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Abstract An analysis is presented to show how it is possible for unconsolidated granular packings to obey
overall non-Hertzian pressure dependence due to the imperfect and random spatial arrangements of the grains
in these packs. With imperfect arrangement, some gaps that remain between grains can be closed by strains
applied to the grain packing. As these gaps are closed, former rattler grains become jammed and new stress-
bearing contacts are created that increase the elastic stiffness of the packing. By allowing for such a mechanism,
detailed analytical expressions are obtained for increases in bulk modulus of a random packing of grains with
increasing stress and strain. Only isotropic stress and strain are considered in this analysis. The model is shown
to give a favorable fit to laboratory data on variations in bulk modulus due to variations in applied pressure for
bead packs.

1 Introduction

Unconsolidated sediments form an important class of earth materials because their large storage capacity
makes them ideal fluid reservoirs. They are therefore important as repositories for CO2, as oil reservoirs, and
as drinking water aquifers. Seismic monitoring of changes in these reservoirs as fluids are pumped into or out
of them is of importance to society. Furthermore, unconsolidated ocean-bottom sediments are important for
long-range sound propagation in the ocean, and, therefore, in marine acoustic studies of the seafloor.

One key to understanding these applications is knowledge of how moduli of the elastic framework change
as either the fluid pressure in the pores changes or the confining pressure acting on the grain pack (e.g., the
overburden pressure) changes. It is well established experimentally (e.g., [1,2]) that the elastic moduli of
grain packs are independent of the grain sizes. If all the grains in a pack are uniformly reduced or expanded
in a self-similar fashion, the elastic moduli will not change. Such scale-invariance means that incremental
changes in the elastic moduli will occur only if the effective-stress increment δP = δPc − αφδPf is non-zero
[3,4], where Pc is the confining pressure acting on the pack, Pf is the fluid pressure, and αφ is the porosity
effective-stress coefficient, which is unity if all the grains are made of the same material—as will be assumed
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here. Thus, the elastic moduli of grain packs under isotropic compression only depend on the effective stress
combination P = Pc − Pf .

Unconsolidated sediments have distinct properties compared to cemented sandstones. Perhaps chief among
them is that, when stress is applied to random grain packings, there develops a surprisingly complicated inter-
nal stress distribution that can be described either as “force chains” or “stress bridges” (e.g., [5–7]). Such
stress distributions can be visualized in photoelastic experiments using birefringent beads (either plastic or
glass). When the beads become stressed, light passing through them becomes polarized so images can be
made showing which beads in the packing support the greatest stress. In recent experiments of Majmudar and
Behringer [8], it is directly observed that even in the case of isotropic compression, the internal distribution of
stress is far from uniform and may be considered randomly oriented force chains, isotropically distributed in
all directions.

For random loose packing of grains, as many as 10% of the grains may be experiencing no stress whatsoever
at low strain levels [9]. Such grains are called “rattlers,” because there remains a certain degree of rattling room
between themselves and their immediate neighbors. As strain is applied to the packing, the grain-to-grain gap
size diminishes until individual rattlers finally become “jammed” and these new additions to the backbone
begin to accumulate stress. Modeling how the rattlers become jammed with increasing strain is important for
our understanding of the pressure dependence in the elastic properties of grain packs.

In the present article, we first briefly review the well-know discord between the Hertzian pressure depen-
dence of the elastic moduli (P1/3) and the pressure dependence often measured in laboratory experiments
(closer to P1/2). We then follow Goddard [10], and present two mechanisms for how rattlers become jammed
as a function of applied strain and show how to incorporate such mechanisms of gap closure into an analytical
model for the elastic moduli.

2 Hertzian contact mechanics versus measured pressure dependence of actual grain packs

Walton [11] derives compact analytical expressions for the drained moduli of grain packs based on Hertzian
contact mechanics [12] between spheres. The theory assumes that each sphere in the pack has a center that
is displacing according to the macroscopic strain field applied to the entire packing. Furthermore, the coordi-
nation number of stress-contributing contacts is not assumed to evolve with the changing applied strain. For
isotropic applied strain ε (defined positive in compression and such that 3ε corresponds to overall volumetric
strain), the Walton theory [11] predicts that the relation between the overall pressure in the pack P and strain
ε is

