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Abstract A major part of this paper is taken up by the calculation of the first axisymmetric surface oscillation
frequency and the (2, 0) mode of an ellipsoidal bubble, in order to compare with experimentally obtained
values of bubbles rising in water. First, an energy method is used for an ellipsoid oscillating in stagnant water.
Interestingly, with help of a paper by Bjerknes [12] at 1873!. The results compare poorly with experiments.
Agreement improves when the oscillation of the rise velocity is taken into account. The remaining difference
between the results of theory and experimental values is ascribed to deviation of the bubble shape from an
ellipsoid. Finally, volume oscillations of ellipsoidal bubbles are calculated with the energy method and the
results compare well with those of an earlier work, based on an electrical analogon.

1 Introduction

With pleasure we contribute to this Festschrift for Professor Wilhelm Schneider at the occasion of his 70th
birthday. Wilhelm Schneider and one of us (L.v.W) worked together many years in the Scientific Council of
CISM in Udine, Italy.We share an interest in classical hydrodynamics and I hope that this contribution will
please him. We wish him many years to come in good health.

This paper is on gas bubbles rising in clean water, so clean that there are no surfactants. Then, the boundary
condition on the interface between gas and liquid is that the tangential shear stress must vanish. Rising in
water under buoyancy, very small bubbles (diameter of order of 0.1 mm) remain spherical, but with diameters
of 1 mm and larger they assume a shape which is approximately an oblate ellipsoid [1] with the short axis
pointing in vertical direction. The ratio of the larger axis to the minor one, indicated here with χ , depends on
the speed of rising which in turn depends on the size and on liquid properties. The terminal speed of rise, UT ,
is often expressed in terms of the Reynolds number Re , defined as

Re = UT Deq/ν, (1)

where Deq is the equivalent bubble diameter and ν the kinematic viscosity of the liquid. The axes ratio depends
on the Weber number We defined as

W e = ρU 2
T Deq/σ, (2)

where ρ and σ are the water density and air–water surface tension, respectively. Below Deq = 1.8 mm
(Re ∼ 600), bubbles rise rectilinearly, above that value they describe a spiraling or zigzagging path [2,3], but
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the shape remains undisturbed [4]. This changes at a still larger diameter of 2.8 mm. Shape oscillations start
to occur here. These oscillations, studied before in [5–7] and other papers, formed part of the thesis [8] of the
junior author. The oscillations can be characterized with the indices n and m, where n is the number of wave
lengths in the direction from pole to pole and m the same in azimuthal (equatorial) direction. In particular
the (n, m) values of shape oscillations and their frequencies were measured, see [8,9] . When searching the
literature with the intention to compare the observed frequencies with theoretically obtained ones, we found
that little is known. For a sphere these frequencies are well known and are given in [10] for example. For an
ellipsoid it is different. In [7] a numerical calculation is made of eigenmodes of rising bubbles. An analytical
approach would be welcome. In [6] an approximate calculation is given, which will be discussed later in the
paper. Here we attempt an exact calculation, for an ellipsoidal shape, in the spirit of the classical calculation of
the modes for a spherical shape. This consists in first calculating the kinetic energy associated with a certain
mode. During oscillation the kinetic energy fluctuates and continuously kinetic energy is transformed in surface
energy and vice-versa. Averaged over a cycle of the particular mode, these energies must be the same. From this
equality the frequency of that particular mode is obtained. In the following we shall go through this derivation.

2 Potential flow caused by an oscillating ellipsoid

We consider an oblate axisymmetric ellipsoid, with major axis a and minor axis c. The (2,0) mode is one in
which c and a change in such a way that the volume (for the breathing mode in which the volume changes,
see Sect. 8) remains constant. We denote the radius of a sphere with the same volume with req and the volume,
apart from a factor 4/3π , with V ,

V = a2c = r3
eq. (3)

The ellipsoid is immersed in an inviscid and incompressible liquid which is at rest at infinity. We want to
calculate the kinetic energy of the liquid when c is performing a periodic oscillation with respect to an
undisturbed c0,

c − c0 = � cos ωt, (4)

where t means time and ω is the desired frequency, to be calculated. One would expect that the potential for this
motion can be found in textbooks on hydrodynamics. This, however, is not the case. In [10,11] the potential
for uniform motion of an ellipsoid is given , but not for the type of motion considered here. We have, however,
been able to construct the desired potential with help of a paper [12], by Bjerknes published in 1873! Let in a
cartesian x, y, z frame the ellipsoid be given by

x2

a2 + y2

b2 + z2

c2 = 1. (5)

