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Abstract
In senescent leaves of higher plants, colourless chlorophyll (Chl) catabolites typically accumulate temporarily, and undergo 
natural oxidation, in part, to yellow- and pink-coloured phyllobilins (PBs). The latter, also classified as phylloroseobilins 
(PrBs), represent the final currently established products of Chl-breakdown, possibly playing important roles in metabo-
lism. However, PrBs, themselves, do not accumulate in the leaves. Indeed, the original PrB identified, then classified as a 
pink Chl-catabolite (PiCC), is remarkably instable in methanolic solution. As reported here, PiCC readily converts at room 
temperature into yellow tetrapyrroles. The deduced main process, a retro-Dieckmann reaction, cleaves open its ring E moi-
ety, the α-methoxycarbonyl-cyclopentanone unit characteristic of the Chls and of the natural Chl-derived PBs. This readily 
occurring reaction of the PiCC represents an unprecedented skeletal transformation of a PB, furnishing a cross-conjugated 
biladiene with a basic structure more similar to the heme-derived bilins.
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Introduction

The characteristic colourful breakdown of chlorophyll (Chl) 
in fall leaves, an enigma until about 30 years ago [1, 2], 
generates linear tetrapyrroles, named phyllobilins (PBs) [3], 
via the so-called PaO/phyllobilin pathway [4–6]. Strikingly, 
the products of the strictly controlled common early phase 
of Chl-breakdown are colourless linear tetrapyrroles [5, 7], 
now classified as phyllobilanes (PBas) [3]. The colourless 
PBas accumulate in the leaf vacuoles, but, typically, only 
temporarily [8]. Indeed, PBas were named ‘rusty pigments’ 
originally, since their isolates turned rust coloured [9] and 
PBas convert readily into yellow- and pink-coloured oxida-
tion products, classified as phylloxanthobilins (PxBs) and 
phylloroseobilins (PrBs), respectively [10]. The yellow 
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PxBs also occur in various plants [11–14], generated by a 
yet hardly investigated metabolic oxidation of corresponding 
PBas [15]. However, the ubiquitous PxBs are readily oxi-
dized to PrBs, their pink analogues (see Fig. 1) [10, 16, 17], 
which are, so far, the final fully traceable Chl-breakdown 
products in senescent leaves [4, 5].

The pink Chl-catabolite (PiCC) 1 is a PrB found in the 
fall leaves of the common tree Cercidiphyllum japonicum 
[10]. The PiCC 1 is prepared via selective chemical oxida-
tion of Cj-NCC-1, the corresponding colourless non-fluo-
rescent Chl-catabolite (NCC) (Fig. 1) [10], a particularly 
abundant PBa discovered in senescent leaves of C. japoni-
cum [18]. In most senescent leaves, neither PBas nor their 
coloured oxidation products accumulate to a high level, hint-
ing at further, still undefined further breakdown processes of 
the PBs [5]. Indeed, there have been occasional reports on 
mono-pyrrolic isolates from senescent leaves [19]. Likewise, 
mono- and di-pyrrolic compounds originating from chemical 
destruction of Chl-like precursors were proposed (with little 
further experimental support) to represent model structures 
for natural Chl-breakdown [20]. Here, we describe the dis-
covery of the readily occurring cleavage of the natural PrB 1 
at its characteristic Chl-derived ring E in methanol [21]. The 
main such process at this sterically congested β-ketoester 
moiety is a retro-Dieckmann reaction, which cleaves open 
the peripheral C–C bond of the ring E moiety, eliminat-
ing the structural Chl-derived hallmark that distinguishes 
the natural PBs decisively from the related heme-derived 
‘hemo’-bilins [4].

The detailed analysis of the structure of the PiCC 1 in 
solution and in the crystal [16] has revealed a remarkably 
extended conjugated π-system featuring its two unsaturated 
meso-positions (C10 and C15) in a 10E,15Z-geometry, as 
well as notable close non-bonded contacts between periph-
eral substituents (Figs. 1 and 2). The observed E-config-
uration of the C10 = C11 double bond appears to be the 
result of steric interactions between the substituents at the 

C8–C12 periphery [16]. Significant steric strain results from 
the tight packing of the peripheral substituents in this section 
of porphyrinoid Chl-precursors, as well. This fact has been 
used strategically by Woodward in the course of the total 
synthesis of chlorin-e6-trimethylester, which was known (as 
Woodward implied) to undergo a Dieckmann condensation 
furnishing the characteristic β-ketoester functionality of ring 
E of the methyl ester of pheophorbide a [22].

