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Abstract
Modified 1,5-dideoxy-1,5-imino-d-xylitol analogues with different substitution patterns involving position C-1 and/or the 
ring nitrogen were prepared, which were designed to serve as precursors for the preparation of iminoxylitol-based ligands and 
tools for the elucidation and modulation of human lysosomal β-glucocerebrosidase. Biological evaluation of the synthesized 
glycomimetics with a series of glycoside hydrolases revealed that these substitution patterns elicit excellent β-glucosidase 
selectivities.
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Introduction

Iminoalditols, also termed iminosugars, are natural occur-
ring glycomimetics, in which the ring oxygen of the car-
bohydrate moiety is replaced by a trivalent basic nitrogen. 

Paradigmatic structural scaffolds are polyhydroxylated 
piperidines 1, pyrrolidines 2, indolizidines 3, and pyr-
rolizidines 4 (Fig. 1) [1–5]. The nitrogen in the endocyclic 
position is responsible for the unique biological behavior 
of this compound class to interact and modulate active site 
specifically glycoside-processing enzymes. Since the last 
decades, such compounds have been of great interest for an 
interdisciplinary scientific community, including chemists, 
biochemists, as well as physicians.

Many different naturally occurring structures are known, 
exceeded by the number of synthetic derivatives, with mani-
fold different modification patterns concerning the carbo-
hydrate scaffold as well as customized derivatisations for 
different applications. This substance class has been impli-
cated as potential therapeutic agents [6], for example, as 
immunomodulators [7, 8], as antibacterial [9, 10], antivi-
ral [11, 12], anti-cancer [13], and anti-fungal [14] agents. 
In addition, iminoalditol-based glycomimetics have been 
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identified as plant growth inhibitors [15]. An interesting field 
of application has emerged when iminoalditols have been 
applied at sub-inhibitory concentrations to act as protein-
folding templates [16, 17] for mutant lysosomal enzymes, 
thus becoming candidates for the management of lysosomal 
storage disorders in the pharmacological chaperone therapy 
[18]. Moreover, this compound class has received great 
attention as probes for activity-based profiling of glycoside-
processing enzymes [19–21].

The d-xylo configuration in the dideoxy iminoalditol 
scaffold has been shown to have very interesting ligand 
properties for glycoside-processing enzymes in terms of 
activity as well as selectivity [22]. Various modifications 
with respect to substituents as well as positions on the imi-
noxylitol scaffold have been synthesized and biologically 

investigated. Basically all of these compounds have been 
shown to be highly selective ligands for β-glucosidases. 
For example, fluorinated iminoxylitols carrying an N-alkyl 
group [23] (Fig. 2), such as compound 5, have been found 
to exhibit immunosuppressive as well as glycosidase inhibi-
tory activities. Based on Lehmann’s early finding [24], imi-
noxylitols bearing a guanidino or urea function at the ring 
nitrogen [25, 26], for example compound 6, were synthe-
sized and found to be selective inhibitors of human lysoso-
mal β-glucocerebrosidase (GCase) with  IC50 values in the 
low nm range. A deficiency of this enzyme causes Gaucher 
disease [27]. We have synthesized iminoxylitols modified 
at the endocyclic ring nitrogen with functionalized alkyl 
groups, such as compound structure 7 [28], as well as fea-
turing more sophisticated substituents, including structure 
8 [29]. These compounds exhibited inhibitory properties 
against β-xylosidase from Thermoanaerobacterium sac-
charolyticum (Xyl Therm. sac.), with Ki values in the lower 
µm range (Table 1).

Martin and co-workers have developed elegant syn-
thetic routes towards 1-C-alkyl imino-d-xylitols 9 (Fig. 3), 
and showed that the introduction of the substituent at 
position C-1 improved the ligand properties as well as the 
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selectivity for GCase significantly [30–32]. In addition, in 
a structure–activity study, the influence of the position of 
an alkyl chain has been investigated, showing that a 1–2 
shift of the alkyl substituent from C-1 to O-2 (compounds 
10a–10b) increased the inhibitory property of the respec-
tive compound against GCase by a factor of 2 [33]. The 
same group has also synthesized 1,5-dideoxy-1,5-imino-
d-xylitol (DIX) derivatives with alkyl substituents similar 
to ceramide at position C-1, for example compound 11, 
and obtained highly potent GCase inhibitors which also 
showed selective chaperone properties for mutations asso-
ciated to Types 1 and 2 Gaucher Disease [34].

Compain and co-workers synthesized a library of 1-C-tri-
azolylalkyl side chain-modified DIX analogues (Fig. 4), 
including compounds 12, by a click chemistry approach, and 
found that some of these are GCase enhancers for selected 
Gaucher disease genotype mutants [35, 36].

Withers and co-workers developed a thiol-ene reaction 
sequence for rapid assembly of 1-C-alkyl DIX derivatives 
containing a sulfur atom between the DIX scaffold and 
the lipophilic substituent (Fig. 5), such as compounds 
13, and also found excellent ligand properties in terms of 
activity as well as selectivity for GCase furnishing promis-
ing potent and selective pharmacological chaperones for 
GCase mutants [37].

Overkleeft and co-workers included into their struc-
ture–activity relationship study of lipophilic glycomimet-
ics various d-xylo configured 1-C-iminosugar glycosides, 
for example compounds 14 (Fig. 6), and could demonstrate 
that these glycomimetics significantly exceed in terms of 
inhibitory activity as well as selectivity for GCase com-
pared to the corresponding of d-gluco as well as l-ido 
configured analogues [38].

We have developed a convenient synthetic protocol for 
the modification of the DIX scaffold at position C-1 taking 

Fig. 3  Structures of C-1 modi-
fied DIX derivatives 9–11 
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advantage of the Staudinger/aza-Wittig/nucleophile reaction 
sequence [39, 40]. By this method, we have synthesized a 
range of simple C-1 alkyl modified DIX analogues 15 
(Fig. 7) and have found the same trend for these compounds, 
which are highly selective ligands for GCase.