We shall later restrict to an axisymmetric ellipsoid where the semi- axes a and b are the same, but keep the
discussion temporarily general. Let c execute oscillations as given in Eq. (4) keeping V , as given in Eq. (3),
constant. We expect that the natural, that is without external excitation, frequency comes close to an eigenmode
of the ellipsoid, which in turn is close to the shape of a bubble. According to [12] the potential has the form

φ = K

⎧
⎨

⎩

∞∫

λ

G(a, b, c)

[(
x2

s + a2 + y2

s + b2 + z2

s + c2

)

F−1
]

ds

⎫
⎬

⎭
. (6)

In this expression

F−1(s) = 1
(
1 + s/a2

)1/2 (
1 + s/b2

)1/2 (
1 + s/c2

)1/2 , (7)

G(a, b, c) = a∂/∂a + b∂/∂b − 2c∂/∂c, (8)

and the parameter λ is the positive root of the equation

x2

λ + a2 + y2

λ + b2 + z2

λ + c2 − 1 = 0. (9)
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The prefactor −2 in the last term at the right hand side of Eq. (8) differs from that in the preceding terms,
involving a and b, due to the condition of constant volume. K is a constant to be determined by the boundary
condition. Equation (9) represents a family of confocal ellipsoids . The meaning of λ is that with given x, y
and z, the ellipsoid through this point has the label λ. In particular, the ellipsoid that we are considering, given
in Eq. (5), has the label λ = 0. Caution is needed in applying the operator in Eq. (8). For the axisymmetric
ellipsoid, a may be put equal to b after differentiation, but not before. In other relations the equality may be
introduced directly as long as no differentiation with respect to a, b or c is involved. So, to find K we write,
in cylindrical coordinates, the ellipsoid as

H(r, z, t) = r2

a2 + z2

c2 − 1 = 0. (10)

The normal to this is

n = ∇H/ |∇H | . (11)

The boundary condition is that on H = 0

∇φ.n = −∂ H/∂t

∇H
. (12)

In applying Eq. (12) to Eq. (10) we must take, with a view to the condition of constant volume,

ȧ = −1

2

aċ

c
= ḃ. (13)

Evaluating the right hand side of Eq. (12) with help of Eq. (10) , the boundary condition on the potential
becomes

∇φ.n =
(
3z2/c2 − 1

)
a/2 (ċ/c)

{
1 + (

χ2 − 1
)

z2/c2
}1/2 . (14)

The reader is reminded that χ is the ratio a/c. We impose this condition on the potential in Eq. (6) in λ = 0.
We need the derivatives of λ with respect to r and z. These are obtained from Eq. (9), thereby taking a = b
and x2 + y2 = r2.. We obtain

K = ȧ

4a (1 + J )
= − ċ

8c (1 + J )
, (15)

with

J =
∞∫

0

{
1

2

(

a
∂

∂a
+ b

∂

∂b

)

− c
∂

∂c

} {
F−1

s + a2

}

ds. (16)

In Eq. (16) F−1 is as given at the right hand side of Eq. (7). It can be verified that, with K , from Eq. (15),
inserted in Eq. (6), φ satisfies the potential equation and also the boundary condition, Eq. (14). There is an
interesting difference here with the usual way to determine this type of natural frequencies for a sphere. The
usual way, see e.g. [13], is to disturb the surface with a series of spherical harmonics of small amplitude.
To second order in the small quantity, there is a volume change going with this which manifests itself in a
1/(x2 + y2 + z2)1/2 behaviour at infinity. A correction is needed then. In our treatment the volume remains
constant during the perturbation. From Eqs. (6)–(9) it follows that for λ → ∞, which corresponds, see Eq. (9),
with

(
x2 + y2 + z2

)1/2 → ∞,

φ ∼
∞∫

λ

x2 + y2 + z2

s7/2
ds∼ 1

(
x2 + y2 + z2

)3/2 ,

where Eq. (9) has been used. This means that for either of the variables x .y, z becoming very large the potential
behaves like that of a quadrupole situated in the origin. This is as it should be since there is no volume change,
nor a resultant velocity, which is associated with a dipole.
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We now calculate the kinetic energy in the liquid ,

Ek = −ρ/2
∮

φ∇φ.ndS, (17)

where the integration is over the surface of the ellipsoid with elementary surface dS,

dS = 2π (V c)1/2
{

1 + (
χ2 − 1

) z2

c

}1/2

d
z

c
. (18)

Using Eqs. (6), and (14) –(18), we obtain after quite some integration and algebraical manipulations,

Ek = 2πρV

(
ċ

c

)2 1

32 (1 + J )

1∫

−1

(
3z2

c2 − 1

)
{
2J

(
x2 + y2) − 4J z2} d

z

c
.