P = (1 − φ0)nw

3π2 Bw

ε3/2, (1)

where nw is the coordination number (average number of stress-bearing contacts per sphere), φ0 is the porosity
of the random packing at P = 0, and Bw is a compliance parameter, defined by

Bw = 1

4π

(
1

Gs
+ 1

Ks + Gs/3

)
, (2)

where Gs and Ks are the shear and bulk moduli, respectively, of the grain material. Equation (1) yields a bulk
modulus K given by

K ≡ dP

3dε
= 1

2

[
(1 − φ0)nw

3π2 Bw

]2/3

P1/3. (3)

The factor of three in the definition of the bulk modulus follows because of Walton defining ε to be three
times smaller (in 3D) than the total volumetric strain. Walton’s theory [11] thus predicts a P1/3 (or “Hertzian”)
pressure dependence for the bulk modulus of the drained frame.

The shear modulus in the Walton [11] model is given as

G = RK , (4)

where the parameter R takes on a value somewhere in the range

3

5
≤ R ≤ 18

5

(
Ks + Gs

3Ks + 2Gs

)
. (5)
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The lower limit corresponds to grains so smooth that frictionless tangential slip always occurs, which prevents
shear force from being transmitted at the contact. Similarly, the upper limit corresponds to grains so rough that
no slip occurs, resulting in the maximum transmitted shear at a contact.

Acoustic data collected on unconsolidated sand and glass bead packs as presented in numerous investiga-
tions [1,2,13–17] demonstrate that over the approximate stress range of 10−3 to 10 MPa (corresponding to
sediment overburden depths ranging from 10−1 to 103 m), elastic moduli of the dry frame vary more rapidly
than the Hertzian prediction of P1/3. At lower levels of applied pressure (<10 MPa), power-law pressure-
dependence is generally observed to have an exponent larger than the Hertzian 1/3. However, at higher ranges
of pressure, the pressure dependence in many of these studies does tend to transition to the idealized Hertzian
result.

Hardin and Richart [1] and Domenico [13] obtain an approximate P1/2 pressure-dependence of the moduli
up to their maximum pressures which were not high enough to see a transition to Hertzian dependence. Makse
et al. [14] also observe a P1/2 pressure dependence; however, their experiments are confined to the extremely
high pressure range of 50–140 MPa. Typically, glass beads begin to break at pressures in this range, and
therefore a different mechanism—possibly right at the grain-to-grain contact interfaces—may be necessary to
explain their observed pressure dependence.

Focusing only on studies of glass bead samples under isotropic compression, Kuwano and Jardine [15]
measure a steeper pressure dependence of roughly P0.6 over the relatively low pressure range from 0.05 to
0.4 MPa. Murphy [2] also measures a pressure dependence of P0.6 over 0.2–2 MPa of applied pressure before
the data trend over to the Hertzian dependence near P = 20 MPa. Zimmer et al. [17] measure an even steeper
pressure dependence of roughly P0.8 on their glass-bead samples at pressures from 0.1 to 0.4 MPa before the
data trend off to the Hertzian dependence when P > 1 MPa. However, Jia and Mills [16] measure a pressure
dependence for their glass-bead packs that is very close to the Hertzian prediction over the pressure range from
0.07 to 0.8 MPa.

Clearly, one single universal pressure exponent does not emerge from all of these experimental studies, even
when only glass beads under isotropic compression are compared. The main differences among these various
studies probably lies in details of how the bead samples were prepared; i.e., in the nature of the disordered
state where each grain pack starts at zero stress and strain. In the present model, the nature of the randomness
in the pack at zero stress will emerge as a key factor to explain various pressure dependencies that have been
observed.

3 Goddard mechanism for creating force-bearing contacts

To account for the observed non-Hertzian pressure dependence of the moduli at lower pressures, we follow
Goddard [10] and allow for new force-bearing contacts to be created as strain is applied to the grain packs.
Although Goddard’s ideas [10] have certainly received some attention [9,14,17–21] in the granular packing
literature, the present authors feel more attention to the details is appropriate, and this is the main contribution
that is being made here. Goddard [10] was motivated to demonstrate that the elastic moduli increase with
pressure as P1/2, instead of P1/3 (which is again the result due to Hertz). Our goal is to explain the range of
experimentally observed exponents on the pressure power law which will require the introduction of several
new ideas and assumptions not made specifically by Goddard [10]. In the following discussion, we point out
when Goddard’s ideas [10] are being used.

