration amplitudes of both bearings (1—left bearing, 2—right one) for a strongly asymmetric
system (a = 0.2l, b = 0.8l) and moderate stiffnesses of the elastic mounting k1 = k2 = 108 N/m

Fig. 10 Bifurcation diagram of vibration amplitudes of both bearings (1—left bearing, 2—right one) for a strongly asymmetric
system (a = 0.2l, b = 0.8l) and low stiffnesses of the elastic mounting k1 = k2 = 106 N/m

Fig. 11 Phase trajectories of both journal centers for a fully symmetric system (a = b = 0.5l) and different stiffnesses of the
elastic mounting of the sleeves: a k1 = k2 = 1010 N/m, b k1 = k2 = 108 N/m, c k1 = k2 = 106 N/m. Amplitude of kinematic
excitation: A = 5 × 10−4 m, angular frequency ν = 360 rad/s

Fig. 12 Fouriers spectra of the vibration amplitude of both journal centers for a fully symmetric system and different stiffnesses
of the elastic mounting of the sleeves: a k1 = k2 = 1010 N/m, b k1 = k2 = 108 N/m, c k1 = k2 = 106 N/m. Amplitude of
kinematic excitation: A = 5 × 10−4 m, angular frequency ν = 360 rad/s
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Fig. 13 Poincare maps of motion of both journal centers for a fully symmetric system and different stiffnesses of the elastic
mounting of the sleeves: a k1 = k2 = 1010 N/m, b k1 = k2 = 108 N/m, c k1 = k2 = 106 N/m. Amplitude of kinematic
excitation: A = 5 × 10−4 m, angular frequency ν = 360 rad/s

Fig. 14 Poincare maps for trajectories of the right bearing for various amplitudes of kinematic excitation: a A = 3 × 10−4 m, b
A = 5×10−4 m, c A = 7×10−4 m.Very rigidmounting of the sleeve (k2 = 1010 N/m) andweak asymmetry (a = 0.4l, b = 0.6l)

Fig. 15 Poincare maps for trajectories of the left bearing (upper row) and right bearing (lower row) for various amplitudes of
kinematic excitation: a A = 3 × 10−4 m, b A = 5 × 10−4 m, c A = 7 × 10−4 m. Moderately stiff mounting of the sleeve
(k1 = k2 = 108 N/m) and weak asymmetry (a = 0.4l, b = 0.6l)

the entire analyzed region of the amplitude variation. At A = 3× 10−4, structures resembling typical strange
attractors are noticeable (Fig. 15a), which may be an indirect prove of the presence of chaos in the system.

As expected, low stiffness of the sleeve-housing joining element brings no aperiodic response of the rotor
and no matter the system is weakly asymmetrical (Fig. 16) or strongly asymmetrical (Fig. 17), see the small
squares in the Poincaré maps (one-periodic vibration).

But again, almost perfect attachment of the journal bearings and their sleeves to the machine housing may
lead to irregular (possibly chaotic) motion of the system, see Fig. 18b.
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Fig. 16 Poincare maps for trajectories of the right bearing for various amplitudes of kinematic excitation: a A = 3 × 10−4 m, b
A = 5× 10−4 m, c A = 7× 10−4 m. Elastic mounting of the sleeve (k2 = 106 N/m) and weak asymmetry (a = 0.4l, b = 0.6l)

Fig. 17 Poincare maps for trajectories of the left bearing for various amplitudes of kinematic excitation: a A = 3 × 10−4 m, b
A = 5 × 10−4 m, c A = 7 × 10−4 m. Soft mounting of the sleeve (k1 = 106 N/m) and strong asymmetry (a = 0.2l, b = 0.8l)

Fig. 18 Poincare maps for trajectories of the left bearing for various amplitudes of kinematic excitation: a A = 3 × 10−4 m, b
A = 5×10−4 m, c A = 7×10−4 m.Very stiffmounting of the sleeve (k1 = 1010 N/m) and strong asymmetry (a = 0.2l, b = 0.8l)

5 Concluding remarks

The carried out numerical analysis has confirmed that asymmetrically loaded rigid rotors supported on journal
bearings with flexibly mounted sleeves may exhibit irregular or even chaotic vibration when exposed to
kinematic excitation from the foundation. Such motion may be brought about by independent operation of a
neighboring rotating machine. The character of the observed chaos is purely deterministic and comes from
the nonlinearity of the considered system. Since all parameters defining the analyzed model are certain (non-
probabilistic), no Wiener chaos expansion, i.e., polynomial chaos, is expected in the system [20].

Two important parameters are especially vital for the rotor system to exhibit chaotic dynamics: the amplitude
of the excitation and the rigidity of the elastically mounted bearing sleeves. Crucial is the degree of asymmetry
of the applied load as well; however, the entire system is strongly sensitive to those two parameters: excitation
amplitude and mounting rigidity. The presence of damping in the sleeve joint is of minor importance. In
this study, it has been determined that more elastic connection between the sleeves and bearing housing may
entirely eliminate chaotic response within the whole region of variation of the excitation amplitude. It is then
possible, by appropriate selection of elasticity characteristics, to protect the rotor-bearing system from strange
and hazardous dynamical behavior already at the design stage. Obviously, it is only a passive approach to the
problem of chaos and cannot be understood in terms of control of any kind at all. The use of elastic rings
with too soft characteristic may prevent the rotor from irregular motion, but may occur inadvisable or even not
allowable because of purely operational reasons (poor load capacity, excessive resonance in transient states,
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etc.). Further research in this direction together with sensitivity studies is required. Another problem still to be
addressed is the appearance of irregular motions due to the rotor itself, i.e., coming from natural unbalance of
the system. Although the source of the disturbance may look similar to kinematic excitation, the results found
so far are not applicable to such a case.
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