All DIX derivatives carrying a substituent at position C-1, 
9–15, have been found to be locked in the 1C4 conformation 
when the alkyl substituent is introduced from the β-face at 
the pseudoanomeric center (B, Fig. 8). The hydroxyl groups 
at positions O-2, O-3, and O-4 are in an axial orientation 
and the substituent at position C-1 is equatorial due to a 
piperidine ring inversion under acidic conditions such as 
in the lysosomal environment. In contrast, ring nitrogen 

substituted DIX derivatives, 5–8, are found in the typical 
4C1 conformation (A, Fig. 8). This might be an explanation 
for the exceptional ligand properties as well as the selectivity 
of C-1-substituted DIX derivatives, which has been observed 
previously by others and us for similar alkyl-iminoxylitols 
[30, 34, 36–40].

We are interested in the synthesis of iminosugar-based 
glycomimetics as tools for profiling and as ligands for modu-
lating GCase activity. Consequently, we want to develop a 
simple and convenient approach towards N-modified DIX-
based building blocks locked in the 1C4 conformation which 
carry a substituent suitable for further modifications for 
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Fig. 7  Structure of C-1 modi-
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different applications taking advantage of the exceptional 
ligand properties of this system.

Results and discussion

For this study, we had to take two considerations into 
account. We wanted to investigate which modification pat-
tern is best for ligand properties, modification at position 
C-1 or at the ring nitrogen. In addition, we were looking 
for a suitable functional group at the terminus of the handle 
which would allow further functionalisation for different 
applications, including introduction of reporter groups such 
as fluorescent dyes or click chemistry features. We decided 
to introduce either an ester group or an imidazole residue. 
Both functional groups have been found to be suitable for 
ligand properties of GCase [34, 36].

For the synthesis of the C-1-modified DIX compounds, 
1-C-ethenyliminoxylitol derivative 16, which has been syn-
thesized previously by a Staudinger/aza-Wittig/Grignard 
reaction sequence [40], served as suitable starting mate-
rial (Scheme 1). Ozonolysis of compound 16 followed by 
a Horner–Wadsworth–Emmons reaction employing triethyl 
phosphonoacetate gave 1-C-(ethyloxycarbonyl-2-ethenyl)
iminoxylitol derivative 17 in 78% over two steps. The dou-
ble bond was reduced employing Pd/BaSO4 as catalyst 

under hydrogen atmosphere to provide compound 18 in 45% 
which, after the final deprotection under hydrogenolytical 
conditions, furnished (1R)-1-C-ethyloxycarbonylethyl-
1,5-dideoxy-1,5-imino-d-xylitol (19) in 72%. As expected, 
this compound exhibits the 1C4 conformation according 
to the NMR analysis, coupling constants of protons along 
the sugar ring exhibit characteristic values in the range of 
3–5 Hz as are typical for this conformation. 

For the introduction of the histamine moiety (Scheme 2), 
imine 18 was protected with a carboxybenzyl group (Cbz) 
at the ring nitrogen to give compound 20. The terminal 
ester group was saponified employing NaOH to furnish 
1-C-propionic acid derivative 21, which was used without 
purification for the coupling step employing histamine dihy-
drochloride, (1-cyano-2-ethoxy-2-oxoethylidenaminooxy)
dimethylaminomorpholinocarbenium hexafluorophosphate 
(COMU) and N,N-diisopropylethylamine (DIEA) as cou-
pling cocktail to give protected (1R)-1-C-(imidazo-4-yl)
ethylaminocarbonylethyliminoxylitol 22 in 75% yield. 
Final deprotection under hydrogenolytic conditions gave 
the imidazole-modified iminoxylitol 23 in a yield of 78%. 
As expected, also this compound features the 1C4 conforma-
tion according to the NMR analysis, coupling constants of 
protons along the sugar ring exhibit characteristic values in 
the range of 3–5 Hz.

To install the same modification patterns, an ester as 
well as the imidazole group, at the ring nitrogen, the double 
bond in protected 1-C-ethenyliminoxylitol 16 was reduced 
employing Pd/BaSO4 as catalyst under hydrogen atmosphere 
(Scheme 3). Under the same reaction conditions, the N-Cbz 
protecting group was cleaved off to give benzyl-protected 
(1R)-1-C-ethyliminoxylitol 24 in 81% yield. Introduction 
of the methoxycarbonylpentyl group at the ring nitrogen 
was achieved by employing methyl 6-iodohexanoate and 
sodium carbonate as base in DMF to give N-alkylated imi-
noxylitol 25 in 67% yield. No formation of a quaternary 
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ammonium ion by double alkylation of the ring nitrogen 
has been observed during this reaction. Final deprotection 
of the benzyl groups under hydrogenolytical conditions gave 
(1R)-1-C-ethyl-N-methoxycarbonylpentyliminoxylitol (26) 
in 88% yield. Also compounds 24–26 were found in the 1C4 
conformation exclusively, due to NMR analysis. Likely, the 
ethyl group at the position C-1 is being responsible for this 
finding.

The introduction of the imidazole moiety was conducted 
accordingly to the synthesis of compound 23 (Scheme 4). 
Saponification of the methyl ester of compound 25 fol-
lowed by coupling of the histamine moiety led to protected 
imidazole-modified iminosugar derivative 27. Final deben-
zylation by hydrogenolysis gave (1R)-1-C-ethyl-N-(imidazo-
4-yl)ethylethylaminocarbonylpentyliminoxylitol (28) in 86% 
yield. Accordingly, all compounds in this series were also 
found to adopt the 1C4 conformation by NMR analysis. The 

coupling constants of protons along the sugar ring exhibit 
characteristic values in the range of 3–5 Hz as are typical 
for this conformation.