Here, we delineate a retro-Dieckmann process at the cor-
responding β-ketoester functionality of the naturally occur-
ring Chl-catabolite PiCC 1, readily occurring in methanol 
and opening up the typical ring E moiety of 1, furnishing 
the novel, cross-conjugated yellow biladiene 2 (Fig. 2). In 
fact, we have observed earlier the instability of the PiCC 1 
in methanol at room temperature, and its decomposition to 
yellow products.

Results and discussion

The PiCC 1 was prepared by air oxidation [16] of the natu-
ral yellow Chl-catabolite Cj-YCC, first isolated from leaves 
of C. japonicum [11]. When solutions of 1 in mixtures of 
MeOH/CH2Cl2 were stored for the purpose of obtaining 
single crystals, the colour of the supernatant was observed 
to slowly change from red to yellow. Thus, the result of the 
storage of a methanolic solution of the PiCC 1 caught our 
interest. When kept at room temperature and in the dark, the 
methanolic solution of 1 also underwent a colour change 
from red to yellow. An HPLC analysis indicated the con-
sumption of 1 in the course of 47 days and its predomi-
nant transformation into the slightly more polar fraction of 
the yellow 2 (see Suppl. Mat. Fig. S1), which features a 
UV–Vis spectrum with an absorption maximum at 465 nm 
(see Fig. 3).

In a preparative experiment, an Ar-purged solution of 
PiCC 1 (5.8 mg, 9.1 µmol) in MeOH (58 cm3) was stored 
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Fig. 1   Established stages of chlorophyll breakdown by the common 
PaO/phyllobilin pathway. In the fall leaves of the deciduous tree 
Cercidiphyllum japonicum the colourless Cj-NCC-1 accumulates 

as the major phyllobilane, from which the yellow phylloxanthobilin 
Cj-YCC-2 and the pink phylloroseobilin Cj-PiCC 1 are generated by 
subsequent oxidation processes
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at room temperature in the dark for 19 days. A sample of 
53 cm3 of the reaction mixture was subjected to work up, 
furnishing the yellow decomposition product 2 as a major 
fraction, isolated as 1.8 mg of a yellow residue after dry-
ing (32% yield). In a further preparative experiment, in 
which a solution of 1 in methanol containing 0.08% (v/v) 
of NEt3 was stored at room temperature in the dark, the 
consumption of 1 was roughly five times faster, and was 
complete after a reaction time of eight days. It furnished 

2 in a yield of about 53% (besides about 31% of the less 
polar decomposition product 4) (see Suppl. Mat.).

The UV–Vis-absorption spectra of the biladiene 2 and of 
the PiCC 1 are depicted in Figs. 3 and S4. The absorption 
maximum of 2 at 465 nm indicates a roughly 60 nm hyp-
sochromic shift, compared with the corresponding band in 
the spectrum of PiCC 1 [10]. Hence, the spectra suggest an 
effective interruption of the main chromophore of the PiCC 
1 by the transformation to 2. An absorption maximum near 
315 nm is also present in both spectra, assigned to ring A, 
the characteristic α-formylpyrrole unit of 1 and of the other 
so-called type-I phyllobilins [3].

In the positive-ion ESI-MS of 2 (Fig.  4), prominent 
pseudo-molecular ions [M + 2Na + H]+, [M + Na]+, and 
[M + H]+ were found at m/z = 717.3, 695.3, and 673.1, 
respectively, indicating a molecular formula of C36H40N4O9 
from the addition of a CH3OH unit to PiCC. Fragmenta-
tion experiments indicate cleavage at the C4–C5 and C5–C6 
bonds (m/z = 520 and 508, respectively) with a comple-
mentary loss of ring A (Fig. S7). Further loss of MeOH 
is observed at m/z = 488 and 476, respectively. Signals at 
m/z = 387 and 369 indicate di-pyrrolic fragments from the 
cleavages of the C10–C11 or the C9–C10 bonds that are a 
diagnostic for the absence of a bond C81–C82 in the bila-
diene 2.