We imagine starting with a diffuse collection of grains occupying random positions in a region bounded
by a surface that can either be expanded or shrunken. We compress the region isotropically until grain contacts
first percolate across the system. Starting from this point, which corresponds to a random loose pack in a
state of zero strain, any additional compression of the region will require work to be performed and stress to
accumulate.

When the grain-to-grain contacts first percolate, additional compression will create force at contacts on
the backbone only if the grains along this incipient force chain have no rattling room left to them; i.e., the
grains along the backbone must all be jammed in order for force to build. If there is a gap between a grain on
the backbone and a lateral nearest neighbor, compression in the direction of the particle chain can result in a
local grain rotation until the gap is closed and contact with the stabilizing lateral neighbor is made. This idea
is the fundamental one presented by Goddard [10]. Alternatively, the gaps may close, not by grain rotation,
but by simple linear strain accumulation. Both mechanisms may be present simultaneously, and both will be
considered here.



188 S. R. Pride, J. G. Berryman

before rotation after rotation

u

Fig. 1 Illustrating Goddard’s [10] concept that a rattler grain (shown in grey) may rotate a lateral distance u in order to accom-
modate strain �/D (where D is grain diameter) imposed in the direction of the initial line segment connecting adjacent grain
centers unless it is prevented from doing so by the presence of a sphere (not shown) in the lateral direction. Note that the final
configuration could have also been achieved through particle–particle slippage, assuming the friction between the grains is very
small

Although we use the term “grain rotation” to be consistent with Goddard [10], it should nevertheless be
noted that when slippage is possible between grains (due to low grain-to-grain friction, as is allowed in the
Walton model), the final result of the particle movement can be indistinguishable from a grain rotation, as
noted in Fig. 1.

To begin quantifying these notions, we define 1
2 nN as the number of force bearing contacts throughout

the pack of N grains at any given instant in strain history. Note that the coordination number n defined in this
way necessarily satisfies 0 ≤ n ≤ 12 in 3D and represents the average number of force-bearing contacts on
each sphere in the pack. A first goal is to determine the increment in the number of force-bearing contacts
1
2 Ndn, when the isotropic strain acting on the pack (defined as positive in compression) is increased from ε

to ε + dε. At ε = 0, we assume that there is a total of 1
2 n0 N contacts along a percolating backbone capable of

bearing force. There are also a total of Nr unjammed (or “rattler”) grains throughout the pack. We will assume
that after all Nr of the rattlers have made contact with their lateral neighbors (and thus become jammed), the
number of force-bearing contacts is 1

2 n∞N , and it does not continue to increase thereafter with increasing
strain.

On average, 1
2 (n∞ − n0)N/Nr force-bearing contacts are created each time a rattler makes contact with a

neighbor. At any point in strain history, the number of rattlers that have already made contact with a neighbor
is then the total number of force-bearing contacts created by the jamming of rattlers, 1

2 (n − n0)N , divided by
the number of force-bearing contacts created each time a gap is closed, 1

2 (n∞ − n0)N/Nr . So the probability
that a given rattler has not yet made contact with a neighbor is 1 − (n − n0)/(n∞ − n0). We then find that

Ndn = Nr

(
1 − n − n0

n∞ − n0

)
p(u)du

(n∞ − n0)N

Nr
, (6)

or, equivalently,

d(n − n0)/ (n∞ − n0)

1 − (n − n0)/(n∞ − n0)
= p(u) du. (7)

Here, p(u)du is the probability that a neighbor was positioned within a distance u + du of a rattler grain,
where u is the amount of displacement undergone by a rattler when the strain level is ε.

The probability density p(u) of gaps to nearest neighbors is unfortunately not usually measured in numer-
ical studies of random grain packs. We therefore assume for the sake of argument that it is a power law given
by

p(u) = mum−1

hm
; 0 < u < h, (8)

where the exponent m must be positive and where h is the initial maximum gap size to a nearest neighbor. The
length h must necessarily be a small fraction of the grain diameter D if the initial random state has percolating
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contacts at ε = 0. The value of the power-law exponent m becomes an adjustable parameter that can be used
to fit the observed pressure dependence of the moduli. Physically reasonable values for the parameter m in (8)
lie in the range 0+ < m ≤ 1. Values of m greater than one correspond to larger gaps being more probable than
smaller gaps which we assume is never the situation in naturally prepared grain packs.