For the biological evaluation of the synthesized DIX 
derivatives 19, 23, 26, and 28, we have probed a series of 
standard glycoside hydrolases, including β-glucosidase from 
Agrobacterium sp. (ABG), β-galactosidase from E. coli, 
Fabrazyme (commercial recombinant human lysosomal 
α-galactosidase), α-glucosidase S. cerevisiae, and human 
β-glucocerebrosidase GCase, to investigate ligand activ-
ity as well as selectivity. All compounds were found highly 
selective inhibitors of β-glucosidases and showed practically 
no detectable interaction with α-glucosidase (S. cer.), β-Gal 
(E. coli), as well as human α-Gal (Fabrazyme), respectively, 
confirming the findings of other groups mentioned above. 
Both imidazole-modified compounds, 23 (Ki value 1.1 µM) 
as well as 28 (4.1 µM), showed better inhibitory activity for 

H
N

BnO
OBn

OBn

O

O
N

BnO
OBn

OBn

O

OCbz
N

BnO
OBn

OBn

OH

OCbz

N

BnO
OBn

OBn

NH

OCbz

N

H
N

H
N

HO
OH

OH

NH

O

N

H
N

120281

3222

CbzCl, Et3N,
MeOH

NaOH,
1,4-dioxane/H2O

COMU, DIEA,
DMF

N

N
H

NH2
2 HCl Pd(OH)2/C, H2,

MeOH/H2O

Scheme 2

N

BnO
OBn

OBn

Cbz H
N

BnO
OBn

OBn

N

BnO
OBn

OBn

O

O

N

HO
OH

OH

O

O
524261

26

Pd/BaSO4, H2,
MeOH

I
O

O

5

Na2CO3, DMF

Pd(OH)2/C, H2,
MeOH/H2O

Scheme 3



837Synthesis of modified 1,5-imino-d-xylitols as ligands for lysosomal β-glucocerebrosidase  

1 3

GCase compared to the ester-modified iminoxylitols 19 (Ki 
value 5.1 µM) and 26 (57 µM). Concerning our question 
regarding the modification pattern, we have obtained a very 
clear picture: 1-C-modified iminoxylitols 19 and 23 did not 
distinguish in their ligand properties between β-Glu from 
ABG and GCase with Ki values in the same low µM range. 
In contrast, the ring nitrogen-modified compounds 26 and 
28 showed excellent selectivity, with Ki values of 57 and 
4.1 µM, respectively, for GCase. No detectable inhibition of 
26 as well as 28 was found with the other enzymes inves-
tigated, including β-Glu ABG. This increase in selectivity 
might be explained by the fact that compounds 26 and 28 
combine the advantages of both features, the ethyl group at 
position C-1 locking the structure in the 1C4 conformation 
as well as the lipophilic substituents at the ring nitrogen. The 
former has been implied for favorable ligand properties and 
the fitting into the active site of GCase. The latter interacts 
with the lipophilic entrance to the active site of GCase mim-
icking the ceramide residue of the natural substrate gluco-
syl ceramide. Compounds 26 and 28 will serve as building 
blocks for further functionalisation as proposed.

Conclusion

We have investigated which position of substitution at the 
iminoxylitol scaffold for the introduction of further modifi-
cations is favorable, the ring nitrogen or position C-1. There-
fore, we have synthesized two compounds in both patterns, 
one carrying a terminal ester group, compounds 19 and 26, 
and the other presenting an imidazole motif, compounds 23 
and 28, for further modification. All four compounds were 
biologically evaluated with a series of standard glycosidases 
including human lysosomal β-glucocerebrosidase (GCase). 
Compounds 19 and 23, with the modification at position C-1 
of the DIX scaffold, showed excellent selectivity towards 
β-glucosidases; however, both did not discriminate β-Glu 
from ABG and human lysosomal GCase, with Ki values 
found in the low µM range. Compounds 26 and 28, car-
rying the modifications at the ring nitrogen and addition-
ally an ethyl group at position C-1, turned out to interact 
exclusively with human lysosomal GCase with Ki values 
of 57 and 4.1 µM, respectively. No detectable inhibition for 
any other enzyme included in this study has been observed. 
Thus, DIX-based scaffolds 26 and 28 are excellent building 

Scheme 4 

Table 1  Ki values [μM] of compounds with ABG = β-glucosidase/β-
galactosidase from Agrobacterium sp.; β-galactosidase from 
E. coli; Fabrazyme = commercial recombinant human lyso-

somal α-galactosidase; α-glucosidase S. cerevisiae; human 
β-glucocerebrosidase Gaucher; N.I. = no inhibition or weak inhibition 
with estimated Ki values higher than 1 mM

Enzyme Compound

β-Glu, ABG 2.1 1.6 N.I. N.I.
β-Gal, E. coli N.I. N.I. N.I. N.I.
α-Gal, Fabrazyme N.I. N.I. N.I. N.I.
α-Glu, S. cer. N.I. N.I. N.I. N.I.
β-Glu, Gaucher 5.1 1.1 57 4.1
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blocks for further modifications customized for different 
applications, such as for ligands to modulate and tools for 
profiling GCase activity.