The chemical constitution of the biladiene 2 was estab-
lished by detailed analysis of its 1H-homonuclear and 
1H,13C-heteronuclear NMR spectra that provided sig-
nal assignments for 38 H-atoms and 33 C-atoms of the 
biladiene 2 (see Suppl. Mat., Tables S1 and S2). In the 
500 MHz 1H NMR spectrum of the yellow biladiene 2 
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Fig. 2   A retro-Dieckmann reaction in methanolic solution converts 
the PiCC 1 into the cross-conjugated biladiene 2. In this novel ring-
opened 81,82-seco-phyllobilin, the formal single bonds C9–C10–C11 
allow for significant conformational flexibility and reduced conjuga-

tive overlap (the formulae 2A and 2B imply conformational isomers 
with s-cis or s-trans geometry at the bond C10–C11, and highlight the 
non-planar nature of the biladiene 2)

Fig. 3   UV–Vis-absorption spectra of PiCC 1 (in MeOH) and of the 
yellow biladiene 2 (in 3:2 MeOH/50 mM aq. phosphate buffer pH 7); 
relative absorbances are given that are normalized at 320 nm
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(Fig. 5), signals for the peripheral protons of four methyl 
groups, a formyl group, a vinyl group, and methylene 
groups at side chains at C3 and at C12 (as well as 4 NHs) 
stood out and had comparable chemical shifts as the cor-
responding groups of PiCC 1. Interestingly, at 3.43 ppm 
and at 3.51 ppm, two singlets were observed, each with an 
integral of 3 protons. In the 1H,13C-HSQC spectrum, the 
singlet at 3.43 ppm coupled with the carbon at 50.8 ppm, 
while the 3.51 signal correlated to the one at 51.4 ppm 
(Fig. 6), which are typical chemical shifts for ester methyl 
groups. A further new singlet at 6.17  ppm was found 
to correlate with an unsaturated carbon at 116.3 ppm, 
indicating a new vinyl group in 2. The above results are 
consistent with the formation of a new ester group and 
a vinyl group during the decomposition of the PiCC 1. 
In the 1H,13C-HMBC spectrum, the vinyl proton HC101 
and the side-chain methylene H2C121 correlate both with 
C11 of ring C (at 133.4 ppm) (Fig. 6 and Suppl. Mat Fig. 
S10). Thus, the new vinyl group is located at C10, and 

the yellow biladiene 2 is identified as an unprecedented 
81,82-seco-phyllobilin (81,82-seco-PB) (Figs. 2 and 6).

Hence, in the methanolic solution, the PiCC 1 had under-
gone a remarkably facile retro-Dieckmann reaction at ring 
E, a C–C bond cleavage that, in the current case, is presum-
ably accelerated by the concurrent formation of the vinyl 
group (C10 = C101) in the ring opening step. The deduced 
cleavage of ring E has also resulted in an increased con-
formational flexibility that helped to reduce possible steric 
strain. To deduce the stereochemistry at the new double 
bond (C10 = C101) of 2, the correlation of the proton HC101 
to the nearby protons in the ROESY spectrum of 2 provided 
critical information. The observed strong coupling between 
HC101 and HN23, as well as weaker correlations between 
HC101 and both H2C121 and H2C122, are all consistent with 
a (predominant) 10Z-geometry (Figs. 2 and 6).

The deduced structure of the cross-conjugated yellow 
biladiene 2 indicates its formation by a retro-Dieckmann 
reaction of the PiCC 1. In a plausible mechanism (Fig. 7), 
methanol adds to the carbonyl group at C82 to afford the 

Fig. 4   (+)-Ion ESI-MS analysis of 2 (in MeOH / aq. NH4OAc). Section of the spectrum of 2 (bottom), and fragments obtained from the pseudo-
molecular ion at m/z = 673 by MS/MS (top) (see Suppl. Mat., Fig. S7 for deduced structural presentations of the fragments)
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instable addition product 1-MeOH, which cleaves open to 
2. The tertiary amine NEt3 accelerates the overall process, 
presumably via a critical deprotonation involved in the 
decomposition of the intermediate hemi-acetal function of 
1-MeOH.