Integrating Eq. (7) using the probability density of Eq. (8) yields

ln

(
1 − n − n0

n∞ − n0

)
= ln

(
n∞ − n

n∞ − n0

)
= −

(u

h

)m
. (9)

To proceed, we need models relating the displacement u to the applied strain ε.
We consider first the rotation mechanism proposed by Goddard [10] and depicted in Fig. 1. If D is the

grain diameter (assumed the same for all grains), the local strain ε� = �/D along the line segment initially
joining the two sphere centers can be accommodated by a force-free rotation ω if there are no lateral neighbors
to inhibit the rotation, and/or slippage. As the figure clearly shows, cos ω = (D − �)/D = 1 − ε�. For
small rotations this yields ε� = ω2/2 or ω = √

2ε�. The lateral displacement u created by such rotation is
u = D sin ω � D

√
2ε�. It will be assumed here that the line segments connecting neighboring sphere centers

are isotropically oriented throughout the pack so that the local strain ε� being accommodated by the rotation
is the overall isotropic strain being applied to the system as a whole; i.e., ε� = ε.

Alternatively, and more simply, one may assume that the gaps are closed by linear strain accumulation
u = Dε. Goddard [10] stated that for this mechanism to explain the observed pressure dependence of the
elastic moduli, special distribution functions must be assumed for the gap sizes. He thus dismissed the closing
of the gaps by linear strain accumulation out of hand. We will come to somewhat different conclusions on this
issue.

Both mechanisms of gap closure can be expressed in the unified expression

u = D(χε)1/χ , (10)

where χ is the closure index and takes the value χ = 1 for linear strain accumulation, and χ = 2 for grain
rotation. Substituting u = D(χε)1/χ into Eq. (9), we find the desired expression for how the coordination
number n(ε) of force-bearing contacts varies with isotropic strain:

n(ε) = n∞ − (n∞ − n0)e
−αmεm/χ

, (11)

where the parameter αm is defined by

αm =
(

Dχ1/χ

h

)m

. (12)

As required, this expression for n(ε) reduces to n0 at zero strain and n∞ at very large strain. A transition strain
value εt can be identified by

εt = α
−χ/m
m , (13)

thereby separating low-strain power-law increases in coordination number

n ∼ n0 + (n∞ − n0)

(
ε

εt

)m/χ

, for
ε

εt
� 1, (14)

from the high-strain limit

n ∼ n∞, for
ε

εt
� 1, (15)

where the coordination number remains constant.
In the next section, we need to know how many new force-bearing contacts are created in each strain

increment, which is

dn

dε
= (n∞ − n0)mαm

χ
εm/χ−1e−αmεm/χ

. (16)

Note that so long as m/χ < 1, the greatest increase in force-bearing contacts occurs at small strain ε = 0+,
and then progressively decreases as ε increases. In the following discussion, all explicit dependence on m and
χ will appear in the ratio m/χ . The only term that depends on the separate values of both m and χ is the
parameter αm defined in Eq. (12).



190 S. R. Pride, J. G. Berryman

4 Stress and strain dependence of elastic moduli

The theory of Walton [11] assumes that all force-bearing contacts are already in place and start accumulating
force from ε = 0+. We now show how to generalize the Walton [11] model to allow for force-bearing contacts
that arrive at various points along the strain history.

We begin by estimating the amount of Hertzian contact force that accumulates with strain at a contact
between jammed spheres. Under the assumption that the local strain is given by the overall applied strain, the
Walton [11] result for the Hertzian force at contact c can be written as

Fc = D2

3π Bw

(ε − s)3/2Ic, (17)

where Bw is Walton’s compliance parameter given herein by Eq. (2), D is the grain diameter, s is the isotropic
strain level at which contact c first begins to accumulate force, and Ic is the unit vector along the line seg-
ment connecting the two sphere centers. Upon putting s = 0, Eq. (17) above is just Eq. (3.7) from [11]. The
assumption that local strain is uniform throughout the pack is of course not formally correct once stress starts
to accumulate in patches. The main error incurred in making this assumption is that the distribution function
for the local contact forces in the present model will not be correct, as will be discussed later.

