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Abstract
Molecular docking simulation is a very popular and well-established computational approach and has been extensively used to 
understand molecular interactions between a natural organic molecule (ideally taken as a receptor) such as an enzyme, protein, 
DNA, RNA and a natural or synthetic organic/inorganic molecule (considered as a ligand). But the implementation of dock-
ing ideas to synthetic organic, inorganic, or hybrid systems is very limited with respect to their use as a receptor despite their 
huge popularity in different experimental systems. In this context, molecular docking can be an efficient computational tool 
for understanding the role of intermolecular interactions in hybrid systems that can help in designing materials on mesoscale 
for different applications. The current review focuses on the implementation of the docking method in organic, inorganic, 
and hybrid systems along with examples from different case studies. We describe different resources, including databases 
and tools required in the docking study and applications. The concept of docking techniques, types of docking models, and 
the role of different intermolecular interactions involved in the docking process to understand the binding mechanisms are 
explained. Finally, the challenges and limitations of dockings are also discussed in this review.
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Introduction

Docking is a computational modelling technique. It predicts 
the best energy-minimized pose of one molecule to a second 
molecule when bound to each other to form a stable complex 

in a virtual way to complement the experimental method 
[1–4]. It is rapid and cost-effective compared to the trial-
and-error methods using experimental studies. It can replace 
or provoke experiments. It also helps to explain and under-
stand experiments and creates a map between the theoretical 
and practical aspects of molecular interaction. Sometimes 
using experimental methods, like solution NMR, X-ray dif-
fraction, electron microscopy, solution scattering, and neu-
tron diffraction, it may not be possible to obtain the struc-
ture of a stable complex of two different molecules docked 
together because of cost, research timeline limitation, blind 
and too many parameters to control, difficulty, impossible 
or dangerous to perform experiments, and unavailability of 
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material, etc. So, using such an in-silico mechanism based 
on structural information it is possible to attempt to find the 
best match between two molecules to predict their inter-
molecular attraction or repulsion. Knowledge of preferred 
conformation might speculate the strength of association (or 
binding affinity) between two molecules and result in differ-
ent possible complex structures that are ranked and grouped 
using scoring functions. The molecular docking study evalu-
ates the binding mode of a molecule to the binding pocket 
of another molecule based on the minimum binding energy.

The binding of a small molecule or atom or ion (called a 
ligand) to a biomolecule (termed a macromolecule, recep-
tor, or target) is a common computational study in numeri-
cal noncovalent interaction processes. Accurate and reliable 
prediction of docking results between protein and ligand is 
useful in modern structure-based drug design [5]. Interac-
tion between biologically related macromolecules, namely 
DNA, RNA, protein, carbohydrate, lipid, enzyme, and small 
organic/inorganic molecules or atoms or ions play a central 
role in biological processes, including signal transduction, 
transport, cell regulation, gene expression control, enzyme 
inhibition, antibody-antigen recognition, and the assembly 
of multi-domain proteins. They interact with each other to 
perform a certain biological function together inside a bio-
logical cell. Different relative orientations at specific sites 
of interactive biological entities may alter their functions. 
So, a docking study is essential for predicting the pose of 
biomolecules to dock with each other more precisely. The 
interaction can occur between any two molecules, like DNA-
ligand, RNA-ligand protein–protein, protein-RNA, protein-
DNA, protein-drug, protein-nanoparticle, enzyme–substrate, 
enzyme-drug, etc.

Applications of molecular docking

There are numerous applications of molecular docking 
technique, namely prediction of lowest free binding energy-
optimized structure of a receptor-ligand complex, differen-
tial binding of a ligand to different macromolecular recep-
tors, geometry of a receptor-ligand stable complex, propose 
modification of a lead molecule to increase its efficiency 
for binding to a receptor and to act together performing a 
task, de novo design of candidate molecules based on dock-
ing studies and their library design, study on side effects of 
a candidate molecule because of its interaction with other 
molecules, interaction of a potential drug molecule with 
homologous proteins, understand a protein–protein inter-
action (PPI), assign putative roles to unknown proteins, 
understand the relationships between proteins that form 
multimolecular stable complexes like proteasome, molecular 
interaction study to understand various biological pathways 
(a number of interactions performed by numerous biological 

molecules in a cell that result in certain other biomolecules 
and accomplishing different biological functions in a cell), 
and prediction of pollutants degraded by enzyme, etc.

The docking technique is also used extensively to inves-
tigate nanomaterials applications in different areas. Nano-
particles are solid colloidal particles (sizes vary from 10 to 
1000 nm) having properties, such as increased surface-to-
volume ratio, magnetism for bigger size particles, chemi-
cal stability, non-toxicity, biocompatibility, high saturation 
magnetization and high magnetic susceptibility, etc. These 
properties are the cause of its beneficial use in antibiotic 
treatment, antimicrobial (antiviral, antibacterial, antifouling, 
antifungal), nanocomposite coating, catalyst, and lubricants 
and thus are needed in biomedical applications such as tar-
geted drug delivery, hyperthermia, photoablation therapy, 
bioimaging, biosensors, cell labelling, and gene delivery, 
etc. Many docking studies have been carried out to under-
stand the molecular interaction between biomolecules and 
inorganic or organic (synthetic/natural) nanoparticles due to 
their uses in biomedical applications [2].

Databases and tools used in the docking 
study

The increased availability of three-dimensional structural 
information of molecules using different major reliable data-
bases, protein structure prediction tools, macromolecular 
structure validation and quality assessment tools, chemical 
molecule drawing tools, etc. assist in preparing the mol-
ecules for docking. Rapid advance in the development of 
reliable computational docking tools, docking web servers 
contribute to solve the unknown problems by docking study 
between different types of molecules or atoms or ions inter-
acting with each other. Chen has listed down docking data-
bases and webservers in their review [6]. Although there are 
many accurate reliable docking algorithms emerging, limi-
tations and challenges are still there because of imperfec-
tions in their scoring functions, handling protein flexibility, 
explicit water, etc. Docking software can be evaluated and 
their limitations can be overcome by benchmark testing with 
Critical Assessment of PRediction of Interactions (CAPRI) 
[7]. Various types of databases, software programs, and web 
servers used in different steps in the docking technique are 
listed in Table 1.

Molecules used in docking studies 
and binding energy calculation

When two molecules, in close proximity, favorably interact 
with each other, they bind to form a stable complex. The accep-
tor molecule is termed a receptor or target or macromolecule 
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(though it is bigger in size compared to the second molecule) 
and the received molecule by the receptor is termed a ligand. 
The site where binding happens is known as the active site or 
binding site or binding pocket. The stable complex formed is 
termed a receptor-ligand complex as shown in Fig. 1. There 
are many different types of noncovalent interaction forces that 
cause the receptor and ligand to bind together to form a stable 
complex. Those are torsional, hydrophilic, hydrophobic, van 

der Waals, electrostatic, hydrogen-bonding, and desolvation, 
etc. So, the main goal was to find the most stable receptor-
ligand complex with optimized geometry and minimum bind-
ing energy.

The energy score and energy terms of binding pose are cal-
culated using scoring functions. The ongoing scoring functions 
applied in different docking algorithms are of four types as fol-
lows: i.e., force-field-based, empirical, knowledge-based, and 
machine-learning-based [8, 9]. Force-field based scoring func-
tions use different non-covalent types of force fields to predict 
the protein–ligand interactions. Non-covalent interactions, 
such as van der Waals (∆EVDW), electrostatic (∆Eelectrostatic), 
hydrogen bonding (∆EH-bond), desolvation (∆Gdesolvation) con-
tribute towards the total binding energy. The extensively used 
generalized functional form of energy calculation in such type 
of scoring function is given as follows [9]:

Second type of scoring function is empirical-based that 
calculates the fitness of binding between protein and ligand 
by adding the contribution from each energetic factor of the 
protein–ligand binding. In case of GOLD docking software 
program, the scoring function, ChemScore (the higher is the 
score the better is the docking result) is calculated as follows 
[10]:

(1)
ΔGbinding = ΔEVDW + ΔEelectrostatic + ΔEH - bond + ΔGdesolvation

Table 1  List of databases, 
software programs and web 
servers used in different steps in 
docking method

Type of database Database

Macromolecular structures Research Collaboratory for Structural Bioinformatics 
Protein Data Bank (RCSB PDB) [22]

Protein Data Bank in Europe (PDBe) [121]
Protein Data Bank Japan (PDBj) [122]
Biological Magnetic Resonance Data Bank (BMRB) [123]
Electron Microscopy Data Bank (EMDB) [124]
Molecular Modeling Database (MMDB) [125]
Worldwide Protein Data Bank (wwPDB) [126]
Electron Microscopy Data Bank (EMDB) [124]

Nucleic acid structures Nucleic Acid Database (NDB) [127]
Chemical compound structures PubChem [39]

DrugBank [40]
Chemical Entities of Biological Interest (ChEBI) [128]
ChEMBL [129]
ChemSpider [130]
ZINC [131]
eMolecules

Biomolecular complexes binding affinity PDBbind [132]
Binding site of protein LIGand Attachment SITE (LigASite) [45]
Protein–ligand interaction BioLiP [133]
Protein–ligand binding affinity BindingDB [134]

MOAD [135]

Fig. 1  Receptor-ligand docked complex. Docking of a small molecule 
“Ligand” (cyan) to a bigger size molecule “Receptor” (yellow) to pro-
duce a stable docked complex. (Color figure online)
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where SH-bond, Smetal, Slipophilic are rewarding scores for 
hydrogen bonding, coordinate bonding with metal ions and 
lipophilic contacts, respectively, whereas the Protor, Pstrain, 
Pclash, Pcovalent and Pconstraint are the penalties assigned for 
frozen rotatable bonds, ligand’s internal strain energy, steric 
clashes between protein and ligand, covalent type docking, 
and restrained docking.