Besides the yellow biladiene 2 as the modestly stable 
major product (see Suppl. Mat. Fig. S8) of the methanolysis 

of 1, two additional yellow tetrapyrrole fractions were also 
obtained from the decomposition of 1 in methanol and were 
characterized in a preliminary form. The UV–Vis spectrum 
of the polar minor product 3 (9%) closely resembles the 
corresponding spectrum of 2 and exhibits an absorption 
maximum at 460 nm (see Fig. S4). In the ESI-MS of 3, 
pseudo-molecular ions [M + K]+, [M + Na]+, and [M + H]+ 

Fig. 5   500 MHz 1H NMR spectrum of the yellow biladiene 2 in CD3CN/DMSO-d6 (2:1, v/v) at 25 °C
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were found at m/z = 697.1, 681.2, and 659.2, respectively, 
consistent with a molecular formula of C35H38N4O9, from 
the formal addition of a H2O unit to PiCC (Fig. S5). A 
strong fragment at m/z = 615.3 indicates a readily occur-
ring decarboxylation, suggesting the presence of a second 
COOH group in this compound. The yellow tetrapyrrole 3 
is, tentatively, deduced to possess the same framework as 
2 and to carry a carboxylic acid group at C8 (rather than a 
methyl ester function) as a result of a hydrolytic version of 
the retro-Dieckmann reaction (Fig. 8).

The least polar yellow/reddish fraction (4) was isolated 
in raw yields of roughly 31% or 36% in the two experiments 
reported here. The UV–Vis-absorption spectrum of the iso-
lated fraction 4 shows a maximum at 435 nm (Fig. S3), i.e., 
at a similar wavelength as the absorption maximum of typi-
cal phylloxanthobilins (at 420–440 nm). Its mass spectrum 
shows strong signals at m/z = 663.4 and 641.3, deduced to 
arise from (M + Na+) and (M + H+), respectively. Hence, 
the tetrapyrrole 4 is suggested to have the molecular for-
mula of C35H36N4O8 and to be an isomer of 1. However, the 
observed strong signals at m/z = 1319.1 (2 M + K+), 1303.2 
(2 M + Na+), and 1281.1 (2 M + H+) also indicate ions com-
patible with a dimer (2 M) of 1 (Fig. S6). In solution and in 
the crystal, some phylloxanthobilins, as well as the PiCC 1, 
(tend to) associate into non-covalent dimers [16, 23]. The 
available NMR data of the yellow tetrapyrrole 4 are com-
patible with an effectively single major structure (see Fig. 
S9). Unfortunately, several critical signals of the chemically 
rather labile 4 were broad and insufficiently resolved for the 
purpose of deducing its structure with confidence. However, 
the UV–Vis-spectral features of 4 indicate the effective 
interruption of the conjugated chromophore of the PiCC 1 
at one of its unsaturated meso-positions, most likely at C10 
(as, deduced from the NMR data, see Supp. Mat. and Fig. 

S9). An intramolecular covalent addition of the carboxylate 
function to the carbon centre C10 would be compatible with 
such an isomer of the PiCC 1.

We describe here the readily occurring decomposition 
of the pink-coloured Chl-catabolite (PiCC) 1 [4, 10]. In a 
methanolic solution and at room temperature, the PiCC 
1 degrades to the cross-conjugated yellow biladiene 2 as 
the major product, besides two incompletely characterized 
yellow linear tetrapyrroles. The yellow main product 2 is 
a formal retro-Dieckmann product from the decomposi-
tion of 1. The minor polar tetrapyrrole 3 presumably arises 
from a concurrent analogous reaction with water instead of 
methanol. The indicated readily occurring cleavage of the 
ring E moiety of the PiCC remodels the typical Chl-derived 
PB-skeleton in an unprecedented way by generating a cor-
responding bilin (Fig. 8). The reactivity described here for 
the (type-I) 1-formyl-19-oxo-bilin 1 appears to be typical 
for the pink PrBs. Indeed, a 1,19-dioxo-bilin-type PrB cor-
responding to the PiCC 1 and provisionally named a dioxo-
bilin-type PiCC (DPiCC) has recently been described [17], 
which appears to suffer from similar instability in metha-
nolic solution and formation of still uncharacterized yellow 
decomposition products. Thus, the here-reported findings 
may be relevant for PrBs from both major lines of the natural 
Chl-catabolites [24, 25], classified as type-I PBs and type-II 
PBs [4, 5]. Hence, the ready degradation of the PiCC 1 to the 
yellow cross-conjugated biladiene 2, as well as to analogues, 
such as the diacid 3, suggests the opening of ring E of the 
pink-coloured Chl-catabolites to represent a more generally 
relevant type of chemical transformation during natural Chl-
breakdown in plants.