Experimental

Optical rotations were measured at 20 °C on a Perkin Elmer 
341 polarimeter at a wavelength of 589 nm and a path length 
of 10 cm. NMR spectra were recorded on a Varian INOVA 
500 operating at 499.82 MHz (1H), and at 125.894 MHz 
(13C) or on a Bruker Ultra-shield spectrometer at 300.36 
and 75.53 MHz, respectively.  CDCl3 was employed for pro-
tected compounds and methanol-d4 or  D2O for unprotected 
iminoxylitols. Carbon and hydrogen numbering in NMR 
spectra was conducted in analogy to carbohydrate nomen-
clature and clockwise, starting with the pseudo anomeric 
position carbon as C-1. Chemical shifts are listed in delta 
employing residual, non-deuterated solvent as the internal 
standard. Signals were assigned unambiguously by COSY, 
HSQC, as well as APT analysis. The signals of the protect-
ing groups as well as of the N-substituents were found in the 
expected regions and are only listed explicitly when over-
lapping with important spectral features of the respective 
compound. MALDI-TOF mass spectrometry was performed 
on a Micromass TofSpec 2E Time-of-Flight Mass Spectrom-
eter. Analytical TLC was performed on precoated aluminum 
plates silica gel 60 F254 (E. Merck 5554) and detected with 
UV light (254 nm). For staining, a solution of 9 g vanillin in 
a mixture of 950 cm3  H2O/750 cm3 EtOH/120 cm3  H2SO4 
or ceric ammonium molybdate (100 g ammonium molyb-
date/8 g ceric sulfate in 1 dm3 10%  H2SO4) was employed 
followed by heating on a hotplate. For column chromatog-
raphy, silica gel 60 (230–400 mesh, E. Merck 9385) or silica 
gel 60 (Acros Organics, AC 24036) were used.

Kinetic studies were performed at 37 °C in an appropri-
ate buffer using a known concentration of enzyme (specific 
conditions depicted below). Ki determinations were per-
formed using the corresponding 4-nitrophenyl α- or β-D-
glycopyranoside as substrate. In a typical assay, the enzyme 
was incubated with different inhibitor concentrations for up 
to 5 min before initiating the reaction by the addition of 
substrate. The initial reaction rate was measured by monitor-
ing the increase in absorbance at 400 nm for up to 10 min. 
Ki determinations were performed using at least two differ-
ent substrate concentrations. For each inhibitor, a range of 
four-to-six inhibitor concentrations bracketing the Ki value 
ultimately determined was used for each substrate concentra-
tion. Dixon plots (1/v vs. [I]) were constructed to validate the 
use of the competitive inhibition model. The data were then 
fitted using non-linear regression analysis with Grafit 7.0. 
Specific assay conditions for each enzyme: Agrobacterium 
sp. β-glucosidase was expressed and purified recombinantly 

in E. coli as previously described [43]: 50 mM sodium phos-
phate buffer (pH 7) using 1.85 × 10−4 mg/cm3 of enzyme 
(Km = 4.1 mM) [41, 42]; E.coli lac z β-galactosidase (Sigma-
Aldrich): 50 mM sodium phosphate, 1.0 mM  MgCl2 (pH 
7) using 6.4 × 10−4 mg/cm3 of enzyme (Km = 60  μM); 
Fabrazyme (acid α-galactosidase, generously gifted by Dr 
Lorne Clarke, Department of Medical Genetics, Univer-
sity of British Columbia): 20 mM sodium citrate, 50 mM 
sodium phosphate, 1.0 mM tetrasodium EDTA, 0.25% v/v 
Triton X-100®, and 0.25% w/v taurocholic acid buffer (pH 
5.5) using 5 × 10−5 mg/cm3 of enzyme (Km = 0.65 mM); S. 
cerevisiae α-glucosidase (Sigma-Aldrich): 50 mM sodium 
phosphate buffer (pH 7) using 5 × 10−3 mg/cm3 of enzyme 
(PNP α-Glc, Km = 0.75 mM); β-Glucocerebrosidase (GCase, 
generously gifted by Dr. Lorne Clarke, Department of Medi-
cal Genetics, University of British Columbia): 20 mM citric 
acid, 50 mM sodium phosphate, 1 mM tetrasodium EDTA, 
0.25% v/v Triton X-100, and 0.25% w/v taurocholic acid (pH 
7.0) (Km = 1.1 mM).

(1R)‑2,3,4‑Tri‑O‑benzyl‑N‑(benzyloxycarbonyl)‑1‑C‑(ethyl‑
oxycarbonylethenyl)‑1,5‑dideoxy‑1,5‑imino‑d‑xylitol (17, 
 C39H41NO7) Compound 16 [40] (550 mg, 0.98 mmol) was 
dissolved in 100 cm3  CH2Cl2/MeOH (1/1, v/v) and stirred 
under an atmosphere of ozone at − 30 °C until no starting 
material was detected on TLC (cyclohexane/EtOAc = 2/1, 
v/v).  N2 was bubbled through the reaction mixture to remove 
ozone traces and 200 mm3 dimethylsulfide was added to the 
reaction mixture, which was stirred for 45 min, followed by 
concentration under reduced pressure. The resulting color-
less oil was added dropwise to a prepared solution of 330 mg 
KOtBu (2.90 mmol, 3 eq) and 580 mm3 triethylphosphono-
acetate (2.90 mmol, 3 eq) in 50 cm3 THF. Upon consump-
tion of the starting material (detected by TLC: cyclohexane/
EtOAc = 2/1, v/v),  CH2Cl2 was added and extracted with 
2 N HCl and satd.  NaHCO3 solution. The organic phase was 
dried over  Na2SO4 and concentrated under reduced pressure. 
Purification utilizing silica gel chromatography (cyclohex-
ane/EtOAc = 10/1, v/v) gave compound 17 (500  mg) 
with a yield of 78% as colorless oil. Rf = 0.55 (cyclohex-
ane/EtOAc = 2/1, v/v). MS: m/z calcd. for  C39H41NO7Na 
658.2781, found 658.2762. Due to two pronounced rota-
meric populations of the N-Cbz group as well as a mixture 
of E/Z isomers of the double bond, signal splitting as well as 
signal overlapping in the respective NMR spectra have been 
observed leading to poor resolution. The respective peaks, 
however, are observed in the expected region.