The third category of scoring function is knowledge-
based scoring function which computes the binding score 
as the sum of statistical pairwise potentials between protein 
and ligand as follows:

where wij (r)is the potential between any pair of two atoms 
i and j at a distance of r and is calculated by the Boltzmann 
inversion as follows:

where gij(r) is radial distribution function (RDF) of the atom 
pair i−j separated at a distance of r, KB is Boltzmann con-
stant, T is temperature, ρij(r) stands for the density of the 
atom pair i−j set apart at a distance of r, and ρij

* denotes 
density of the atom pair i−j in a reference state, in which the 
interactions between atoms are taken as 0.

The fourth category of scoring function is machine-learn-
ing (ML) based. It learns the functional form of binding 
affinity from the training data. The complicated functional 
form applies ML methods, namely deep neural network 
(DNN), convolutional neural network (CNN), graphical 
neural network (GNN), support vector machine (SVM), ran-
dom forest (RF), eXtreme gradient boosting (XGB) [11–14]. 
Quantity structure activity relationship (QSAR) analysis can 
be useful to model biological, physicochemical, and phar-
maceutical properties of the ligand. Similarly, the properties 
of the protein, and patterns in the protein–ligand interaction 
can be modelled using some potential descriptors and ML 
methods can be applied in QSAR analysis to attain a statis-
tical model to calculate the protein–ligand binding score. 
Scoring functions are discussed more in detail elsewhere 
[8, 9, 15]. Here we are showing functional form of empirical 
free energy calculation in AutoDock.

In AutoDock docking tool, the net free energy calcu-
lated in a docking process is summation of different types 
of potentials, including van der Waals (ΔGvdW), hydrogen 
bonding (ΔGH-bond), electrostatics (ΔGelec), tortional (ΔGtor), 

(2)

ChemScore = SH - bond + Smetal + Slipophilic + Protor + Pstrain

+ Pclash + Pcovalent + Pconstraint
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and desolvation (ΔGsol) [16]. The net change in free energy 
calculation in AutoDock is given as follows:

where ΔG are the coefficients of different potentials obtained 
from different studies of receptor-ligand complexes accom-
panied by known binding constants. The sum is carried out 
for each pair of ligand atom, i, and receptor atom, j and to 
each pair of atoms in the ligand separated by three or more 
bonds. The in-vacuo contributions consist of three following 
interaction energy terms: (i) Lennard–Jones (12–6 disper-
sion/repulsion); (ii) a directional 12–10 hydrogen bonding, 
where E(θ) the directional weight based on the angle, θ, 
between the probe and the target atom; and (iii) a screened 
Coulombic electrostatic potential [17, 18]. Detailed of their 
parameterizations have been described by Morris et al. [19]. 
A measure of the unfavorable entropy of ligand binding is 
added to the in-vacuo function. This entropy term is because 
of the restriction of conformational degrees of freedom and 
is proportional to the number of  sp3 bonds in the ligand, Ntor 
[20]. The functional forms of various scoring functions used 
in different docking algorithms are presented elsewhere [21].

Important steps in the docking technique

The steps in a docking procedure are explained in the 
following.

Receptor selection

Based on the input file format needed in a software tool (varies 
from one software to another), three-dimensional structural 
information of a receptor in any of the file formats, like pdb, 
mol2, sdf, smi, xyz, and cif, etc. is given as input. The pdb 
file format is accepted commonly in most of the docking soft-
ware tools and web servers. High-resolution three-dimensional 
structural information of a receptor can be obtained by experi-
mental methods, namely solution nuclear magnetic resonance 
(NMR), X-ray diffraction, electron microscopy, solution scat-
tering, and neutron diffraction or downloaded from any struc-
tural database, such as, RCSB PDB [22]. Structural informa-
tion of molecules if not available by experimental methods or 
structural databases can be obtained by any drawing tool like 
Avogadro [23]. For proteins, homology modeling or thread-
ing can be done to predict the structures of unknown proteins 
but gives less accurate results compared to structures obtained 
from PDB. Machine learning can also be useful for protein 
structure prediction [24]. The quality of the structure can be 
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checked using any validation software, such as PROCHECK 
[25].

Receptor preparation

After selecting the target macromolecule it is prepared 
for docking. Ligand, cofactor, ion, lipid, water, solvent, 
and other unnecessary molecules if present along with 
the receptor (usually these co-crystallized molecules are 
found in a database) are removed by any molecule editor 
program namely PyMOL, Chimera, AutoDock as presence 
of these molecules in the binding pocket of the target may 
obstruct the binding of the ligand [26, 27]. Schiebel and 
Barillari have elucidated the fascinating role of water in pro-
tein–ligand interaction [28, 29].

Despite the fact that involvement of water molecules in 
receptor–ligand interaction is not well understood, they work 
in either of the two ways as follows: (1) being removed from 
the binding cavity of receptor that results in increase in bind-
ing affinity between the receptor and the ligand as displace-
ment of water molecules may encourage ligand to bind to its 
receptor; (2) remains in the binding pocket to make the inter-
action more stable because water molecules get involved in 
making hydrogen bonds with ligand and receptor at the same 
time forming hydrogen-bonding network which makes sta-
ble binding between them. Hydrated docking (water medi-
ated protein ligand docking) can be performed by docking 
software suites AutoDock vina, GOLD, GLIDE [30–33]. 
These tools permit water molecules to be switched on or 
off during the docking process [34]. After removing water 
molecules, missing atoms are added, multiple or low occu-
pancies are refined, chain breaks are repaired and included, 
hydrogen atoms are added to protonate the molecule which 
is necessary especially in the binding site though these may 
be involved in any type of interaction with the ligand. The 
accurate protonation of the target receptor molecule gives 
good docking result with correct prediction of van der 
Waals surface and dipole moment in the binding pocket. 
Programs like AutoDock, Reduce, Maestro (Schrödinger), 
PropKa, Chimera are used for protonation of receptor [26, 
27, 35, 36]. Metal ionization states are corrected to deal 
with accurate formal charge and force field. Bond order to 
HET groups is counted. In case of proteins or peptides, some 
mutated amino acids may be found in structures deposited 
in PDB for stability, crystallization and other biochemical 
causes which can be changed to wild residues specifically 
in the binding pocket; capping termini is done with ACE 
(N-terminal capping acetyl group) and NME (C-terminal 
N-methyl amide capping group) residues. The stable confor-
mation of the receptor is obtained by relaxing it that permits 
hydrogen atoms to move and freely minimized and heavy 
atoms to move sufficient enough to make strained bonds, 
angles, and clashes relaxed. Structural optimization can be 

done to minimize the energy to get the most stable confor-
mation by programs, such as Avogadro, UCSF Chimera’s 
Dock Prep, Schrödinger’s Protein Preparation Wizard and 
molecular operating environment (MOE) programs [23, 
37, 38]. The partial charges (also called as point charges) 
are added to each atom to predict the electrostatic potential 
around a receptor molecule because of Coulombic interac-
tion between the point charges. The receptor should be taken 
as a flexible body to reflect the real-time analysis of ligand-
receptor dynamics (ex: amino acid residues in the binding 
site may be involved in binding).

Ligand selection and preparation

Structural information of a ligand molecule or atom or ion 
can be obtained similarly from any structural database, 
including PubChem, DrugBank, and PDB etc. or drawn 
using any chemical molecule drawing tool, like ChemDraw, 
Avogadro, ChemIDplus, ACD/ChemSketch freeware, BIO-
VIA Draw, ChemSpider, and PubChem Sketcher, etc. [22, 
23, 39–44]. They should be treated as flexible bodies as 
well except for ring conformations. The number of rotatable 
bonds is calculated. The more the number of rotatable bonds, 
the more difficult and time-consuming the docking process 
will be due to the increase in search space. The ligand geom-
etry should be optimized to have a stable conformation by 
any structure optimization tool, such as Avogadro, UCSF 
Chimera’s Dock Prep, NAMD tool and the atomic partial 
charges are then assigned to it by partial charges addition 
tool, such as UCSC Chimera (Table 2).

Docking

The ligand can be docked into the binding pocket of the 
receptor either using the known location of the active site 
(active-site docking) or searching for it (blind docking). If 
the structure of a holoprotein (protein bound with ligand) 
gets available then the binding site information can be use-
ful for active-site docking. Otherwise, binding site predic-
tion tools, namely LigASite [45] can be useful to predict 
the binding pocket information. In the molecular docking 
process, the search space to fit the ligand is explored consid-
ering the flexibility of both receptor and ligand.