Remarkably, two now known degradative modifica-
tions of the first-formed 1-formyl-19-oxo-bilin-type (or 
type-I) PBs lead to bilin-type structures that lack the two 
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distinguishing hallmarks of the natural Chl-breakdown 
products (Fig. 8) [5]. One of these, the formyl group in 
the 1-formyl-19-oxo-bilins, is, in fact, the direct result of 
the key ring opening action of the enzyme pheophorbide a 
oxygenase (PaO) [26]. In some plants, this formyl group is 
removed subsequently by a cytochrome P450 (identified as 
CYP89A9 in Arabidopsis thaliana) that catalyses the oxida-
tive deformylation, installing the second oxo-functionality 
of the type-II PBs [27]. The sterically congested β-ketoester 
moiety of the unique ring E of the natural PBs is another 
hallmark that is prone to a facile non-enzymatic disassembly 
at the stage of the pink phyllobilins, as shown here. In fact, 
non-enzymatic transformations may play surprisingly rel-
evant roles in the natural Chl-breakdown, as first exemplified 
by the readily occurring acid-induced isomerization of the 
so-called fluorescent Chl-catabolites to their non-fluorescent 
isomers, the more abundant phyllobilanes (PBas) [24, 25].

The here-reported facile cleavage of ring E of 1 fur-
nishes a cross-conjugated yellow biladiene, an unprec-
edented 81,82-seco-phyllobilin. The section C9–C10–C11 
of the chromophore of 2 is proposed to alleviate steric 
strain by adapting a strongly non-planar conformation that 

leads to a reduction of π-conjugative overlap and further 
chemical lability of 2. Likewise, in the PiCC 1, and in 
other known phylloroseobilins (PrBs), this section has 
been deduced to be the source of peripheral steric strain 
that appears to contribute to their striking preference for 
the 10E, 15Z-geometry [10, 17]. The alternative, pseudo-
cyclic 10Z, 15Z-arrangement is observed in PrBs, when 
functioning as excellent and effectively tridentate chelate 
ligands for transition metals [16, 21, 28].

The unsaturated ‘meso-carbon’ C10 and the carbonyl 
carbon C81 of the PiCC 1 and of other PrBs are discussed 
here as electrophilic centres that should be considered sites 
of the covalent addition of (even weakly) nucleophilic spe-
cies, such as water, hydroxyl and carboxyl groups, etc. 
Covalent addition of such functionalities, when provided 
by biological macromolecules, would contribute to an 
increased effective binding affinity with such macromo-
lecular biomolecules. The specific covalent natural ligation 
of some related ‘hemo’-bilins by protein-based cysteine 
residues is, in fact, crucial for the assembly of the photo-
switchable chromophores in some bacterial photoreceptors 
[29].

Fig. 8   The cleavage of ring E of 
phyllobilins generates bilin-type 
tetrapyrroles. Left: formulae 
of the phyllobilins PiCC 1 and 
DPiCC (shown in Z,Z geom-
etry). Right: formulae of the 
biladienes 2 and 3 (Z geometry) 
and of cysteine-bound phy-
coviolobilin (depicted with Z,Z 
geometry) [21]
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The rapid degradation of the photoactive green Chls to 
colourless phyllobilins (PBs) has been suggested the key 
biological role of Chl-breakdown in plant cells undergo-
ing senescence [7, 30]. However, contrasting with pro-
posals from earlier work [7], the PBs generated in higher 
plants are not seen any longer as mere waste products 
of a detoxification process [4, 5]. Thus, the discovery 
of the natural yellow- and pink-coloured PBs induced a 
first, decisive, consideration of their possible biological 
function as coloured pigments [11, 31]. In more recent 
years, a number of biological roles have been suggested 
for the natural PBs [4, 32], e.g., in signalling [33, 34], 
as highly effective polar antioxidants [32, 35], as metal 
chelators [21, 28], as potential chromophores, and as 
inhibitors of the biosynthetic assembly of photorecep-
tors [4]. The striking blue luminescence of the colourless 
fluorescent Chl-catabolites [36], specifically of their per-
sistent ‘hypermodified’ type (discovered in bananas [33, 
37]), may serve the communication between plants and 
(frugivorous) animals [4, 36].