(1R)‑2,3,4‑Tri‑O‑benzyl‑1‑C‑(ethyloxycarbonylethyl)‑1,5‑
dideoxy‑1,5‑imino‑d‑xylitol (18,  C31H37NO5) Compound 17 
(1.4 g, 2.2 mmol) was dissolved in 30 cm3 MeOH, Pd/BaSO4 
was added, and the reaction mixture stirred under hydrogen 
atmosphere until the starting material was not detectable 
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by TLC (cyclohexane/EtOAc = 2/1, v/v). The reaction mix-
ture was filtered and concentrated under reduced pres-
sure. Compound 18 (500 mg) was purified utilizing silica 
gel chromatography (cyclohexane/EtOAc = 1/1, v/v) and 
isolated in 45% yield as colorless oil. Rf = 0.10 (cyclohex-
ane/EtOAc = 1/1, v/v); MS: m/z calcd. for  C31H37NO5Na 
526.2569, found 526.2639; 1H NMR (300 MHz,  CDCl3): 
δ = 7.32–7.10 (m, 15H, Ph), 4.53–4.40 (m, 6H, CH2Ph), 
4.05 (q, 2H, H-9), 3.68 (dd, J3,2 = 5.7 Hz, J3,4 = 5.5 Hz, 
1H, H-3), 3.33 (dd, J2,1 = 4.5 Hz, 1H, H-2), 3.32 (ddd, 
J4,5 = 5.6 Hz, 1H, H-4), 2.96–2.87 (m, 2H, H-1, H-5e), 2.81 
(dd, J5a,5e = 13.5 Hz, 1H, H-5a), 2.40–2.19 (m, 2H, H-7), 
1.85–1.75 (m, 2H, H-6), 1.17 (t, 3H, H-10) ppm; 13C NMR 
(75.5 MHz,  CDCl3): δ = 173.9 (C-8), 138.7, 138.6, 138,5 
(3C,  3xCq), 128.5–127.7 (Ph), 78.2 (C-4), 77.4 (C-2), 76.5 
(C-3), 73.9, 72.4, 72.0 (3C, 3 × CH2Ph), 60.4 (C-9), 54.5 
(C-1), 44.6 (C-5), 31.5 (C-7), 24.0 (C-6), 14.4 (C-10) ppm.

(1R)‑1‑C‑(Ethyloxycarbonylethyl)‑1,5‑dideoxy‑1,5‑im‑
ino‑d‑xylitol (19,  C10H19NO5) Compound 18 (150  mg, 
0.30 mmol) was dissolved in MeOH/H2O (1/1, v/v) and 
Pd(OH)2 on activated charcoal was added to the solution. 
The reaction mixture was stirred under hydrogen atmosphere 
until the starting material was consumed TLC (cyclohexane/
EtOAc = 1/2, v/v). The reaction mixture was filtered, con-
centrated under reduced pressure and the obtained oil was 
purified utilizing silica gel chromatography  (CHCl3/MeOH/
concd  NH4OH = 3/1/0.01, v/v/v). Compound 19 (50 mg) was 
obtained in 72% yield as colorless oil. Rf = 0.80  (CHCl3/
MeOH/concd  NH4OH = 1/1/0.25, v/v/v); MS: m/z calcd. 
for  C10H19NO5Na 256.1161, found 256.1188; [a]20

D
 = − 13.8 

(c = 1.2,  H2O); 1H NMR (300 MHz,  D2O): δ = 4.10 (q, 2H, 
H-9), 3.99–3.94 (m, 2H, H-3, H-4), 3.88 (dd, J1,2 = 3.6 Hz, 
J2,3 = 4.6 Hz, 1H, H-2), 3.46 (ddd, J1,2 = 1.3 Hz, 1H, H-1), 
3.36 (dd, J5a,4 = 2.2 Hz, J5e,5a = 13.8 Hz, 1H, H-5a), 3.24 (dd, 
J5e,4 = 1.6 Hz, 1H, H-5a), 2.58–2.40 (m, 2H, H-7), 2.08–1.91 
(m, 2H, H-6), 1.18 (t, 3H, H-10) ppm; 13C NMR (75.5 MHz, 
 D2O): δ = 174.9 (C-8), 67.5 (C-2), 67.0 (C-3), 66.1 (C-4), 
62.1 (C-9), 54.3 (C-1), 45.5 (C-5), 29.4 (C-7), 23.0 (C-6), 
13.4 (C-10) ppm.

(1R)‑2,3,4‑Tri‑O‑benzyl‑N‑(benzyloxycarbonyl)‑1‑C‑(eth‑
yloxycarbonylethyl)‑1,5‑dideoxy‑1,5‑imino‑d‑xylitol (20, 
 C39H43NO7) Compound 18 (750 mg, 1.40 mmol) was dis-
solved in 20 cm3 MeOH and 480 mm3  Et3N (3.40 mmol, 
2.4 eq). CbzCl (250 mm3, 1.70 mmol, 1.2 eq) was added 
and the reaction mixture was stirred at ambient tempera-
ture. Upon consumption of the starting material (detected 
by TLC: cyclohexane/EtOAc = 1/1, v/v), the reaction mix-
ture was concentrated under reduced pressure, dissolved 
in  CH2Cl2, and extracted with 2 N HCl and sat.  NaHCO3 
solution. The organic layer was dried over  Na2SO4 and con-
centrated under reduced pressure. Compound 20 (270 mg) 