Different approaches used to predict the binding site 
depend on (1) templates, (2) energy functions, (3) geo-
metric considerations, and (4) machine learning [46]. The 
template-based approach predicts the binding site of a given 
protein using well-studied proteins having similar structures 
with known binding pocket information. The energy-based 
approach guesses the binding pocket information by using 
energetically favorable regions of the protein to bind the 
ligand in it. The geometry-based approach uses the geom-
etry of the protein to find binding pocket of it. Machine 
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Table 2  List of software 
programs/web servers used 
for different steps in docking 
process

Aim Software program/web server

Protein structure prediction IntFOLD [136]
Schrödinger Prime [137, 138]
AlphaFold2 [24, 139]
RaptorX [140, 141]
Biskit [142]
EsyPred3D [143]
FoldX [144]
Phyre and Phyre 2 [145]
HHpred [146]
MODELLER [147]
CONFOLD2 [148]
Molecular Operating Environment (MOE)
ROBETTA [149]
BHAGEERATH-H [150]
SWISS-MODEL [151]
Yasara[87]
AWSEM-Suite (Associative memory Water 

mediated Structure and Energy Model) 
[152]

trRosetta [153]
I-TASSER [154]
Rosetta@home [155]
Abalone

Macromolecular structure validation and quality assess-
ment

CheckMyMetal [156, 157]

MolProbity [158]
NQ-Flipper [159]
Procheck [25, 160]
ProSA-web [161]
Verify3D Structure Evaluation Server
WHAT IF [162]
WHAT_CHECK [163]

Chemical molecule drawing ChemDraw [41]
Avogadro [23]
ChemIDplus
ACD/ChemSketch freeware [42]
BIOVIA Draw [42]
ChemSpider [42, 43]
PubChem Sketcher [44]
Marvinsketch
OpenEye Omega [164]
Schrodinger LigPrep

Molecule visualization PyMOL [66]
Schrodinger Maestro
VMD [67]
Avogadro [23]
UCSF Chimera [26]

Molecule protonation AutoDockTools (ADT) [100]
Reduce [35]
Schrodinger Maestro
PropKa [36]



689Molecular docking in organic, inorganic, and hybrid systems: a tutorial review  

1 3

learning approaches learn from existing vast amount of 
high-resolution protein structure data available in different 
structure databases and generalize competently to new data 
and predicts the binding pocket information more accurately 
than the other three approaches. The available structural 
protein–ligand binding data are collected and then normal-
ized and used to guess the binding site information of the 
input protein by machine learning approaches, like shallow 
supervised learning algorithm, artificial neural network, 
convolutional neural network, and ensemble methods. Data 
acquisition and preprocessing, feature engineering, model 
development, training–testing, hyperparameter tuning and 
evaluation are the five important steps in machine learning 
approach to bind the binding site information of a given pro-
tein. A simplified view of machine learning based approach 

is shown in Fig. 5. Different methods to search for binding 
site information of a given protein is discussed more in detail 
[46].

There are three main approaches that treat the ligand 
as flexible used in various popular docking algorithms for 
searching conformational space [15] As follows: (i) sys-
tematic search (incremental construction, conformational 
search, databases), (ii) random/stochastic search (Monte 
Carlo, genetic algorithms, tabu search), (iii) simulation 
method (molecular dynamics, energy minimization). The 
energy score and energy terms of each binding pose are 
calculated using scoring functions. Search approaches are 
discussed in depth by Kitchen et al. [15].

A scoring function is a mathematical function that is 
used to predict the binding affinity between a receptor and 

Table 2  (continued) Aim Software program/web server

UCSF Chimera [26]
Structural optimization Avogadro [23]

UCSF Chimera’s Dock Prep [37]
Schrödinger’s Protein Preparation Wizard [38]
Molecular Operating Environment (MOE)
NAMD [165]

Binding site prediction GHECOM [166]
Schrödinger SiteMap [167]
FTMap [168, 168]
COACH [170]
SURFNET [171]
Fpocket [172, 173]
Depth [174]
AutoSite [175]
DeepSite [176]
DeepCSeqSite [177]

Computational docking AutoDock [16, 19, 27, 100, 104, 109, 110]
AutoDock Vina [55, 95]
SwissDock [98]
PatchDock [120]
Hex [105]
HADDOCK [178]
GOLD [179]
Schrodinger Glide [30]
DOCK [180]
HDock [181]
ClusPro [96]
NPDock [182]
MIB2 [183, 184]
RosettaDock [185]
FlexX
Surflex
FRED/HYBRID

Partial charges addition UCSF Chimera [26]
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a ligand when they are bound to each other. The scoring 
function is used to evaluate and give a ranking of predicted 
possible ligand conformations in the docking result. Ideally, 
the best-scored ligand is the best binder having the highest 
binding affinity to the receptor. There are four categories of 
scoring functions used in different docking algorithms [8, 
9] as follows: (i) force-field-based, (ii) knowledge-based, 
(iii) empirical, and (iv) machine-learning-based. First three 
(i, ii, and iii) categories are classical type scoring functions. 
Force-field based or physics-based scoring functions are cal-
culated using interaction due to van der Waals, electrostatic, 
desolvation. The docking software, such as GoldScore, early 
versions of AutoDock and DOCK, employ force-field based 
scoring function [33, 47–49].

Knowledge-based or potential of mean force scoring 
function use statistical inspections of potentials obtained 
from experimentally found three-dimensional protein–ligand 
structures and predict the potential of mean force by inverse 
Boltzmann distribution. Examples of such type of scoring 
functions are PMF, DrugScore, SMoG and ITScore, KECSA 
[50–54].

Empirical or regression-based scoring function depends 
on list of weighted scoring terms contributed by different 
types of intermolecular interactions, such as van der Waals, 
hydrogen bonding, hydrophobic, desolvation, electrostat-
ics, number of rotatable bonds (entropy), and many more 
(similar to force-field-based scoring function). The weighted 
scoring terms are derived by regression analysis of experi-
mentally derived binding energy and three-dimensional 
structural information of known protein–ligand complexes 
(similar to Knowledge-based scoring function). Examples 
of empirical-based scoring functions are LUDI, Chem-
Score (employed in GOLD), GlideScore (implemented in 
Glide), X-Score, F-Score, SCORE, Fresno, Vina, Lin_F9 
[20, 55–60].

Machine-learning (ML) or descriptor-based scoring 
functions use machine learning techniques. The functional 
form of binding affinity learns from the existing data (train-
ing data). Docking tools using ML scoring functions give 
more accurate docking results compared to classical scoring 
functions-based docking tools. These ML scoring functions 
employ ML methods, such as deep neural network (DNN), 
convolutional neural network (CNN), graphical neural net-
work (GNN), support vector machine (SVM), random forest 
(RF), eXtreme gradient boosting (XGB) [11–14]. Scoring 
functions are discussed more in detail elsewhere [8, 9, 15].

Evaluation and analysis of docking result

After the docking simulation ends, evaluation and analy-
sis of the docking results are important steps to interpret 
the docking result. Best binding pose (i.e., orientation and 

geometry), closest to native structure with top score (highest 
docking score) is chosen based on the estimated lowest bind-
ing energy. In the docking result, all potential hydrogen bond 
acceptors and donors of the ligand should be satisfied [61], 
charged groups in the ligand should interact with oppositely 
charged groups of the receptor. The accuracy of the docking 
result closest to native structure can be verified by similar-
ity checking with the experimental data if available. The 
certainty of the best binding pose chosen can be evaluated 
bythe following approaches: (1) calculated root mean square 
distance, also called as root mean square deviation (RMSD, 
that is used to predict the correct geometry, orientation, and 
position of the ligand) value of the successful predicted pose 
of the ligand from its reference native pose must be less than 
2 Å, and (2) comparisons of different types of protein–ligand 
intermolecular complex interactions, such as van der Waals 
(vdW), electrostatic, hydrogen bonding, tortional, and des-
olvation for the estimated pose and experimentally derived 
one [62–65]. The second approach, i.e., based on key inter-
actions could be a better relevant approach to measure the 
docking accuracy. Combination of approaches with key 
interactions and shape complementarity between the recep-
tor and ligand could also be helpful to verify the correctness 
of the docking result [62]. Accuracy of the obtained ligand 
conformations can be checked by visualizing and comparing 
the molecular interactions between the observed and experi-
mental result [62]. Molecular three-dimensional structural 
visualization tools, namely PyMOL, VMD, UCSF Chimera 
can be useful to view and inspect the docking result [26, 66, 
67]. The predicted binding affinity between a receptor and a 
ligand is measured by the calculated binding free energy to 
bind the two molecules, which can be estimated by different 
scoring functions used in different docking tools in terms 
of scores. These scores cannot be compared directly with 
the experimentally derived binding data [8]. An extensively 
used measure, Pearson correlation coefficient (PCC) can be 
applied to find the linear correlation between the experimen-
tally derived binding data and scores predicted by docking 
tools for sets of test data [68, 69]. Alternative measure is by 
applying Spearman ranking correlation coefficient to rank 
the predicted and experimentally derived scores and then 
find the statistical relationship between the two ranked sets 
[70].

Virtual screening (a computational method used in drug 
discovery to find the best possible candidates among large 
number of molecules available to bind with a target mol-
ecule (e.g., protein or enzyme). The screening capability 
and predictive ability of good hits depends on the power of a 
scoring function used in molecular docking. The area under 
the receiver operating characteristic curve (AUC) and best 
1% enrichment factor (EF1%) can be used to see the rank-
ing performance of a scoring function [71]. How good the 
best candidates have been ranked is assessed by AUC which 
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gives a value 1.0 to the accurate ranking results and 0.5 
for random ranking results. The ratio of percentage active 
compounds of top 1% of the ranked compounds and overall 
percentage of active compounds is termed as EF1%. After-
wards, EF1% can be normalized to have NEF1% by dividing 
estimated EF1% by the best EF1%. NEF% checks the quality 
of ranking performance of scoring function accurately by 
checking the value 1.0 means most of the active compounds 
are ranked in top 1% of the ranked compounds and the 
value 0 means none of the compounds are selected as active 
[72]. Comparative assessment of scoring functions (CASF) 
evaluates the performance of a scoring function [68, 69]. 
The scoring function gets analyzed by its scoring, ranking, 
docking, and screening power using by CASF benchmark. 
LIT-PCBA benchmarking datasets can be useful to evaluate 
the quality of a scoring function in machine-learning based 
virtual screening [73].