The degradation of the Chls in higher plants involves, 
roughly, 1000 million tons each year [1]. Thus, the natural 
Chl-breakdown via the PaO/phyllobilin pathway gener-
ates massive amounts of diverse PBs [7, 8], polar natural 
products with remarkable heterocyclic structures [4, 5, 
31], whose potential for a range of interesting biological 
roles should not be overlooked [23, 32, 38]. At various 
developmental stages, especially during leaf senescence 
[39] and fruit ripening [35, 40], plant cells are ‘flooded’ 
with Chl-catabolites. Hence, Chl-breakdown acts as a 
rich source of a range of specific heterocyclic natural 
products. Recent studies on physiological effects of some 
coloured phyllobilins in pharmaceutical and biomedical 
contexts [13, 41, 42] have boosted an interest for study-
ing PBs in phyto-pharmaceutical and phyto-medical 
applications. The amazing enzymatic deformylation of 
the first-formed (type-I) formyloxo-bilins to type-II PBs 
and the facile non-enzymatic ring opening of the PiCC 1 
involve the elimination of two structural characteristics 
distinguishing PBs from ‘hemo’-bilins, thus specifically 
closing the structural gap between Chl-derived PBs and 
corresponding heme-derived bilins (Fig. 8) [3, 43]. The 
structural relationship between these two major classes of 
bilin-type compounds may represent a fundamental asset 
for plant life, and the two mentioned processes could be 
of specific interest as structural adaptations of PBs for 
bilin-dependent biological functions [5]. In fact, a recent 
report on ‘tetrapyrrolic pigments from heme- and chlo-
rophyll breakdown are actin-targeting compounds’ draws 
attention to some remarkably similar physiological effects 
of phyllobilins and ‘hemo’-bilins [42].

Conclusion

The facile chemical cleavage of a pink phyllobilin (PrB) has 
revealed a reactivity of a typical PrB that extends the type of 
the processes known for the natural Chl-catabolites [6]. First 
considered mere waste products of the Chl-detoxification [7, 
30, 44], the PBs are now recognized as novel heterocyclic 
natural products that, probably, are valuable not only for the 
plants that produce them [5, 31–34], but also for animals and 
humans that feed on plant products [35, 45]. Hence, in this 
respect, a fundamental change of paradigm has occurred [4], 
giving insights into the chemistry of PBs a new relevance 
when taking into account their possible biological roles [32]. 
Recent pharmacological studies with coloured PBs [41, 42, 
46], furthermore, have begun inciting considerable interest 
for a range of specific applications in the pharmaceutical and 
biomedical areas. Hence, it is relevant to realize that some of 
the coloured PBs are conspicuously prone to further chemi-
cal transformations. Thus, the here-delineated cleavage of 
the PrB 1 to yellow bilin-type tetrapyrroles represents, on 
one hand, a remarkable metabolic path to compounds mim-
icking heme-derived bilins more closely. On the other hand, 
it may also help rationalize the typically low content of the 
PrBs, the so far ‘last traceable’ Chl-breakdown products, in 
senescent leaves. The barely touched and still enigmatic later 
‘downstream’ processes of Chl-breakdown remain a field of 
unforeseeable discoveries.

Experimental

MeOH (HPLC grade) and MeCN (HPLC grade) from VWR 
(Leuven, Belgium); H2O, deionized with Millipore S. A. 
S. Milli-Q Academic system (18.2 MΩ cm, Molsheim, 
France); ACS reagent KH2PO4 and K2HPO4 from Sigma-
Aldrich (Steinheim, Germany); Sep-Pak-C18 Cartridges (sil-
ica-based bonded phase with strong hydrophobicity), from 
Waters Associates (Milford, USA); PiCC 1 was prepared as 
previously reported [16].