Carrying out the integration over z results for the kinetic energy in

Ek = −2πρV ċ2 J (χ2 + 2)

30 (1 + J )
. (19)

Evaluation of J , as given in Eq. (16), gives

J = −
∞∫

0

1

F

{
a2

(s + a2)2 + s
(
s + a2

) (
s + c2

) − s

(s + a2)2

}

ds

= −3

2
χ2

(
χ2 + 2

)
cos−1χ−1 − 3

(
χ2 − 1

)1/2

(
χ2 − 1

)5/2
. (20)

The value of J for χ = 1 can easier be obtained from the intermediate result and is

J = −
∞∫

0

a5

(s + a2)7/2 = −2

5
.

For all values of χ of interest, χ ≥ 1, J is negative and hence Ek positive as it should be.

3 Calculation of surface energy

Periodically kinetic energy is turned into surface energy. Let the surface tension be σ , and let the undisturbed
surface be of magnitude S0. Integration of Eq. (18) gives for arbitrary c

S = 2π

⎧
⎪⎨

⎪⎩

V

c
+ 1

2
c2

(
V

V − c3

)1/2

ln
1 +

(
V −c3

V

)1/2

1 −
(

V −c3

V

)1/2

⎫
⎪⎬

⎪⎭
. (21)

This can be written in many other ways. This one is convenient, because V remains constant during the
considered motion. With a perturbation of c as described in Eq. (4), we can express the fluctuating surface
energy Eσ = S − S0 as

Eσ = 2πσ

[(
dS

dc

)

0
(c − c0) + 1

2

((
d2S

dc2

)

0
(c − c0)

2 + · · ·
)]

. (22)
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Fig. 1 The expression 1
2π

d2
S

dc2 , as occurring in Eq. (21) as a function of c
req

= χ−2/3

Averaged over a cycle, the first term in brackets vanishes, and the first contribution comes from the second
term, which we denote with Eσ,2. Since Ek is expressed in Eq. (19) in terms of the axis ratio χ , it useful to
do the same for Eσ,2. With c/req = χ−2/3, we obtain from Eqs. (20) and (21)

Eσ,2

2πσ (c − c0)
2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χ2 + 1
2 ln

⎧
⎪⎨

⎪⎩

1+
(

χ2−1
χ2

)1/2

1−
(

χ2−1
χ2

)1/2

⎫
⎪⎬

⎪⎭

(
1 + 9

2(χ2−1)
+ 27

8
1

(χ2−1)2

) (
χ2

χ2−1

)1/2 −

χ2

χ2−1

(
3
2 + 9

8(χ2−1)

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (22.1)

Figure 1 is a graph of 1/2π d2
S

dc2 as a function of c/req, χ
−2/3 in terms of the axes ratio.

4 The (2,0) mode frequency

The frequency ω follows from averaging Ek , from Eq. (19), and Eσ , from Eq. (22), over a cycle when c is
subjected to a fluctuation as is given in Eq. (4). In [8,9] experiments are described with bubbles of several
mm radius in purified water. Regarding surface oscillations, measured values of both ω/2π and χ are reported
for a number of bubble sizes. Figure 2 , from [8], shows experimental values. The dots are measured values
of the (2.0) mode frequency. As shown in Fig. 2, both the vertical velocity changes and the vortex shedding
frequencies in the wake correspond with the (2.0) mode. In the experiments also the (2.2) mode is clearly
present, which corresponds with a non axisymmetric surface oscillation and does not concern us here. In the
measured spectra reported in [8] the (2.0) and (2.2) modes are dominant. Other frequencies are not to any
significant intensity visible.