Moreover, molecular dynamics (MD) simulation can be 
used in the next step to affirm and refine the model of the 
docking complex [74–76].

The best docking result can be interpreted with all types 
of information that tells how, why and where the ligand 
binds with the given receptor. It includes 3D structural 

information of the receptor-ligand complex, details about 
the interacting residues, any type of contact within a certain 
distance Ex: 3, 3.5, 4 Å, polar contacts, π–π and π-cation 
interactions, binding affinity, docking score, net binding 
energy with contributions from different types of interac-
tion potentials, such as van der Waals (vdW), electrostatic, 
hydrogen bonding, tortional, and desolvation, RMSD value 
from the reference conformation. Visualization of different 
type of interactions (hydrogen bonding, hydrophobic, ionic, 
aromatic, π-π, π-cation) and regions of contact the receptor 
makes with the ligand in the binding cavity aids in confirma-
tion of the binding stability.

Types of docking

Docking study can be of three types, namely rigid docking, 
flexible-rigid docking, and flexible docking (based on the 
flexibility of the interacting molecules, receptor, and ligand) 
as shown in Fig. 2 [77]. Flexible docking gives more reli-
able and accurate results because the relative bond angle 
and bond length of molecules may vary. Pagadala and his 

Fig. 2  Different types of dock-
ing studies based on flexibility 
of receptors/ligands considered 
in molecular interaction. (Color 
figure online)
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co-workers have presented a review on different molecular 
docking programs based on rigid and flexible docking [78].

Rigid docking

In rigid type docking, both ligand and receptor molecules 
are considered rigid bodies. Their shape is not changed and 
thus the internal geometry of each molecule is kept fixed. 
Its position can be varied and thus the translational and rota-
tional degrees of freedom are only considered. This is an 
early docking method that can be carried out between mac-
romolecules, such as two protein molecules and the result is 
less accurate and unreliable and thus is less frequently used 
in current docking studies. The lock-and-key principle can 
be applied in this method [79].

Flexible‑rigid docking

It is a semi-flexible docking method. In this case, either 
ligand or receptor is taken as a rigid body. Usually, the shape 
of the receptor is kept fixed, and the conformation of the 
ligand is varied. This method gives more accurate and bet-
ter reliable results than the rigid docking method and is thus 
frequently used.

Flexible (soft) docking

It is a fully flexible docking method, in which both ligand 
and receptor are considered as flexible bodies, i.e., an enu-
meration of rotations of the molecules (both receptor and 
ligand) is done to search for optimized conformation and 
orientation of the molecules to interact with each other. 
The molecule’s shape can be varied by changing the torsion 

angles and rotatable bonds. This method results in the pre-
diction of docked conformation with high accuracy that most 
probably resembles experimental results but may require 
heavy computational calculation and time.

In both semi-flexible and fully flexible docking meth-
ods, the induced-fit principle can be implemented, and the 
docking process becomes complicated when the interacting 
molecule has many conformational degrees of freedom [79].

Importance of structural information 
of receptor’s binding pocket in docking 
study

A receptor interacts with a ligand at its binding site. But the 
docking study can be done with or without using the binding 
site information as shown in Fig. 3 [4].

Blind docking

Docking without taking into consideration the structural 
information of the binding or active site (where the ligand 
is expected to bind and interact with it) of the receptor mol-
ecule is called blind docking. If the ligand under study does 
not interact with the receptor in its binding site (the receptor 
may have a binding pocket where it interacts with its another 
partner ligand in nature), or the location of the binding site is 
unknown then the entire surface of the receptor is searched 
for the binding pocket to accommodate the ligand. If it is 
not possible to target the whole receptor molecule, then pos-
sible pockets can be searched to accommodate the ligand. 
This type of docking study is usually done to investigate the 
possible interaction between a novel protein and a ligand 
under study.

Fig. 3  A A yellow dashed 
line rectangular docking box 
is created around the recep-
tor’s whole surface. The whole 
surface is scanned for a possible 
binding pocket to dock with the 
ligand. The ligand is connected 
in the best binding site to make 
a stable complex. B The dock-
ing box is created around the 
receptor’s binding site surface. 
The ligand is connected to the 
binding site to make a stable 
complex. (Color figure online)
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Active site docking

A docking study based on the binding site information of the 
receptor is called active site or site-specific docking. Previ-
ously found results about the position of the binding pocket, 
active residues of the receptor, and binding modes of known 
ligands in the binding site reduce the search area of inter-
est and thus increase the speed and effectiveness of dock-
ing search. Sometimes for well-studied protein molecules, 
knowledge of the binding pocket information can be used, in 
case it is not known it can be retrieved by mapping the pro-
tein to its family of well-recognized proteins having similar 
structure and function with known active site information. 
In such a docking process, the ligand binds only in the active 
site and nowhere else.

Models to understand docking study

In the molecular docking method, molecular recognition is 
processed by the computational simulation to find the best 
conformation of ligand and receptor based on different fea-
tures and complementarity of both molecules that predicts 
the binding affinity and interaction between them [79]. There 

are three basic models as shown in Fig. 4, which help to 
understand the docking simulation study more precisely.

Lock‑and‑key

It is the first proposed model suggested by Fisher to predict 
a docked complex of a rigid receptor and a rigid ligand [80]. 
In this type of rigid docking, the ligand is taken as a key and 
the receptor as a lock. The key tries to open the lock based 
on the shape complementarity between the receptor’s active 
site and the ligand. The computation must try to find the 
accurate relative position and orientation of the “key” with 
respect to the lock which will unlock the “lock”. This model 
is quite simple but may not reflect the dynamic behavior of 
molecules (both receptor and ligand). HINT (Hydropathic 
INTeractions) docking program uses the experimentally 
derived solvent partition, LogP values between water and 
1-octanol for modeled organic molecules to estimate and 
predict the score of hydropathic interactions between atoms 
of protein and ligand in the docking process [81]. Cozzini 
and co-workers, in their study have used this program to esti-
mate the binding free energy of 53 protein–ligand complexes 
constructed by 17 known proteins of solved 3D structures, 
available in protein data bank (PDB) and hydrophobic/polar 

Fig. 4  Different docking 
models: (1) Lock and key 
model, (2) Induced-fit model, 
(3) Conformational selection 
model. Among these three 
models, only induced-fit model 
induces a change in the shape 
of the binding pocket. (Color 
figure online)
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ligands. They have demonstrated the hydropathic (lock-and-
key) complementarity HINT interaction maps to ascertain 
the binding between protein and ligand at different pH (3.5, 
4.5, and 5.5).

Induced‑fit

Docking can be better understood by the “hand-in-glove” 
concept which considers the flexibility of the molecules. 
The molecules can change their shape to best fit each other 
while binding. Such type of binding is termed “induced-fit” 
binding. This model was proposed by Koshland to explain 
specificity of enzyme during protein synthesis with the con-
cept that the structural changes in an enzyme get induced 
by a substrate while binding to it at its active site to form a 
stable enzyme-ligand complex [82]. The model hypothesizes 
the interface optimization of the enzyme by conformational 
modifications of its residues present in its active site to react 
with the substrate by physical interactions. Basically, the 
binding site of the enzyme is flexible in shape. Before bind-
ing, the substrate does not fit into the binding pocket of the 
enzyme and while binding, the active site of the enzyme 
undergoes a change in shape to complement the shape of 
the substrate. This model was backed up by the fact found in 
the structures of protein–ligand complex obtained in X-ray 
crystallography experimental method deposited in protein 
data bank (PDB) which validates the enclosure of ligands 
in the binding pockets of proteins and proposes covering 
up the ligands by the binding-site residues after the bind-
ing process starts [22, 83]. The difference between struc-
tural information of a protein attached with a ligand (holo) 
and without a ligand (apo) ascertains the conformational 
alteration of a protein [84]. The ligand binds to the protein 
conformation with least energy and following the initial 
binding process the protein undergoes a conformational 
change. So, the molecules undergo conformational changes 
to fit each other and minimize the net binding energy. The 
result obtained using this model best suits the real fact, 
i.e., the molecules and atoms show physical movements 
in nature. The ligand first binds to the receptor (with its 
original shape) and then causes the structural change in the 
receptor to accommodate it. Without the ligand, the struc-
tural changed state of the receptor may not exist. Flexible 
docking using the induced-fit model permits conformational 
changes while predicting the binding pose in the interac-
tion between protein with other molecules ex: ligand, pro-
tein, or peptide [34, 85]. Fleksy program recognizes both 
ligand and receptor as flexible and can be used for flexible 
and induced-fit docking [86]. In this approach, structural 
ensemble of receptor molecule conformations is produced 
from backbone-dependent rotamer library in to which the 
ligand is docked, the best ranked (ranking based on a con-
sensus scoring function which depends on docking scores 

and molecular dynamics force field interaction energies) 
selected poses follow a refinement step using the Yasara 
program, which includes steepest descent minimization, 
follow a simulated annealing and finally the results with a 
list of minimized docked complexes are obtained [87]. In 
the minimization step, both receptor and ligand molecules 
are allowed to move. Using induced-fit approach Molegro 
Virtual Docker tool docks a ligand against a protein with 
user given constraints, option of removal of water molecules, 
structural alignment of protein and ligand, and ligand-based 
Graphics processing unit (GPU) screening [88]. FiberDock 
is a protein–protein docking refinement web server [89]. In 
the docking process it generates potential candidate docking 
complexes, models their backbone and side-chain residues 
based on their movement in the protein–protein interaction, 
performs refinement of the docking complexes and gives 
scores to them. The flexible refinement of candidate docking 
complexes follows induced-fit model. HADDOCK, a flexible 
protein-peptide docking software uses both the induced-fit 
and conformational selection mode approaches [90]. This 
program yields ensembles of favorable peptide structures 
and these conformations are further refined allowing move-
ment in side-chain and backbone residues and then subjected 
to dock in the binding pocket of the target protein using the 
induced-fit approach.