was obtained after purification utilizing silica gel chroma-
tography (cyclohexane/EtOAc = 10/1, v/v) in 24% yield 
as colorless oil. Rf = 0.45 (cyclohexane/EtOAc = 3/1, v/v); 
1H NMR (300 MHz,  CDCl3): δ = 7.29–7.12 (m, 20H, Ph), 
5.03–4.94 (m, 2H, CH2Cbz), 4.80–4.74 (m, 2H, CH2Ph), 
4.65–4.50 (m, 5H, 2xCH2Ph, H-1), 4.36–4.26 (m, 1H, H-1, 
H-5e), 4.09–3.90 (m, 2H, H-9, H-5e), 3.58 (dd, J3,2 = 9.0 Hz, 
J3,4 = 9.2 Hz, 1H, H-3), 3.42 (dd, J2,1 = 6.1 Hz, 1H, H-2), 
3.32 (ddd, J4,5 = 5.5 Hz, 1H, H-4), 2.65 (dd, J5a,5e = 13.1 Hz, 
1H, H-5a), 2.22–2.07 (m, 2H, H-7), 1.93–1.72 (m, 2H, H-6), 
1.12 (t, 3H, H-10) ppm; 13C NMR (75.5 MHz,  CDCl3): 
δ = 173.1 (d, C-8), 155.6 (d, Cbz), 138.9, 138.2, 136.4 
 (Cq-Ph), 128.7–127.0 (Ph), 82.0 (d, C-3), 79.6 (d, C-2), 78.2 
(C-4), 75.8, 73.2, 72.8 (d, CH2Ph), 67.7 (d, CH2Cbz), 60.5 
(d, C-9), 52.7 (d, C-1), 40.9 (d, C-5), 30.7 (C-7), 19.9 (d, 
C-6), 14.3 (C-10) ppm. Due to two pronounced rotameric 
populations (20) of the N-Cbz group, signal splitting in the 
respective NMR spectra has been observed leading to some-
how poor resolution of NMR spectra.

(1R)‑2,3,4‑Tri‑O‑benzyl‑N‑(benzyloxycarbonyl)‑1‑C‑(carboxy‑
ethyl)‑1,5‑dideoxy‑1,5‑imino‑d‑xylitol (21,  C37H39NO7) Com-
pound 20 (220 mg, 0.35 mmol) was dissolved in 20 cm3 
dioxane/H2O (1/1, v/v) and 1 cm3 of a 3 M NaOH solu-
tion was added dropwise. After consumption of the start-
ing material (detected by TLC: cyclohexane/EtOAc = 3/1, 
v/v), the reaction mixture was acidified with 2 N HCl and 
extracted with EtOAc. The combined organic layers were 
dried over  Na2SO4 and concentrated under reduced pres-
sure. Compound 21 (230 mg) was obtained as slightly yel-
low oil containing minor amounts of impurities and has 
been employed for the next step without further purifica-
tion. Rf = 0.60 (EtOAc); 1H NMR (300 MHz, MeOH-d4): 
δ = 7.27–7.08 (m, 20H, Ph), 5.02–4.90 (m, 2H, CH2Cbz), 
4.81–4.72 (m, 2H, CH2Ph), 4.57–4.35 (m, 5H, 2xCH2Ph, 
H-1), 4.19 (dd, J5e,4 = 5.2 Hz, J5e,5a = 13.3 Hz, 1H, H-5e), 
4.03 (dd, 1H, H-5a), 3.51 (dd, J3,2 = 8.5 Hz, J3,4 = 9.1 Hz, 1H, 
H-3), 3.35–3.18 (m, 2H, H-2, H-4), 2.18–1.63 (m, 4H, H-6, 
H-7) ppm; 13C NMR (75.5 MHz,  CDCl3): δ = 179.1 (d, C-8), 
155.7 (d, Cbz), 138.9, 138.1, 136.5  (Cq-Ph), 128.7–127.7 
(Ph), 82.1 (d, C-3), 79.9 (d, C-2), 78.3 (C-4), 75.8, 73.3, 72.9 
(CH2-Ph), 67.7 (d, CH2-Cbz), 52.8 (d, C-1), 40.8 (d, C-5), 
30.7 (C-7), 19.7 (d, C-6) ppm. Due to two pronounced rota-
meric populations (21) of the N-Cbz group, signal splitting 
in the respective NMR spectra has been observed.

(1R)‑2,3,4‑Tri‑O‑benzyl‑N‑(benzyloxycarbonyl)‑1‑C‑[(imidazo‑ 
4‑yl)ethylaminocarbonylethyl]‑1,5‑dideoxy‑1,5‑imino‑d‑xy‑
litol (22,  C42H46N4O6) Compound 21 (340 mg, 0.57 mmol) 
was dissolved in 20 cm3 DMF. COMU (490 mg, 1.14 mmol, 
2 eq) and 400 mm3 DIEA (2.33 mmol, 4 eq) were added, 
and the reaction mixture was stirred for 30 min at ambi-
ent temperature. Histamine dihydrochloride (160  mg, 
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0.86 mmol, 1.5 eq) was added and the reaction mixture 
was stirred until the starting material was consumed, TLC 
(EtOAc/MeOH = 10/1, v/v). The reaction mixture was 
concentrated under reduced pressure and purified by silica 
gel chromatography (EtOAc/MeOH = 10/1, v/v) to give 
compound 22 (300 mg) in 75% yield. Rf = 0.60  (CHCl3/
MeOH/concd.  NH4OH = 6/1/0.01, v/v/v); MS: m/z calcd. 
for  C42H46N2O6Na 725.3315, found 725.3347. Due to two 
pronounced rotameric populations (22) of the N-Cbz group, 
signal splitting in the respective NMR spectra has been 
observed leading to poor resolution of the NMR spectra.