The general tendency is that the frequency of the (2.0) mode is decreasing with the bubble size. This
tendency is less clear, but still well visible, when the presentation is in dimensionless form, the frequency

Fig. 2 Frequencies obtained from experiments in purified water; bullet refers to the (2,0) mode, circle to fluctuation of vertical
velocity. The asterisk are vortex shedding frequencies in the wake. Note that both circle and asterisk follow the (2,0) mode. From [8]
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Table 1 Calculated and measured bubble oscillation frequencies for (2.0) mode

req (mm) UT (m/s) χ ωtheory (rad/s) ωtheor,corrected ωexpt (rad/s) Meiron

x(ρr3
eq/σ)1/2 x(ρr3

eq/σ)1/2 x(ρr3
eq/σ)1/2

3.9 0.26 2.3 5.3 4.9 2.6 2.8
5.5 0.29 2.7 5.6 4.4 2.4 2.7

being rendered dimensionless with (ρr3
eq/σ)1/2 and the axis ratio χ instead of the equivalent radius. In Table 1

we give some experimental values, as given in [8].
Apparently, the calculated values, fourth column, although of the right order of magnitude, are larger than

the measured ones, last column. Also, and for the moment we focus on that, we see that the experimental values
decrease with χ whereas the calculated ones increase. The trend in the experimental values is also observed
in other experiments, see [8].

It is useful to inspect in this connection the expressions for Ek and S − S0. For χ values of interest here
J/1+ J in Eq. (19) is about −0.7. Further it follows from inspection of the graph in Fig. 1 that (1/4π)d2S/dc2

is roughly equal to χ2. Then, it follows from Eqs. (19) and (22) that , upon averaging,

ω ∼ 6.5

√

χ2

2 + χ2

(
σ/ρr3

eq

)1/2
. (23)

Indeed, for the values 2.3 and 2.7 of χ , Eq. (23) gives 5.5 and 5.8 times
(
σ/ρreq3

)1/2 respectively, close to
the exact values in Table 1. The approximation in Eq. (23) clearly shows that in our theory the dimensionless
frequency increases with χ , in contrast to experiment.

The main reason for this is the following. We have assumed the ellipsoid to be immersed in a fluid at rest
at infinity. However, in the experimental situation the bubble rises under buoyancy and in a reference frame
attached to the bubble, the fluid at infinity moves with the rise velocity. The ellipsoidal shape results precisely
from the pressure distribution produced by this motion. During the oscillatory motion the virtual mass of the
bubble changes periodically. The viscous relaxation time r2

eq/18 ν is for bubble sizes of interest of the order of
1 sec, whereas a typical period of oscillation is 50–100 times smaller, see Fig. 2. This means that the impulse
I , defined by

I = MU, (24)

remains constant during an oscillation, because viscosity can be neglected on that time scale. In Eq. (24) the
quantity M is the virtual mass and U the rise velocity. M is for a body of arbitrary shape a tensor, but in our
case, where the body is axisymmetric and moves along the symmetry axis, a scalar quantity. Without surface
oscillations, the velocity is UT and the added mass M0, say, Then, during an oscillation the velocity changes,
which has been observed earlier and been brought in connection with added mass changes in [14] . Figure 2
clearly shows that the frequency of the vertical velocity fluctuation coincides with that of the (2,0) mode. The
associated energy fluctuation has to be taken into account. This is the subject of the next section.

5 Fluctuating vertical motion

With constant impulse MoUT , the velocity fluctuates according to

U = M0

M
UT . (25)

The added mass M is , see [11],

M = 2/3πr3
eq

2γ

2 − γ
, (26)

where γ is an integral of the type that we have already met,

γ =
∞∫

0

a2cds
(
s + a2

) (
s + c2

)3/2 = 2χ2

χ2 − 1

{

1 − 1
(
χ2 − 1

)1/2 cos−1χ

}

. (27)
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The quantity 2γ /2 − γ , drawn in [15] as function of χ , shows clearly a linear behaviour accurately described
by −0.132 + Aχ, with A = 1.13. Using this we write instead of Eq. (26)

M = 2/3πρr3
eq(−0.132 + Aχ). (28)

After these preliminaries, we consider the kinetic energy , associated with the vertical motion,

Ev = 1/2MU 2 = 1/2(M0UT )U. (29)

It is important to note that in this case the kinetic energies associated with the vertical motion and the shape
oscillations, represented by Eq. (6), are additive. The potentials, φ1 and φ2, say, are additive anyway , but in
writing down the surface integral for the resulting kinetic energy, similar to Eq. (17), it appears that the mixed
terms φ1∇φ2.n and φ2∇φ1.n give no contribution.