Conformational selection or population shift

The conformational selection model was proposed by 
Monod, Wyman, and Changeux in 1975, which suggests 
that the unbound receptor exists in different conformational 
states based on relative free energy according to Gibbs dis-
tribution before binding to the ligand and the ligand chooses 
the best fit among them to form the final stable docked com-
plex [91]. The difference between the induced-fit and confor-
mation selection model is that in the case of the induced fit 
model, the ligand binds to the receptor before the structural 
change in the receptor, and in the conformation selection 
model the structural change of the receptor occurs before the 
ligand binding. This model is extensively used even though 
it requires more time and high-throughput computing facili-
ties. HADDOCK protein-peptide docking software uses con-
formational selection and induced-fit approach [90].

Combination lock and key

In the docking study, both lock and key and induced-fit mod-
els represent a simplified view of the interaction between 
ligand and receptor. In real scenario, the interaction is a 
net result of many complicated interaction processes. In 
this view, Tripathi have proposed a combination of lock 
and key model [79]. Combined complementary features of 
receptor and ligand help to understand the stable interaction 
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between them. The more the complementary features fit, 
the better is the binding. The complementary features can 
be (1) geometric properties like shape, size, volume, sur-
face area, bond lengths, bond angles, torsional angles, etc., 
and (2) physicochemical properties like solvation, electro-
static, hydrophobic, polar, nonpolar, van der Waals, etc. For 
molecules, energy-based features change, on the contrary, 
geometry-based features do not change a lot in three-dimen-
sional space. Pharmacophoric chemical features, includ-
ing hydrophobic centroids, aromatic rings, hydrogen bond 
acceptors or donors, cations, anions, etc., geometric features, 
and electronic features of molecules due to the presence of 
electrons contribute towards the net interaction between the 
molecules. Electronic features, like electrostatic, hydropho-
bic, van der Waals have varying field intensity in different 
spatial arrangements of the molecules and thus create a 
unique electric field whose strength depends on the distance 
between the atoms and molecules, and it varies from one 
point to another. Energy contributed by each type of molecu-
lar feature, namely pharmacophoric chemical, geometric, 
and intrinsic electronic towards the net interaction energy 
corresponds to distinct interaction between molecules. The 
pattern of these molecular features in three-dimensional 
space sets in molecular recognition.

This hybrid model is a novel approach and awaits devel-
opment of new docking software using it.

Use of molecular docking in drug design

Molecular docking is an effective method in drug discov-
ery [5]. There are several applications of molecular docking 
simulation in drug discovery, such as to explore the binding 
interaction between protein target and ligand, hit identifica-
tion and optimization (virtual screening), predicting new dis-
ease related targets for existing drugs (drug repositioning), 
reverse screening for target fishing and profiling (prediction 
of targets by ligand-receptor complementarity), multi-recep-
tor ligand design and repositioning, investigating the con-
nection between different targets associated with a particular 
disease (polypharmacology), prediction of structural infor-
mation those are responsible for effective receptor-ligand 
binding (ligand-target binding rationalization) [92]. It can be 
merged with large scale screening methods to recognize the 
binding pocket of a receptor, predict new targets for known 
ligand molecules and speculate the adverse drug effects.

Molecular docking approach can be incorporated with 
artificial intelligence means. Artificial intelligence has 
two subclasses namely, machine learning and deep learn-
ing which have remarkable applications in pharmaceutical 
industry. Machine learning (ML) [a subset of artificial intel-
ligence (AI)] implements statistical methods to upgrade the 

machines with experience and novel data, whereas deep 
learning (DL) (a subcategory of machine learning) empow-
ers the machine to learn from data based on neural network. 
Machine learning and deep learning methods can be used to 
predict the binding pocket information of protein where the 
ligand is bound, binding affinity of the ligand for the protein 
and its binding orientation and geometry effectively.

ML algorithms are of the following two types: (1) 
supervised, (2) unsupervised [93]. Unsupervised machine 
learning algorithms are used to model the training data 
even if output data is unavailable. So, these algorithms 
are employed to group data based on feature similarity. 
On the other hand, in case of supervised machine learn-
ing algorithm, the available output is fed into the algo-
rithm with the input data for training. Dhakal and his co-
workers have categorized machine learning methods in 
2 groups; (1) classical ML (non-deep learning method), 
(2) modern deep learning or simply deep learning method 
[46]. Different classical ML methods and modern deep 
learning methods for prediction of binding site, binding 
affinity between protein and its ligand, prediction and scor-
ing of binding pose of protein and ligand are listed and 
summarized by Dhakal and his coworkers [46]. Machine 
learning learns the interlink between the physicochemi-
cal properties and the interactions between protein and 
ligand from the known binding complexes and implements 
statistical methods to predict the interactions of unknown 
protein–ligand complexes. Figure 5 shows the workflow 
of machine learning method to predict the interaction 
between protein and ligand [46].

The machine learning (ML) algorithms discovers the 
underlying hidden information from existing data. After 
training data set are fed into the algorithm, the ML model 
learns from it automatically. It can identify the hidden 
relationships and patterns lying in the data which is uni-
dentifiable by experts. The ML model while training can 
be validated by validation data set to examine how well the 
model works. Now the model can be executed for a new 
test data and different assessment metrics can be used to 
access the attainment of the model prediction [46]. As this 
model learns from the data, the more the amount of data 
are fed into it, the better it works. There are several widely 
used datasets available, which have useful resources for 
training, validating, and testing data of ML models [46].

Deep learning (DL) method, the subcategory of 
machine learning method is getting more popularity 
because of its potential to detect the hidden complex rela-
tionships within the data. DL method can automatically 
extract biological features from raw data. DL neural net-
works can be employed for predicting pose of a ligand in a 
protein’s binding pocket and ranking it [93]. Conventional 
neural networks can be utilized to visualize protein–ligand 
binding complex in terms of three-dimensional grid and 
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predict binding affinity [94]. DL scoring functions can 
give remarkable result compared to others. Therefore, 
together with the abundance of physicochemical properties 
of protein and ligand along with the modern DL technique 
a very high accuracy can be achieved. In future, with mul-
titasking learning feature, advance DL method can predict 
binding site, binding affinity, binding pose simultaneously 
[46].

Docking in organic, inorganic, and hybrid 
systems

The molecular docking method can be applied to both 
organic and inorganic molecules. An organic molecule 
always contains carbon whereas a pure inorganic mol-
ecule does not contain carbon. The organic molecule can 
be a protein or non-protein or synthetic organic molecule. 
In the interaction study, the organic receptor and ligand 
molecule can be any synthetic organic molecule, such as 
synthetic organic nanoparticle, plastic products made from 
polymers (small repeating molecules), elastomers (flexible 
rubber material), medicine, organic dye, artificial sweeten-
ers like stevia and equal, or bio-organic molecule, includ-
ing carbohydrate, lipid, protein, enzyme, DNA, RNA, or 
organic nanoparticle derived from natural materials, etc. 
The inorganic receptor and ligand can be any molecule 
other than organic molecules and are not found in living 
beings, like ammonia, hydrogen sulfide, all metals, most 
elements (such as calcium) and metal nanoparticles, etc. In 
most of the docking tools, like AutoDock, AutoDock Vina, 
and ClusPro, etc., inorganic molecules are considered 

only as ligands and organic molecules are taken as both 
receptors and ligands [19, 55, 95, 96]. Metal nanoparticle, 
atom, or ion can be taken as an inorganic ligand, but not 
as a receptor in a docking study. In case of binding study 
between protein-metal nanoparticle through molecular 
docking technique, smaller size protein is assumed as a 
receptor and the bigger size nanoparticle as a ligand. The 
types of molecular docking problems depend on the mol-
ecules under study which can be organic, inorganic, or 
hybrid. There are mainly three types of docking problems, 
namely organic-organic, organic–inorganic, hybrid recep-
tor/ligand, and inorganic-inorganic.

Organic‑organic

In this case, both receptor and ligand are organic molecules. 
Analyzing problems, like protein–protein, protein-DNA/
RNA, protein-synthetic organic nanoparticle, protein-
organic ligand, protein-organic drug, DNA/RNA-organic 
ligand, DNA/RNA-organic drug, enzyme-protein, enzyme-
organic substrate, and synthetic organic dye-polymer moiety, 
etc. molecular interactions are examples of organic-organic 
intermolecular docking studies.