(1R)‑1‑C‑[(Imidazo‑4‑yl)ethylaminocarbonylethyl]‑1,5‑dide‑
oxy‑1,5‑imino‑d‑xylitol (23,  C13H22N4O4) Compound 22 
(300 mg, 0.43 mmol) was dissolved in 15 cm3 MeOH/H2O 
(1/1, v/v), Pd(OH)2 on activated charcoal was added and 
the reaction mixture was stirred under hydrogen atmos-
phere. Upon consumption of the starting material (detected 
by TLC:  CHCl3/MeOH/concd  NH4OH = 6/1/0.01, v/v/v), 
the reaction mixture was filtered and concentrated under 
reduced pressure. After purification by silica gel chroma-
tography  (CHCl3/MeOH/concd  NH4OH = 3/1/0.25, v/v/v) 
compound 23 (100 mg) was obtained as colorless oil in 78% 
yield. Rf = 0.50  (CHCl3/MeOH/concd  NH4OH = 1/1/0.25, 
v/v/v); MS: m/z calcd. for  C13H22N4O4Na 321.1539, found 
321.1567; [a]20

D
 = − 6.5 (c = 1,  H2O); 1H NMR (300 MHz, 

 D2O): δ = 7.83 (s, 1H, H-13), 6.92 (s, 1H, H-12), 3.77 (ddd, 
J3,4 = 4.8 Hz, J3,2 = 5.2 Hz, 1H, H-3), 3.75 (dd, J4,5e = 3.8 Hz, 
J4,5a = 4.6 Hz, 1H, H-4), 3.69 (dd, J1,2 = 3.2 Hz, 1H, H-2), 
3.36 (t, 2H, H-9), 3.13 (ddd, 1H, H-1), 3.21 (dd, 1H, H-5e), 
2.97 (dd, J5e,5a = 13.6 Hz, 1H, H-5a), 2.72 (t, 2H, H-10), 
2.22 (t, 2H, H-7), 1.89–1.70 (m, 2H, H-6) ppm; 13C NMR 
(75.5 MHz,  D2O): δ = 175.1 (C-8), 135.1 (C-13), 133.6 
(C-11), 116.8 (C-12), 68.9 (2C, C-2, C-3), 67.0 (C-4), 54.6 
(C-1), 44.8 (C-5), 38.7 (C-9), 31.7 (C-7), 25.4 (C-10), 23.3 
(C-6) ppm.

(1R)‑2,3,4‑Tri‑O‑benzyl‑1‑C‑ethyl‑1,5‑dideoxy‑1,5‑im‑
ino‑d‑xylitol (24,  C28H33NO3) Compound 16 [40] (1.2 g, 
2.13 mmol) was dissolved in 20 cm3 MeOH. Pd/BaSO4 was 
added and the reaction mixture was stirred under hydrogen 
atmosphere. Upon consumption of the starting material 
(detected by TLC: cyclohexane/EtOAc = 3/1, v/v) the reac-
tion mixture was filtered and concentrated under reduced 
pressure. Compound 24 (740 mg) was obtained with a yield 
of 81% as colorless oil. Rf = 0.2 (cyclohexane/EtOAc = 3/1, 
v/v); [a]20

D
 = − 1.1 (c = 1.0,  CHCl3); 1H NMR (300 MHz, 

 CDCl3): δ = 7.35–7.07 (m, 15H, Ph), 4.65–4.35 (m, 6H, 
CH2Ph), 3.67 (dd, J3,4=3,2 = 5.7 Hz, 1H, H-3), 3.38–3.23 (m, 
2H, H-2, H-4), 2.91 (dd, J5e,4 = 4.1 Hz, J5e,5a = 13.4 Hz, 1H, 
H-5e), 2.89 (dd, J5a,4 = 5.5 Hz, 1H, H-5a), 2.83–2.76 (m, 
J1,2 = 3.9 Hz, 1H, H-1), 1.55–1.42 (m, 2H, H-6), 0.81 (t, 3H, 
H-7) ppm; 13C NMR (75.5 MHz,  CDCl3): δ = 138.7 (3x  Cq), 

128.4–127.6 (Ph), 78.1 (C-2), 76.9 (C-3), 76.6 (C-4), 73.8, 
72.2, 71.9 (3C, 3x CH2-Ph), 56.5 (C-1), 44.4 (C-5), 21.2 
(C-6), 10.8 (C-7) ppm.

(1R)‑2,3,4‑Tri‑O‑benzyl‑1‑C‑ethyl‑N‑(methyloxycarbonylpen‑
tyl)‑1,5‑dideoxy‑1,5‑imino‑d‑xylitol (25,  C35H45NO5) Com-
pound 24 (740 mg, 1.72 mmol) was dissolved in 20 cm3 
DMF. 6-Iodohexylmethylester (660 mg, 2.60 mmol, 1.5 eq) 
and 545 mg  Na2CO3 (5.15 mmol, 3 eq) were added and the 
reaction mixture was stirred at 60 °C. Upon consumption 
of the starting material (detected by TLC: cyclohexane/
EtOAc = 2/1, v/v), the reaction mixture was concentrated 
under reduced pressure, dissolved in  CH2Cl2, and extracted 
with 2 N HCl and satd.  NaHCO3 solution. The organic layer 
was dried over  Na2SO4 and concentrated under reduced 
pressure. Purification by silica gel chromatography gave 
compound 25 (640 mg) in a yield of 67% as colorless oil. 
Rf = 0.55 (cyclohexane/EtOAc = 2/1, v/v); [a]20

D
 = + 12.7 

(c = 1.1,  CHCl3); MS: m/z calcd. for  C35H45NO5Na 
582.3195, found 582.3217; 1H NMR (300 MHz,  CDCl3): 
δ = 7.29–7.16 (m, 15H, Ph), 4.80, 4.74 (2xd, 2H, CH2Ph), 
4.66–4.53 (m, 4H, CH2Ph), 3.59 (s, 3H, H-14), 3.56–3.43 
(m, 3H, H-2, H-3, H-4), 2.78–2.61 (m, J1,2 = 3.6  Hz, 
J5e,4 = 4.4 Hz, J5e,5a = 12.9 Hz, 2H, H-1, H-5e), 2.52–2.34 
(m, J5a,4 = 5.5 Hz, 3H, H-5a, H-8), 2.22 (t, 2H, H-12), 1.63–
1.35 (m, 4H, H-6, H-11), 1.29–1.16 (m, 4H, H-9, H-10), 
0.87 (t, 3H, H-7) ppm; 13C NMR (75.5  MHz,  CDCl3): 
δ = 174.3 (C-13), 139.2, 138.8, 138.7 (3C, 3x  Cq), 128.4–
127.4 (Ph), 83.2 (C-4), 80.6 (C-2), 78.3 (C-3), 75.5, 73.1, 
72.8 (3x CH2Ph), 61.6 (C-1), 54.2 (C-8), 51.5 (C-14), 48.5 
(C-5), 34.2 (C-12), 28.4 (C-9), 26.7 (C-10), 24.9 (C-11), 
16.5 (C-6), 13.5 (C-7) ppm.