Under small variations of the shorter axis c, described in Eq. (4), Ev can be written, with help of Eq. (25)

1

2

(
M0UT 2

) M0

M0 +
(

dM
dc

)

0
(c − c0) + 1

2

(
d2

M
dc2

)

0
(c − c0)

2 + · · ·

Expanding the fraction gives for the coefficient of (c − c0)
2

1

M02

(
dM

dc

)2

0
− 1

2

(
d2 M

dc2

)

0

1

M0
. (30)

Using Eq. (28) to find these derivatives, we must, in differentiating χ with respect to c, keep in mind that the
volume, 4/3πa2c, remains constant. We obtain finally for the quantity preceding (c − c0)

2 in the expansion
of Ev

Ev − (Ev)0 = E∗
v = 1

2

(
2

3
π

)

ρUT 2 Aχr3
eq

3

8c2
0

(c − c0)
2 . (31)

6 Energy balance and renewed calculation of ω

Averaged over a period of the (2,0) surface oscillation, the energy balance is

〈Ek〉 + 〈E∗
v 〉 = 〈Eσ 〉, (32)

where Ek, E∗
v , and Eσ are given in Eqs. (19), (31) and (22), respectively, and 〈 〉 means averaging over time.

The surface energy is, just as the right hand side of Eq. (31), proportional to (c − c0)
2. In order to compare

their relative magnitude we consider

E∗
v

σ
= (2π)

(
ρU 2

T req

σ

)
A

16
χ7/3 (c − c0)

2 . (33)

To write the right hand side of Eq. (31) in this form, we have used Eq. (3). In the second pair of brackets at
the right hand side of Eq. (33) we recognize the Weber number based upon req, one half of the Weber number
We defined in Eq. (2). Therefore we write , with A = 1.13,

E∗
v

σ
= 2πW e

1.13

32
χ7/3 (c − c0)

2 . (34)

For the experiments mentioned in Table 1 We can be calculated using the given values of UT . For the χ = 2.4
case W e = 3.9 and for χ = 2.7 we find W e = 6.6.
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Carrying out the averaging described in Eq. (32), we obtain a correction to the value of the calculated
frequency in Table 1. The corrected values are given in Table 1, in the fifth column. They are still above the
experimental values but the trend in those, lower frequency for higher χ , is now present in the calculated values
also.

7 Discussion

For a sphere the considered eigenmode is a spherical harmonic. The eigenmodes of ellipsoids have not been
calculated analytically. In experiments frequencies are measured but not the eigenmodes, shape etc. The best
reference is the beautiful paper [7] by Meiron, he calculated numerically a number of eigenmodes . His resulting
frequencies are all of them higher than the experimental results in [6,8], as is shown in Fig. 3. For comparison
we have included the pertinent values in Table 1. They are definitely closer to the experimental values than
our results.

Meiron considered as we did a bubble rising in pure water. His calculation allows the bubble to assume a
shape deviating from an ellipsoid. Indeed, it is known that a rising bubble has only approximately an ellipsoidal
shape. In [1] it is shown by inspecting experimental results that there is an asymmetry about the equatorial
plane. We suggest that this is the reason for the better fit of Meiron’s [7] results.

An interesting approximation was introduced by Lunde and Perkins in [6]. They argued that for the (2,0)
mode the wave length must be the distance from pole to pole , which is reasonable, and that the speed of the
wave along the surface must be close to the speed of propagation of a capillary wave over a flat surface. These
assumptions result for the (2,0) mode in

ω =
(

16
√

2χ2

(
χ2 + 1

)3/2

)1/2 (
σ

ρr3
eq

)1/2

. (35)

The result in Eq. (35) fits, [6], rather well with experiments for χ about 2, shown in Fig. 3. This is very
remarkable for two reasons. The first concerns taking for the wave speed the speed of a plane wave. One would
expect that this is a good approximation when on the scale of a wave length the surface is flat, that means when
the wave length is small with respect to the local radius of curvature. For the (2,0) mode this is by no means
the case, near the equator the radius of curvature is on the contrary small with respect to the wave length. This

observation is corroborated by applying (35) to a sphere for which the exact [10] value of ω is 3.46
√

σ/ρr3
eq,

whereas the approximation of Eq. (35) gives 2.83 for the numerical factor, much farther off than for higher
χ . Incidentally, our result, not corrected with Ev , gives 3.89. This is close to the exact value. Indeed, a sphere
remains spherical only at zero rise velocity, so no correction is needed.