Biomolecules‑organic ligand docking case studies

There are many studies over the past that focused on such 
type. Basu A have found a conformational change in the 
receptor, a chain of angiotensin-converting enzyme 2 
(ACE2) after docking to SARS CoV2 spike protein fragment 
by ClusPro web server with binding energy − 779.8 kcal/mol 
as shown in Fig. 6A [96, 97]. The binding complex of SARS 
Cov2 spike protein and ACE2 protein have been taken as a 
therapeutic target for SARS CoV2 treatment with naturally 

Fig. 5  Workflow of machine learning method in predicting protein–ligand interaction [46]. (Color figure online)
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available phytochemicals among which hesperidin was 
found to be the best match after performing docking stud-
ies with several phytochemicals. Docking of the complex 
structure (SARS CoV2 spike protein fragment and ACE2) 
and different phytochemicals were executed with SWISS-
DOCK web server and constructed by EADock DSS [98]. 
The binding affinity of different docking structures of ACE2 
and phytochemicals, in presence and absence of the SARS 
CoV2 spike protein fragment was calculated using Dockthor 
web server [99].

In absence of spike protein fragment, they have per-
formed the docking study between hesperidin (ligand) and 
ACE2 protein (receptor) and the binding affinity was found 
to be − 9.167 kcal/mol. In the second scenario, they have 
carried out the docking study in presence of spike protein 
fragment, in which case the previously obtained docking 
result from ClusPro web server i.e., the organic mixture of 
SARS Cov2 spike protein and ACE2 protein was taken as 
receptor and the organic molecule hesperidin was considered 
as ligand and the binding affinity reduced to − 8.639 kcal/
mol. The docking result found is shown in Fig. 6B. Com-
parison between the binding affinity obtained in these two 
docking studies in absence and presence of spike protein 
fragment concluded that, due to the presence of hesperidin 
molecule the bound complex structure of ACE2 and spike 
protein fragment gained instability and thus they predicted 
that hesperidin may be showing antiviral activity in SARS 
CoV2 infection. In their work, Ricci and Paulo have per-
formed docking between aflatoxin B1 exo-8,9-epoxide, and 
DNA (PDB id: 1MKL) using AutoDock 4.0 (Fig. 6C) [100, 
101].

To understand the possible allosteric inhibiting ability 
of fourteen laboratory-synthesized aromatic compounds 
(derived from 2,3-dihydroquinazolin-4(1H)-one compound 
and considered as ligands) to replace 3,8-diamino-5-ethyl-
6-phenylphenanthridinium bromide (Ethidium Bromide or 
EB) (also referred as ligand) from the calf thymus DNA 
(CT-DNA, also called as 1-BNA dodecamer or B-DNA) 
(PBD ID: 1BNA) (taken as receptor), Kumar has performed 
the molecular docking study between the ligands and the 
CT-DNA receptor by AutoDock Vina tool using Lamarck-
ian genetic algorithm [16, 95, 102]. Among 15 ligands, 
2-(3-nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one) (G13) 
is found to show better binding affinity than other ligands 
based on estimated minimum binding energy with hydrogen 
bonding interaction that helps to understand the potential 
intercalative DNA binding of the compound. The bind-
ing energy in the molecular docking study was − 8.6 and 
− 7.4 kJ/mol for G13 and EB compounds, respectively. One 
hydrogen bond was found between G13 compound and 
nucleotide numbered 22 (DG22, where G stands for Gua-
nine) of CT-DNA with hydrogen bond length 2.224 Å. No 
hydrogen bond was found between EB compound and CT-
DNA. Molecular docking analysis proves that G13 binds to 
the smaller groove (called as minor grooves) of CT-DNA 
more strongly than EB that explains the replacing EB by 
G13 from the minor groove of the DNA. The docking com-
plex results of calf thymus DNA (CT-DNA) with ligands 
G13 and EB are shown in Fig. 7A, B, respectively.

Fig. 6  A Docked complex structure of spike protein fragment of cor-
onavirus (SARS-CoV2) and human receptor angiotensin-converting 
enzyme 2 (ACE2) using molecular docking webserver ClusPro 2.2 
[96, 97]. Spike protein fragment (331–524) is shown in red cartoon 
view, and human ACE2 is shown in blue cartoon view. B Docked 
complex structure of phytochemical “hesperidin” (ligand) and pro-
tein-enzyme bound structure of spike protein fragment of coronavirus 
(SARS-CoV2) and angiotensin-converting enzyme 2 (ACE2) (recep-

tor) using SWISSDOCK web server and EADock DSS [97, 98] Spike 
protein fragment (331–524) is shown in red cartoon view, hesperidin 
molecule is shown in cyan and red stick view and human ACE2 is 
shown in blue cartoon view. C Docked complex structure of DNA 
with aflatoxin B1 exo-8,9-epoxide using AutoDock 4.0 [100, 101, 
109]. Aflatoxin B1 exo-8,9-epoxide is shown in red stick view and 
DNA is shown in violet surface view [97, 101]. (Color figure online)
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Synthetic organic molecules‑organic ligand docking case 
studies

Majority of the docking algorithms recognize biomolecules 
(e.g., DNA, RNA, protein and enzyme) exclusively as recep-
tors. Other than the biomolecules, they do not support other 
molecules such as synthetic-organic, synthetic organic–inor-
ganic hybrid, and inorganic molecules as receptors. In our 
recent work (ability of anionic polymerized hydrogel mate-
rials (PGM) (poly(N-isopropylacrylamide-co-acrylic acid) 
anionic microgels)) to separate cationic organic dye mol-
ecules, methylene blue (MB) from water has been studied 
[103]. The adsorption mechanism of methylene blue dye 

by organic polymer moieties on the PGM matrix has been 
understood through molecular docking simulation method 
using AutoDock 4.2 with simulated annealing algorithm 
[100, 104].

Docking has been performed between MB cationic dye 
(receptor) and constituting components i.e., monomeric 
units of the anionic microgel (ligands), such as carboxylate 
ion  (COO−), the carboxylic acid (COOH), and N-isopropyl-
acrylamide (NIPAM) to investigate the possible intermolec-
ular interactions, like hydrogen bonding, electrostatic, van 
der Waals, desolvation, and torsional between them. The 
docking complex models between different pairs  (COO−, 
MB), (COOH, MB), and (NIPAM, MB) found in this study 

Fig. 7  A Docked complex result of calf thymus DNA (CT-DNA) and 
G13 B Docking complex result of CT-DNA and EB using AutoDock 
Vina molecular docking tool [95, 102]. The DNA is represented in in 

cartoon view and both the ligands (G13 and EB) are shown in sticks 
view. H-bond is shown in green dashed line [102]. (Color figure 
online)

Fig. 8  Molecular docking results with least binding energy between 
methylene blue (MB) cation (recognized as receptor) and organic pol-
ymer moieties (identified as ligands), namely carboxylate ion  (COO−) 
(deprotonated), carboxylic acid (COOH) (protonated), and N-isopro-
pylacrylamide (NIPAM) using AutoDock 4.2 tool with simulated 

annealing algorithm [100, 103, 104]. The polymer moieties and MB 
cationic dye are represented in ball-and-stick models and the inter-
atomic distances (within 3.5 Å) between them are displayed in yellow 
dotted lines. MB,  COO−, COOH, and NIPAM are colored blue, gray, 
dark gray, and black, respectively [103]. (Color figure online)
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are presented in Fig. 8. The net binding energy (BE) along 
with the contributed potentials due to electrostatic (El), van 
der Waals-hydrophobic-desolvation (Vhd), tortional (T), and 
unbound (U) calculated for different docking complexes i.e., 
 (COO−, MB), (COOH, MB), and (NIPAM, MB) are dis-
played with a column plot in Fig. 9. The total binding energy 
was found to be − 2.73 kcal/mol for the docking complex 
between MB cation and carboxylate anion  (COO−), which 
is maximum compared to other docking complexes, such as 
(COOH, MB) and (NIPAM, MB).

Organic–inorganic

In this case, the receptor is organic type, and the ligand is 
inorganic type. The interaction between enzyme-inorganic 
substrate, enzyme-inorganic drug, protein-inorganic drug, 
protein-inorganic ligand, protein-metal atom or ion, pro-
tein-metal nanoparticle, DNA/RNA-inorganic drug, DNA/
RNA-metal atom or ion, DNA/RNA-metal nanoparticle, 
polymer moiety-metal atom or ion come under the cat-
egory of organic–inorganic intermolecular docking study.

Molecular docking of ligands having metal atoms or 
ions (e.g., metal nanoparticle) is challenging though the 
existing force fields do not support bigger size nanopar-
ticles (having many metal atoms) and all types of metal 
atoms. Some studies, however, have been carried out using 
Brownian dynamics (BD) rigid-body docking, AutoDock, 
AutoDock Vina, and Hex software and are discussed here 
[55, 95, 100, 105, 106].

Biomolecules‑inorganic ligand docking case studies

Aghili Z has predicted the molecular interaction between 
hen egg lysozyme protein and water-coated iron nanoparticle 
(Fe NP) by docking study using Hex 6.3 software tool with 
net binding energy − 230.92 kJ/mol as shown in Fig. 10A 
[105, 107]. In his work, he found the hydrogen bonding for-
mation between water molecules surrounding the Fe NP and 
polar residues on the surface of lysozyme protein.