For a mono-disperse packing of spheres, Walton [11] shows that the volume-averaged stress tensor 〈σi j 〉
acting throughout a pack of volume V is exactly related to the contact forces as

〈σi j 〉 = − D

2V

∑
c

(
I c
i Fc

j + I c
j Fc

i

)
, (18)

where the sum is over all contacts in the volume. Putting Eq. (17) into Eq. (18), and replacing the sum over
contacts by a number density integral over contacts, yields

〈σi j 〉 = − N D3

12π BwV

⎡
⎣n0ε

3/2〈Ii I j + I j Ii 〉o +
ε∫

0

ds (ε − s)3/2 dn

ds
〈Ii I j + I j Ii 〉s

⎤
⎦ . (19)

The brackets 〈 〉s indicate an average over all contacts created in the strain interval s → s + ds, while
1
2 N (dn/ds)ds is the number of new force-bearing contacts created in the interval s → s + ds with dn/ds
given by Eq. (16).

For randomly oriented unit vectors I, one has 〈I 2
x 〉s = 〈I 2

y 〉s = 〈I 2
z 〉s = 〈I ·I〉s/3 = 1/3, while 〈Ix Iy〉s = 0,

etc., which leads to

〈Ii I j + I j Ii 〉s = 2

3
δi j . (20)

Furthermore, at zero strain, the volume occupied by N grains in volume V is Nπ D3/6, which allows the zero
strain porosity φ0 of the packing to be defined by

1 − φ0 = Nπ D3

6V
. (21)

Introducing the overall pressure P as 〈σi j 〉 = −Pδi j and using Eq. (16) for dn/ds yields

P = (1 − φ0)

3π2 Bw

[
n0ε

3/2 + (n∞ − n0)
mαm

χ
Jε

]
, (22)

where the strain integral Jε is defined by

Jε =
ε∫

0

(ε − s)3/2sm/χ−1e−αmsm/χ

ds. (23)
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Upon making the substitution of variables x = √
s, dx = ds/(2

√
s) and ξ ≡ √

ε, the strain integral Jε

becomes

Jε = 2

ξ∫
0

(ξ2 − x2)3/2x2(m/χ−1)e−αm x2m/χ

dx (24)

= 2
∞∑

k=0

(−αm)k

k!

ξ∫
0

(ξ2 − x2)3/2x2(k+1)m/χ−1 dx, (25)

which is a tabulated form (e.g., [22]) giving

Jε =
∞∑

k=0

(−αm)k

k! B

(
(k + 1)m

χ
,

5

2

)
ε(1+k)m/χ+3/2. (26)

The convention 0! = 1 is being employed, while B(a, b) is the so-called beta function which is related to the
gamma function as B(a, b) = �(a)�(b)/�(a + b).

The resulting relationship between pressure and strain is therefore

P = (1 − φ0)

3π2 Bw

{
n0ε

3/2 + (n∞ − n0)
mαm

χ
B

(
m

χ
,

5

2

)
ε3/2+m/χ

[
1 +

∞∑
k=1

(−αm)k

k! βkε
km/χ

]}
, (27)

where

βk = B ((k + 1)m/χ, 5/2)

B(m/χ, 5/2)
. (28)

The bulk modulus K ≡ (dP/dε)/3 is finally given by

K = (1 − φ)κmαmn∞
6π2 Bw

(
1 − n0

n∞

)
ε1/2+m/χ

×
[

1 + n0/n∞
(1 − n0/n∞)

ε−m/χ

κmαm
+

∞∑
k=1

(
1 + 2km/χ

3 + 2m/χ

)
(−αm)k

k! βkε
km/χ

]
, (29)

where

κm = (3 + 2m/χ)

3

m

χ
B

(
m

χ
,

5

2

)
. (30)

Applying the ratio test [23] to the series in both Eqs. (27) and (29), we find they are convergent since
limk→∞ αmεm/χ/k < 1. In numerical practice, however, when working with a finite number kmax of terms in
the series, we find that the results of the summation are valid only if αmεm/χ/kmax < 1. With both αm and ε
sufficiently large, and kmax sufficiently small, convergence problems may be encountered; however, for most
conditions experimentally explored, the series produces well-behaved results using just a few terms in this
expansion. Phenomenological approximations that avoid having to work directly with the series in Eqs. (27)
and (29) will be provided later in this section.