The second reason is that the energy due to the fluctuating vertical velocity, calculated in the present paper
in Sect. 5, is not taken into account in the approximation leading to Eq. (35). It must therefore be considered
as a (lucky) coincidence that the approximation represented by Eq. (35) works so well.

Fig. 3 Nondimensional frequency ω (rad/s) as a function of axes ratio χ . We are concerned with the upper data; bullet mode (2,0)
from experiments [8], circle with dash dotted line Meiron’s [7] results for (2,0) mode, dash dotted line aproximation, Eq. (35),
by Lunde and Perkins [6]. From [8]
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8 Volume oscillations of an ellipsoid

The oscillations with which we occupied ourselves in the previous sections are volume conserving. Gas filled
bubbles can also perform volume oscillations. These are responsible for the emission of sound of streams and
brooks [16], as well for the sound of rain on water [17]. In [16], a famous paper, Minnaert calculated the
frequency of the breathing mode for a sphere. It is of interest to consider the breathing mode for an ellipsoid.
The only paper that we have found on this subject is [18], by Strasberg. He used the fact that since we are dealing
with potential flow, results from other fields governed by the potential equation may be used, as electrostatics or
steady heat conduction. Working along this line, Strasberg could connect the problem of a breathing ellipsoid
to that of finding the electric capacitance of such a shape. Using known results in that field, he calculated some
value of the breathing frequency ω.

The solution of the potential equation represented in Eq. (6) that we used in previous sections represents a
quadrupole. For the breathing mode we need the much simpler source solution. The solution for which

ȧ

a
= ċ

c
= ḃ

b
, and a = b, is (36)

φ = −1

3
V

(
ȧ

a
+ ċ

2c

) ∞∫

λ

ds

F(s)
, (37)

F(s) being given by Eq. (7). This potential can be found in [11]. Working out the integral for λ = 0 results in
the following expression on the ellipsoid:

φ = V
ċ

c2

(
χ2 − 1

)1/2 cos−1χ−1

χ
. (38)

The kinetic energy can be calculated with help of Eq. (17). Inserting Eq. (38) into Eq. (17), we obtain for the
kinetic energy Eo:

E0 = 2πρV

(χ2 − 1)1/2 (V c)1/2
(

ċ2

c2

)

cos−1χ−1. (39)

Next we calculate the potential energy

Epot = 4π

3

⎧
⎪⎨

⎪⎩
p0 (V − V0) −

V∫

V0

pdV

⎫
⎪⎬

⎪⎭
. (40)

Here V is as given in Eq. (3) whereas p denotes gas pressure, in equilibrium it has the value p0. Under adiabatic
behaviour and with ratio κ between specific heats, the right hand side of Eq. (40) can be easily evaluated. We

Fig. 4 Nondimensional frequency of volume oscillations (breathing mode) of ellipsoids as a function of the axes ratio χ . The
solid line represents the right hand side of Eq. (42).The *’s are values calculated by Strasberg [18]
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again vary c according to Eq. (4), but now change the other axes as prescribed in Eq. (36). Then we obtain to
second order in (c − c0)

Epot = 6πκp0V0

(
c − c0

c0

)2

. (41)

Taking again the perturbation c − c0 as in Eq. (4), averaging the right hand sides of Eqs. (39) and (41) results
in

ω2 = 3κp0
ρr2

eq

(
χ2−1

)1/2

χ1/3cos−1χ−1 . (42)

For χ = 1 the well known Minnaert frequency is recovered. For values χ > 1, values as follow from Eq. (42)
are presented in Fig. 4, together with values calculated in [18], both normalised with (3κp0/ρr2

eq). Evidently,
there is excellent agreement.

9 Conclusion

We have considered an ellipsoidal bubble performing an axisymmetrical oscillation whereby the minor axis
fluctuates periodically, the volume remaining constant. Compared with the corresponding eigenmode as mea-
sured we find that the calculated values of the eigenfrequency are too high and also that they increase with the
axes ratio of the undisturbed ellipsoid. We demonstrate that the latter discrepancy disappears when the energy
fluctuation due to the fluctuating rise velocity is taken into account. We ascribe the first mentioned deviation
from the experimental values to the fact that in reality a rising bubble is only approximately an ellipsoid.

In the final part of the paper we calculated the frequency of volume oscillations of ellipsoidal bubbles as a
function of the axes ratio and we have compared our results with other works.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are
credited.
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