Molecular docking study between trimeric structure of 
VP6 protein and palladium ions (Pd(II)) obtained from 
 PdCl3(H2O)− at pH 5 has been demonstrated in Fig. 10B 
[108]. The study predicts the existence of binding between 

Fig. 9  Column charts showing the total binding energy (BE), the 
contribution from different types of potential namely, electrostatics 
(EI), van der Waals-hydrophobic-desolvation (Vhd), tortional (T), 
and unbound (U) found in the docking result for the  (COO−, MB), 
(COOH, MB), (NIPAM, MB) bound complexes [103]. (Color figure 
online)

Fig. 10  A Docked complex structure of Hen egg white lysozyme 
(HEWL) protein in gold color cartoon view with water-coated iron 
nanoparticle (FeNP) in orange stick view using Hex 6.3 docking soft-
ware tool [105, 107]. B Docked complex structure of VP6 trimer pro-
tein in grey cartoon and surface view with Pd(II) ion in blue sphere 
view at pH 5.0 using AutoDock 4.0 [100, 108]. The metal binding 
site is shown in red surface view containing polar residues His173, 
Ser240, and Asp242 viewed in red stick representation. C Docked 

complex structure of ubiquitin protein with bare neutral gold nano 
particle (AuNP) using Brownian dynamics (BD) rigid-body docking 
[106, 186]. The backbone of protein is shown in cartoon view and the 
residues those are in contact with the Au surface are shown in stick 
view and the rest of the atoms are shown in line view. The Au surface 
is shown in gold color net structure [107, 108, 186]. (Color figure 
online)
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VP6 protein and Pd(II) ions which further helps in nuclea-
tion, growth, and stability in palladium nanoclusters forma-
tion. AutoDock 4.0 tool has been used to estimate the metal 
binding site with residues His173, Ser240, and Asp242 of 
VP6 for Pd(II) ions and binding energy (− 2.0 kcal/mol at 
pH 5). Pd(II) ions were found to interact with charged and 
polar residues, including Asp, His, Ser, Gln, and Asn which 
results in hydrogen bond formation between Pd(II) ions and 
protonated side chains of Ser and Asp residues, Pd(II) ions 
and nitrogen atom of His173. Different types of interaction 
forces, like hydrogen bond formation between Pd(II) ions 
and polar residues, electrostatic force of attraction between 
Pd(II) ions and charged residues in the binding site of VP6 
protein favor the stabilization and nucleation growth of Pd 
nanoparticle.

Brancolini G. in their work have used Brownian dynam-
ics rigid-body docking simulation to understand the inter-
action between ubiquitin protein taken as rigid body and 
naked neutral gold nanoparticle (Au(111) NP) surface 
using protein surface docking method with SDA 6.0 as 
shown in Fig. 10C [106, 108]. The residues of ubiquitin 
that make good contact at distances ≤ 3 Å with Au(111) 
surface are found to be GLY35, PRO37, ARG74, GLY75, 
and GLY76. The RMSD value of docked complex structure 
with respect to the initial representative complex structure 
was found to be − 1.31 Å. The total interaction energy of 
the resultant docked complex was found to be − 29.12 kcal/
mol at 300 K.

Synthetic organic molecules‑inorganic ligand docking case 
studies

In our recent work, we have performed the molecular dock-
ing simulation study using the AutoDock 4.2.6 tool between 
different metal ions  (Au3+,  Ag+,  Fe2+) and atoms  (Au0, 
 Ag0,  Fe0) with polymer moieties (NIPAM, carboxylate ion 
 (COO−)) to understand the molecular interaction which 
binds the nanoparticle with the polymer matrix and results 
in stable microgel metal hybrids as shown in Fig. 11 [27, 49, 
100, 104, 109–111].

The simulated annealing algorithm was used for all types 
of dockings. Ions were found to interact with  COO− more 
prominently than atoms. The net binding energy was found 
to be − 9.28, − 5.7, − 1.46 kcal/mol for interaction between 
 COO− (taken as a receptor) and ligands, namely  Fe2+,  Au3+, 
and  Ag+, respectively. The electrostatic potential contributes 
the most towards the total binding energy among all types 
of potentials (van der Waals, hydrophobic, solvation, tor-
sional, and electrostatic). Different types of potentials with 
the net binding energy found in docking studies for different 
complexes of polymer moieties  (COO−, NIPAM) with ions 

 (Ag+,  Au3+, and  Fe2+) and atoms  (Ag0,  Au0, and  Fe0) are 
demonstrated using column charts in Fig. 12.

Hybrid receptor/ligand

From the above classification we understand the interacting 
molecules can be organic or inorganic. The macromolecule 
and/or ligand can be an organic–inorganic hybrid molecule, 

Fig. 11  Best docking results with minimum binding energy after 
docking study between polymer moieties  (COO−, NIPAM) with 
ions  (Ag+,  Au3+, and  Fe2+) and atoms  (Ag0,  Au0, and Fe.0), respec-
tively [111]. The polymer moieties, ions and atoms are represented in 
ball-and-stick, sphere, and sphere views, respectively. The distances 
between randomly chosen neighboring atoms of polymer moieties 
and ions are shown in yellow dashed line labelled in Angstrom unit 
(Å) [111]. (Color figure online)
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such as metal–organic framework (MOF). MOFs are new 
advanced synthetic hybrid crystalline materials and can be 
synthesized from metal ions and organic linkers by coordina-
tion bonds. The adsorption property of MOF can be used to 
detect and remove organic pollutants, including dye, a drug 
from different environmental water samples. Different case 
studies are discussed below.

Due to the adsorption behavior of UiO-66 (a Zirconium 
(Zr) based metal organic framework (MOF)) it can be used 
to remove pollutants, like anionic dye molecules Congo 

red (CR) from water [112]. To understand the absorption 
of Congo red dye by UiO-66, Panda et al. have performed 
molecular docking study between Congo red dye (CR) and 
UiO-66 by AutoDock Vina tool using Lamarckian genetic 
algorithm (LGA) and the docked complex result found in 
the docking study is shown in Fig. 13 [27, 55, 95]. The 
binding energy was found to be − 12.82 kcal/mol and 
the molecular interaction was because of two hydrogen 
bonds formed with bond length 2.68 and 2.66 Å and three 
hydrophobic interactions with bond length 4.89, 5.46, and 
5.75 Å.

Panda J et al. have demonstrated that ZIF-8 MOF can be 
used to remove reactive blue-4 (RB4), a reactive triazine 
toxic dye from water because of the absorption property of 
ZIF-8 MOF for RB4 which helps in water treatment [113]. 
They have carried out a docking study between ZIF-8 MOF 
(receptor) and RB4 (ligand) using AutoDock Vina to under-
stand the absorption process computationally and the docking 
result is shown in Fig. 14. The net binding energy was found 
to be a negative value (− 22.34 kcal/mol) which means the 
molecular interaction is an exothermic adsorption process. 
The favorable binding interactions were due to ten H-bonding 
having a bond length ranging from 1.87 to 2.8 Å between 
oxygen atom (O) of –SO3 group in RB4 and hydrogen atoms 
(H) of –CH3 group in ZIF-8 MOF and three π–π interactions 
having bond length 4.78, 5.2, and 5.8 Å.

Lu et al. in their work have used the molecular dock-
ing method using AutoDock 4 tool to investigate the 

Fig. 12  Column charts that represent the contribution from different 
types of potential such as electrostatic (EI), van der Waals-hydro-
phobic (Vhd), and torsional(T) towards the net binding energy (BE) 
in docking studies between polymer moieties  (COO−, NIPAM) with 
metal ions  (Ag+,  Au3+, and  Fe2+) and atoms  (Ag0,  Au0, and  Fe0) 
[111]. (Color figure online)

Fig. 13  Organic–inorganic-hybrid MOF—organic dye molecule com-
plex [112]. Complex structure of congo red dye (CR) (yellow color) 
with UiO-66 (a Zr (IV) based metal organic framework (MOF)) 
(gray and red) using ball-and-stick representation after docking study 
using AutoDock Vina [55, 95]. The active site is shown in cyan color 
ellipse [112]. (Color figure online)

Fig. 14  Docked complex structure of zeolitic imidazole frame-
work-8 (ZIF-8), a special class of metal organic framework (MOF) 
with organic molecule reactive blue-4 (RB4) ions using docking 
study with AutoDock Vina software [55, 95, 113]. ZIF-8 (receptor) 
and RB4 (ligand) are represented in stick and ball-and-stick models, 
respectively. H-bonds are represented with green and π–π interactions 
are shown with red dashed lines in the active site of ZIF-8 [113]. 
(Color figure online)
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intermolecular interactions between porous chromium tere-
phthalate, MIL-101(Cr) and widely used antibiotics named 
5-nitroimidazoles (5-NDZs) to understand the adsorption 
mechanism [114]. MIL-101(Cr) is an organic–inorganic-
hybrid metal organic framework (MOF) material constructed 
from metal ions and organic linkers and can be used for 
the trace analysis of organic pollutants 5-NDZs in differ-
ent water samples. Among five antibiotics, metronidazole 
(MNZ) is chosen here to show the molecular interactions. 
The docking study using the Lamarckian genetic algorithm 
(LGA) have been carried out between MNZ (ligand) and 
MIL-101(Cr) (receptor), the docked complex is demon-
strated in Fig. 15 and the calculated binding energy by Auto-
Dock tool was found to be − 6.21 kcal/mol. The net bind-
ing energy is mostly by the electrostatic force of attraction 
and the other types of potentials that contribute to binding 
energy are the formation of hydrogen bonds, coordination 
bonds and different types of interactions, namely hydropho-
bic, π–π, and van der Waals. The contributions from all such 
interaction potentials contribute to the extraction property 
of MIL-101(Cr) MOF.