As a consistency check on the above expressions, we investigate the limit as the exponent m → 0. From
Eq. (8) for the probability distribution of gap sizes, this limit corresponds to lateral gaps being concentrated
at u = 0, which means that starting at zero strain, all force-bearing contacts are in place. We should therefore
expect to recover the Walton [11] results in this limit. To check satisfaction of this constraint, note that as
m → 0, αm ∼ 1 and �(m) ∼ 1/m so that B(m/χ, 5/2) ∼ χ/m and βk ∼ 1/(k + 1). Using these facts in
Eq. (27) gives

P = (1 − φ0)

3π2 Bw

ε3/2

[
n0 + (n∞ − n0)

(
1 −

∞∑
k=1

(−1)(k+1)

(k + 1)!

)]
. (31)
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But now, we also have

e−1 =
∞∑

k=0

(−1)k

k! =
∞∑

k=1

(−1)k+1

(k + 1)! , (32)

since the first two terms of the expansion for e−1 are 1 and −1, which obviously cancel each other, so that

P = (1 − φ0)
[
n∞(1 − e−1) + n0e−1

]
3π2 Bw

ε3/2. (33)

This is the same as Eq. (1) from Walton’s theory [11] if nw = n∞(1−e−1)+n0e−1 is specified as the coordina-
tion number. Note that the coordination number given by Eq. (11) when m → 0 is also n∞(1 − e−1)+ n0e−1,
which demonstrates internal consistency of the expressions. The bulk modulus as m → 0 is thus given by the
usual Walton [11] result of Eq. (3) with nw = n∞(1 − e−1) + n0e−1.

In the limit that the strain ε → 0, Eq. (23) for the strain integral becomes

Jε ∼ B

(
m

χ
,

5

2

)
ε3/2+m/χ . (34)

From this fact, we obtain the low-strain limit of the functions P(ε) and K (ε)

P ∼ (1 − φ0)n∞ε3/2

3π2 Bw

[(
1 − n0

n∞

)
3κm

3 + 2m/χ

(
ε

εt

)m/χ

+ n0

n∞

]
, (35)

K ∼ (1 − φ0)n∞ε1/2

6π2 Bw

[(
1 − n0

n∞

)
κm

(
ε

εt

)m/χ

+ n0

n∞

]
, (36)

where we have used the definition of the transition strain εt = α
−m/χ
m as given in Eq. (13). For close packs,

one has n0/n∞ → 1 and a classic Hertzian dependence K ∝ ε1/2 emerges at low strain, which corresponds to
a pressure dependence of K ∝ P1/3. This dependence was observed in the low-strain experiments of Jia and
Mills [16], who carefully compacted their random bead packs so that n0/n∞ → 1 prior to their measurement
of wave speeds. For random loose packs (or random very loose packs), we have n0/n∞ → 0 at zero stress,
which results in the non-Hertzian strain dependence K ∝ ε(1+2m/χ)/2, corresponding to a pressure dependence
of K ∝ P(1+2m/χ)/(3+2m/χ). As presented earlier, several experimental investigations on random loose packs
have found low-strain bulk moduli increasing faster than the Hertzian dependence and Eq. (36) may help to
explain these observations. In particular, note that when χ = 2 (rotation) and m = 1 in a loose pack or when
χ = 1 (linear strain accumulation) and m = 1/2, we recover the sometimes observed dependence of K ∝ ε,
which is equivalent to K ∝ P1/2.

In the opposite limit where the strain ε becomes large, Eq. (23) for the strain integral becomes

Jε ∼ ε3/2

ε∫
0

sm/χ−1e−αmsm/χ

ds = χε3/2

mαm

αmεm/χ∫
0

e−u du ∼ χε3/2

mαm
. (37)

From Eq. (22), we then obtain, for large ε, the results:

P ∼ (1 − φ0)n∞
3π2 Bw

ε3/2, (38)

K ∼ (1 − φ0)n∞
6π2 Bw

ε1/2, (39)

which are just Walton’s [11] formulas in Eqs. (1) and (3) with nw = n∞. At large enough strain, all grains are
jammed and the pressure dependence is ultimately Hertzian, as expected.

With these limits hereby established analytically, we use Eqs. (29) and (27) in Fig. 2 to plot the bulk mod-
ulus of a random loose pack (n0/n∞ = 0), as a function of pressure. Also displayed in the figure are the data
of Murphy [2], as well as the Walton prediction [11]. The best fit to the data occurred using parameter values
of χ = 1 (for the linear strain mechanism of gap closure), m = 1 (a flat distribution for the gaps), and ratio
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Fig. 2 The bulk modulus of a grain pack as a function of pressure. The dashed line was obtained using Eqs. (29) and (27) with
model parameters χ = 1, m = 1 and D/h = 300, while the solid line is the result of Walton [11] and given by Eq. (3). These
choices correspond to K (P) ∝ P3/5 at low pressures (note that 1

3 < 1
2 < 3

5 ). Also see Eqs. (40)–(42) and subsequent discussion.