UV–Vis spectroscopy: Varian Cary 60 spectrophotom-
eter, λmax in nm (rel. ε); ESI-MS: Finnigan LCQ Classic, m/z 
(rel. intensity %), ESI source, positive-ion mode, in CH3CN/
aq. NH4OAc, flow rate 2 cm3 min−1.

Decomposition of PiCC 1 in methanol solution

A solution of 5.8  mg PiCC 1 (9.1  µmol) in 58 cm3 of 
MeOH was purged with Ar for 5 min, then the flask was 
tightly stoppered, and the solution was stored under Ar at 
room temperature and in darkness for 19 days. A sample 
of 5 cm3 of the reaction mixture was removed for HPLC 
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analysis of its further decomposition until day 47 (see 
Figs. S1 and S2). The remaining 53 cm3 of the reaction 
mixture were dried under reduced pressure, furnishing a 
dark brown residue. The residue was dissolved in a solvent 
mixture of 5 cm3 MeOH and 6 cm3 50 mM K-buffer and 
loaded on a Sep-Pak cartridge (5 g). The minor polar yel-
low fraction 3 was eluted first. Then, the major yellow frac-
tion 2 was eluted by MeOH/50 mM K-buffer 55/45 (v/v). 
A third (yellow/orange) coloured fraction 4 was eluted by 
MeOH/50 mM K-buffer = 60/40 (v/v). After desalting on a 
Sep-Pak (0.82 g) and drying under reduced pressure, fraction 
3 was isolated as 0.48 mg (9%) of a yellow residue. By an 
analogous work-up, 1.8 mg (32%) of the biladiene 2 were 
obtained as a yellow residue. The yellow/reddish fraction 4 
was isolated as 1.9 mg (36%) of a reddish residue. A small 
amount of the PiCC 1 was also re-isolated (0.1 mg, calcu-
lated from UV–Vis spectrum).

Decomposition of PiCC 1 in a solution of methanol 
with 0.08% of NEt3

A solution of 6.5 mg PiCC 1 (10.2 µmol) in 65 cm3 of 
MeOH was purged with Ar for 5 min. To the solution, 50 
mm3 of NEt3 were added and the resulting solution was 
tightly sealed with stopper and stirred under Ar in the dark. 
After 8 days, the colour of the solution changed from red to 
yellow and an HPLC analysis indicated the disappearance of 
1 (Fig. S3). The solution was diluted with 50 mM K-buffer to 
200 cm3 and applied to a 5 g Sep-Pak cartridge. The yellow 
fraction 2 was eluted first, with MeOH/buffer 55/45 (v/v), 
the yellow/reddish fraction 4 subsequently with MeOH/
buffer 60/40 (v/v). After desalting each fraction on a Sep-Pak 
(0.82 g) with washing down with MeOH and drying under 
vacuum, 3.4 mg (53% yield) of the biladiene 2 were isolated 
as a yellow residue, and analogously, 2.0 mg (ca. 31% yield) 
of 4 were obtained as yellow/reddish residue.

Spectroscopic characterization of biladiene 2

UV–Vis (in 3/2 MeOH/50 mM potassium phosphate buffer, 
pH 7): λmax (rel. ε) = 462 (1.00), 388 (0.45), 314 (0.93), 
268 (0.51), 208 (1.03) nm; ESI-MS: m/z (%) = 1426.0 (28), 
1391.1 (10), 1390.2 (20), 1389.1 (18, [2 M − H + K + Na]+), 
1369.1 (20), 1368.0 (15), 1367.0 (10, [2 M + Na]+), 1347.3 
(10), 1346.1 (12), 1345.1 (16, [2 M + H]+), 719.2 (15), 718.3 
(55), 717.3 (100, [M − H + 2Na]+), 697.3 (15), 696.2 (40), 
695.4 (70, [M + Na]+), 675.2 (10), 674.2 (45), 673.3 (85, 
[M + H]+), 642.3 (9), 641.3 (18, [M-MeOH + H]+); NMR: 
see Figs. 5 and 6, and detailed information in the Supple-
mentary Materials; Tables S1 and S2 with lists of chemical 
shift values and signal assignments.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00706-​022-​02894-z.
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