A highly porous zirconium metal–organic framework 
(MOF), such as UiO-66 (Universitetet i Oslo), which is 
composed of  [Zr6O4(OH)4] clusters and 1,4-benzodicarbox-
ylic acid struts (University of Liverpool, ChemTube3D) can 
be used as an adsorbent material. Adsorption of polycyclic 
aromatic hydrocarbon (PAH) (recognized as a hazardous 
and toxic pollutant), such as chrysene (CRY, Molecular for-
mula:  C18H12) (a product of coal tar) by UiO-66(Zr) helps in 
wastewater treatment by removal of the pollutant [115]. To 

understand the mechanism and driving forces of the adsorp-
tion process of CRY onto UiO-66(Zr) MOF surface, Zango 
and his co-workers have implemented molecular docking 
using AutoDock 4.2 Suite with Lamarckian genetic algorithm 
(LGA) as shown in Fig. 16 and the predicted binding energy 
was found to be − 2.32 kcal/mol, that indicates a stable 
absorption because of potential interactions on the surface.

The calculate energy due to different types of interac-
tion potentials, such as van der Waals, hydrogen bonding 
and desolvation was − 3.1 kcal/mol and electrostatic was 
0.79 kcal/mol. CRY was found to show electrostatic interac-
tion with  Zr4+ ion of the MOF.

Fig. 15  Docked complex structure of porous chromium terephthalate, 
MIL-101(Cr) and metronidazole (MNZ) using AutoDock 4 [114]. 
The MIL-101(Cr) (receptor) and MNZ (ligand) are viewed in stick 
and ball-and-stick models, respectively. For ligand, carbon, oxygen, 
sulfur, nitrogen, and hydrogen atoms are marked in green, red, yel-
low, blue, and orchid, respectively. For receptor, oxygen atoms and Cr 
ions are marked in red and orchid, respectively. The π–π interactions 
between imidazole rings of MIL-101(Cr) and MNZ, and hydrogen 
bonds are represented by pink and green dashed lines respectively in 
the binding site of MIL-101(Cr) [114]. (Color figure online)

Fig. 16  Docked complex structure of UiO-66(Zr) metal organic 
framework (MOF) and chrysene (CRY), a toxic and hazardous poly-
cyclic aromatic hydrocarbon (PAH) pollutant using AutoDock 4.2 
[115]. UiO-66(Zr) MOF (receptor) and CRY (ligand) are shown in 
stick and ball-and-stick models, respectively. UiO-66(Zr) is marked in 
white, violet, and red color. Four benzene rings of CRY are marked in 
blue and light gray color [115]. (Color figure online)

Fig. 17  Docked complex structure of two  [Ag25(DMBT)18]− clusters 
using AutoDock 4.2 [100, 115]. Complex is shown in ball-and-stick 
model. Silver (Ag) and sulfur (S) atoms are shown in gray and yel-
low, respectively. C–H… π interactions are viewed in green dotted 
lines. Hydrogen (H) atoms and benzene rings associated with these 
interactions are viewed in red and blue, respectively. Other benzene 
rings not associated with these interactions are shown in green [116]. 
(Color figure online)
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To understand the cause of instant isotopic exchange 
reaction in silver nanoparticles cluster, Chakraborty et al. 
have carried out molecular docking study between two 
 [Ag25(DMBT)18]− (DBMT for 2,4-dimethylbenzenethiol, 
which acts as a protecting ligand) clusters using Auto-
Dock 4.2 with Lamarckian genetic algorithm [100, 116]. 
 [Ag25(DMBT)18]− has been used both as receptor and ligand 
in the docking process. The binding energy was found to 
be − 23.7 kcal/mol. The docking result with least binding 
energy is shown in Fig. 17.

The fluorescent cobalt oxide (CoO) umbelliferone nano-
conjugate having anti-cancer activity can be used both as a 

drug and carrier. Ali et al. have conducted molecular dock-
ing studies applying the protein docking program, HEX 
8.0.0 using Spherical Polar Fourier Correlations technique 
to find the binding interactions of the CoO-drug nanoconju-
gate with the B-DNA dodecamer (also called as Calf thymus 
DNA (CT-DNA)), a DNA duplex having the sequence (CGC 
GAA TTC GCG )2 (PDB ID: 1BNA) and human serum albu-
min (HSA) (PDB ID: 1H9Z) protein separately [117–119]. 
The most stable docking results with least binding energies 
of the CoO-drug nanoconjugate against the DNA molecule 
and interactions in the binding cavity of the CT-DNA are 
shown in Fig. 18A, B. The docking study predicted the 

Fig. 18  A Molecular docking complex of calf thymus DNA (CT-
DNA) (PDB ID: 1BNA) and cobalt oxide (CoO) umbelliferone drug 
nanoconjugate using HEX 8.0.0 [117, 118]. DNA is represented in 
carton and surface view. The drug nanoconjugate, a mixture of CoO 

nanoparticle (blue and red sphered view) and umbelliferone drug 
(green, red, and white sphered view). B Non-covalent interactions of 
DNA bases with the nanoconjugate depicted by dashed lines [117]. 
(Color figure online)

Fig. 19  A Docking result of human serum albumin (HSA) with the 
CoO-umbelliferone drug nanoconjugate by protein docking pro-
gram, HEX 8.0.0 using Spherical Polar Fourier Correlations tech-
nique [117–119]. B Binding interactions of noncovalent type between 

neighboring amino acid residues in the binding pocket of HSA and 
the drug nanoconjugate shown in dashed lines [117]. (Color figure 
online)
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existence of electrostatic, hydrophobic and hydrogen bond-
ing intermolecular noncovalent interactions between them. 
Similarly, the most stable bound conformation of the dock-
ing result of the CoO-drug nanoconjugate and HSA protein 
with binding site interactions, such as hydrophobic, hydro-
gen bonding and metal acceptor are shown in Fig. 19A, B.

Inorganic–inorganic

In this case, both receptor and ligand in docking study are 
inorganic. The interaction study between any two chemical 
molecules that do not have any carbon-hydrogen bond comes 
under this category. To the best of our knowledge, there has 
not been any study carried out on inorganic receptor and 
ligand docking till now.

Challenges in molecular docking

There are many limitations and challenges in docking tech-
niques [15]. A docking result predicted may not be accurate 
and match the result found in an experimental approach.

(i) Recognition of different types of molecular features 
which contribute to the interaction between them can 
be complex, difficult to understand and time-consuming 
to simulate in a computer. The docking technique tries 
to incorporate additional complexity in each step.

(ii) Number of conformational degrees of freedom of mol-
ecules makes it difficult and time-consuming to pose 
a ligand in the binding pocket of a macromolecule. A 
complex effective scoring function helps in this per-
spective.

(iii) Low resolution crystallographic structural information 
of molecules and molecules with unknown structural 
information makes it more difficult to find the correct 
binding pockets of receptors.

(iv) Flexibility of molecules and changes in the geometry 
of molecules that occur during the binding also com-
plicate the finding.

(v) Hydrated docking is not possible always by most of 
the docking tools and thus involvement of water mol-
ecules in a macromolecule-ligand interaction is difficult 
to predict. Removing water molecules from the binding 
pocket of receptor before docking process is usually 
done by docking algorithms. But this prepossessing of 
receptor is not universally correct in many cases, such 
as if the water molecules are tightly bound or they are 
functionally active in the binding-site. In such cases 
hydrated docking is very much essential.

(vi) Existing force fields do not support all types of atoms. 
Finding the force field and some other required param-
eters is a challenging task in docking.

(vii) Most of the docking software tools accept only biomol-
ecules, such as DNA, RNA, protein, enzyme, etc. as 
receptors. But other than biomolecules they do not rec-
ognize synthetic-organic, synthetic organic–inorganic 
hybrid, and inorganic molecules as receptors.

(viii) Also, for ligand, they accept a few metal atoms but 
not all. Similarly, few docking tools, including Auto-
Dock, Hex, PatchDock recognize nanoparticles as 
ligands but many docking tools do not recognize all 
types of nanoparticles, like gold (Au), silver (Ag), iron 
(Fe), etc. [100, 105, 120]. Even a bigger size ligand 
having numerous atoms, such as metal nanoparticle 
having hundreds, or a greater number of atoms cannot 
be processed by a docking algorithm.

(ix) Ions are also supported by a few docking tools. When 
they are taken as ligands the charge gets neutralized 
automatically by the software. So, the user must manu-
ally check the charges carefully.

(x) Number of atoms and torsions of a molecule are also 
restricted in many docking tools.

Concluding remarks

From the above study, we conclude that although there are 
numerous docking tools and web servers available, they 
are specific to type of molecule to be accepted as input as 
receptor or ligand. That is why interaction studies of bio-
molecules receptors, namely protein, DNA, and RNA, etc. 
with organic, inorganic, or hybrid (natural or synthetic 
organic–inorganic mixture) ligands are commonly seen. 
Looking into the challenges and limitations we would say 
the best docking algorithm is probably the one made by a 
hybrid of many algorithms which will have novel search, 
scoring function, force field for all types of atoms, allowance 
of unlimited number of atoms and rotatable bonds (torsions) 
in a molecule etc. We have shown here some case studies in 
synthetic organic–inorganic, metal–organic hybrid-organic 
systems. Inorganic-inorganic docking studies are still miss-
ing which can be seen in future hopefully with better force 
fields and required parameters.

Data availability As this is a review article, data availability is not 
applicable in our case. However, we have cited the corresponding refer-
ence in figures adopted from the published work.
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