The other parameters in the model were taken from Murphy [2] to be: Ks = 40.7 GPa, Gs = 29.7 GPa, φ0 = 0.39, n0 = 0, and
n∞ = 12

D/h = 300. These choices correspond to a pressure dependence of K ∝ P3/5 at low pressures. The grain
diameters in the Murphy [2] experiments were roughly D = 300 µm, which means that the maximum gap
size between rattlers and their neighbors is on the order of h = 1 µm, which—although small—does not seem
unreasonable. Note that if we had used χ = 2 (for the rotation mechanism), we would obtain the identical fit
to the data so long as m = 2 and, from Eq. (12), D/h = √

150 ≈ 12.25, corresponding to h � 24.5 µm. The
difficulty with using m = 2 in Eq. (8) is that this choice corresponds to larger gaps being more probable than
smaller gaps. This does not seem physically sensible for real grain packs, and therefore leads to the conclusion
that the mechanism of gap closure through simple linear-strain accumulation is more likely to occur in the
grain packs than is the grain-rotation mechanism. More discussion on this point will be provided with the
conclusions.

Finally, we also obtain an approximate version of Eqs. (27) and (29) that gives both P(ε) and K (ε) without
needing to evaluate either series. This result is obtained by connecting the known low- and high-strain limits
found above with simple smooth (phenomenological) functions of the form:

P(ε) ≈ (1 − φ0)n∞ε3/2

3π2 Bw

[
n0/n∞

{1 + (ε/εt )a}1/a + νP(ε/εt )
m/χ

{
1 + [νP(ε/εt )m/χ ]a

}1/a

]
, (40)

K (ε) ≈ (1 − φ0)n∞ε1/2

6π2 Bw

[
n0/n∞

{1 + (ε/εt )a}1/a
+ νK (ε/εt )

m/χ

{
1 + [

νK (ε/εt )m/χ
]a}1/a

]
, (41)



194 S. R. Pride, J. G. Berryman

where

νK = (1 − n0/n∞)κm and νP = 3νK

3 + 2m/χ
. (42)

The parameter a controls the smoothness of the transition from the low-strain to high-strain limits. Smaller a
values correspond to gradual transitions and larger values to more abrupt transitions. Empirically, we find that
using the coefficient a = 1.5 produces a graphical fit to the data in Fig. 2 that is imperceptibly different from
the complete expressions given by Eqs. (27) and (29).

In the loose-pack limit where n0/n∞ → 0, Eqs. (35) and (36) can be combined to give a single formula
for K (P) variation at low pressures, while the Walton [11] result holds for K (P) (with nw = n∞) at high
pressures. Again, combining these two limits with a simple function of pressure gives

K (P) = (1 − φ0)n∞κmα
−χ/(2m)
m

6π2 Bw

(
P

Pt

)1/3
(P/Pt )

γ

{1 + [�(P/Pt )γ ]b}1/b
, (43)

where the transition pressure Pt is given by

Pt = (1 − φ0)n∞
3π2 Bw

3κm

3 + 2m/χ
α

−3χ/(2m)
m , (44)

the exponent γ is defined by

γ = 4m/χ

3(3 + 2m/χ)
, (45)

and the multiplier � is defined by

� =
[
κ2

m(3 + 2m/χ)

3

]1/3

. (46)

Note that 1
3 + γ = 1+2m/χ

3+2m/χ
, and then compare to the ratios of the exponents in Eqs. (35) and (36). A transition

exponent of b = 2.5 was empirically determined to give a fit to Murphy’s data [2] in Fig. 2 that is equivalent to
Eqs. (27) and (29). Equation (43) generalizes and improves upon a result given by Pride [4], which was based
on grain-rotation alone having an exponent of m = 1 in the probability distribution of gap sizes.

5 Conclusions

Analytical expressions were obtained for average pressure and bulk modulus variations with isotropic strain
in random packings of grains. One key feature of the model is to allow the gaps between rattlers and jammed
grains to close with increasing strain, thus creating new force-bearing contacts that act to stiffen the pack.
The main approximation used to arrive at the analytical results is that strain is everywhere uniform throughout
the pack. The situation in real grain packs differs from this since local strain is non-uniform with least strain
present in regions that become jammed early in the strain history and greatest strain (when measured from the
initial state) present in regions that jam later in the consolidation process. Maximum local strain in the pack
will necessarily occur in the vicinities of the remaining rattler grains. Incorporating more realistic non-uniform
strain distribution into the formalism presented here is possible, and will become a subject of future study.

A consequence of the uniform-strain approximation is that the greatest stress will exist in those regions
that become jammed earliest in strain history. Because the average coordination number throughout the pack is
known to increase most rapidly early in strain history, the present model based on uniform strain predicts that
more contacts will have larger stress than lower stress. Such predictions differ from what is experimentally
observed in real grain packs [6,7,24] with most studies reporting an exponential fall-off in the number of
contacts as a function of the force they carry. Accurate modeling of the grain-to-grain force partitioning will
ultimately require incorporation of non-uniform strain distributions into a modified version of the modeling
approach presented here.

With this caveat in mind, we have shown nevertheless that creation of new force-bearing contacts through
closure of gaps between grains provides a very plausible explanation of the pressure dependence of measured
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bulk modulus in grain packs being different from the Hertzian prediction. Furthermore, by allowing explicitly
for the randomness in the pack with a probability distribution for the gap sizes to be closed, we can explain
results of various experimental studies that have measured different power-law pressure dependencies at low
strain levels. We also propose physical mechanisms for why these different dependencies should be present,
and why they produce different power-law behaviors.

Our theory has been successful in fitting the experimental data of Murphy [2] using reasonable values of
three fitting parameters: (1) the power-law exponent m for the probability of gap sizes [as given by Eq. (8)],
(2) the index χ having value 1 if the mechanism of gap closure is linear strain accumulation or the value 2
if the mechanism is grain rotation, and (3) the ratio of grain diameter to maximum gap size D/h. For the
gap-size distribution either to be flat (m = 1) or to have more small gaps than large gaps (m < 1), we found
it necessary to choose χ = 1 (corresponding to the strain-accumulation mechanism of gap closure) in order
to fit the data. For the present theory to fit any data for which the moduli increase faster than P1/2 (such
as the data of Murphy [2] and Kuwano and Jardine [15]) while requiring that m ≤ 1, we must necessarily
use the strain-accumulation mechanism (χ = 1) and not the grain-rotation mechanism (χ = 2). However,
until non-uniform strain is successfully incorporated into the present formalism, some doubt remains as to the
relative importance of the various force-chain building mechanisms, especially in light of the great variety of
grain-packing scenarios that are available. The formalism outlined here permits analytical treatment of several
of the most pertinent scenarios.

The present model is based on Hertzian contact mechanics and is formulated to treat packings of identi-
cal spheres under isotropic applied strain. An actual sand pack within the earth may require further physical
considerations not yet discussed. A non-uniform grain-size distribution would require modifying the local dis-
placements of grain centers in Walton’s theory [11]. This modification should be possible, along with allowing
for each grain to have its own distinct elastic modulus, so long as such fluctuations are random and given
by known distribution functions. The Hertzian contact mechanics acting at each contact requires that the two
surfaces be quadratics prior to the growth of the contact area. This assumption breaks down when one or both
of the grains have edges that are angular, in which case non-Hertzian contact mechanics based on, for example,
wedge geometries must be employed (e.g., [25]). At large enough strain levels, plastic yielding and fracture
of the grains must be considered. For grains made of common minerals like quartz and soda-lime glass that
have moduli on the order of a few tens of GPa, fracture begins to occur at pressures of roughly 30–50 MPa.
Fortunately, the important applications cited in the introduction occur at much smaller pressures. Generalizing
to non-isotropic applied strain is relatively straightforward and was allowed for by Walton [11]. We did not
consider anisotropic strain states here in order to keep the expressions and analysis algebraically simple. No
mechanism for (likely) hysteretic effects of strain cycling was included. Some of the experimentally observed
hysteresis is due to plastic deformation of small asperities on the grain surfaces and some is due to irreversible
changes (e.g., sliding) in the packing arrangement. Finally, how porosity decreases as strain increases was not
explicitly treated. This mechanism is fairly straightforward to model and will be included in future work.
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