(1R) ‑1‑C‑Ethy l ‑N‑ (methy l ox yc a rbo ny l pent yl ) ‑1 ,5‑ 
dideoxy‑1,5‑imino‑d‑xylitol (26,  C14H27NO5) Compound 25 
(350 mg, 0.6 mmol, 1 eq) was dissolved in 10 cm3 MeOH/
H2O (1/1, v/v), Pd(OH)2/C was added and the reaction mix-
ture was stirred under hydrogen atmosphere at ambient pres-
sure. Upon consumption of the starting material (detected 
by TLC, eluent:  CHCl3/MeOH/concd.  NH4OH = 3/1/0.01, 
v/v/v), the reaction mixture was filtered, concentrated under 
reduced pressure, and purified by silica gel chromatography 
 (CHCl3/MeOH/concd.  NH4OH = 10/1/0.01, v/v/v) which 
gave compound 26 (160 mg) in a yield of 88% as color-
less oil. Rf = 0.66  (CHCl3/MeOH/concd.  NH4OH = 3/1/0.01, 
v/v/v); MS: m/z calcd. for  C14H27NO5Na 312.1787, 
found 312.1845; [a]20

D
 = + 7.4 (c = 1.0, MeOH); 1H NMR 

(300 MHz, MeOH-d4): δ = 4.01–4.00 (m, 2H, H-3, H-4), 
3.96–3.94 (dd,J1,2 = 3.6 Hz, J2,3 = 4.0 Hz, 1H, H-2), 3.69 (s, 
3H, H-14), 3.51 (bdd, J5e,4 = 1.2 Hz, J5e,5a = 12.8 Hz, 1H, 
H-5e), 3.41–3.32 (m, J5a,4 = 3.3 Hz, 2H, H-1, H-5a), 3.23 (q, 
2H, H-8), 2.41 (t, 2H, H-12), 2.00–1.89 (m, 2H, H-6), 1.82–
1.67 (m, 4H, H-9, H-11), 1.50–1.40 (m, 2H, H-10), 1.06 (t, 
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3H, H-7) ppm; 13C NMR (75.5 MHz, MeOH-d4): δ = 175.7 
(C-13), 69.4 (C-4), 69.2 (C-3, C-2), 63.7 (C-1), 54.3 (C-5), 
53.7 (C-8), 52.1 (C-14), 34.5 (C-12), 27.2 (C-10), 25.5 
(C-11), 23.4 (C-9), 19.8 (C-6), 10.3 (C-7) ppm.

(1R)‑2,3,4‑Tri‑O‑benzyl‑N‑(carboxypentyl)‑1‑C‑ethyl‑1,5‑
dideoxy‑1,5‑imino‑d‑xylitol (25a,  C34H43NO5) Compound 
25 (60 mg, 0.11 mmol) was dissolved in 5 cm3 dioxane/
H2O (1/1, v/v). NaOH solution (3 M, 10 drops) was added 
and the reaction mixture was stirred until the starting mate-
rial was consumed (TLC cyclohexane/EtOAc = 2/1, v/v). 
EtOAc was added and the reaction mixture was washed with 
2 N HCl and satd.  NaHCO3 solution. The organic layer was 
dried over  Na2SO4 and concentrated under reduced pressure. 
Compound 25a (40 mg) was obtained as colorless oil and 
was used without purification for the next step. Rf = 0.45 
(cyclohexane/EtOAc = 1/1, v/v); 1H NMR (300  MHz, 
 CDCl3): δ = 7.35–7.06 (m, 15H, Ph), 4.83–4.43 (m, 6H, 
CH2Ph), 3.71–3.50 (m, 3H, H-2, H-3, H-4), 3.05–3.34 (m, 
2H, H-1, H-5e), 2.68–2.42 (m, 3H, H-5a, H-8), 2.20 (t, 2H, 
H-12), 1.70–1.11 (m, 8H, H-6, H-9, H-10, H-11), 0.89 (t, 
3H, H-7) ppm; 13C NMR (75.5 MHz,  CDCl3): δ = 178.2 
(C=O), 139.1, 138.7, 138.6 (3x  Cq), 128.6–127.7 (Ph), 81.0, 
79.3, 77.3 (C-2, C-3, C-4), 75.2, 73.2, 73,0 (3x CH2-Ph), 
61.0 (C-1), 53.4 (C-8), 48.3 (C-5), 34.6 (C-12), 27.0, 26.6, 
24.9 (C-9, C-10, C-11), 16.4 (C-6), 13.4 (C-7) ppm.

(1R)‑2,3,4‑Tri‑O‑benzyl‑1‑C‑ethyl‑N‑[(imidazo‑4‑yl)ethyl‑ 
aminocarbonylpentyl]‑1,5‑dideoxy‑1,5‑imino‑d‑xylitol (27, 
 C39H50N4O4) Compound 25a (400 mg, 0.73 mmol) was dis-
solved in 20 cm3 DMF. COMU (704 mg, 1.46 mmol, 2 eq) 
and 509 mm3 DIEA (2.92 mmol, 4 eq) were added and the 
reaction mixture was stirred for 30 min. Histamine dihy-
drochloride (203 mg, 1.10 mmol, 1.5 eq) was added to the 
reaction mixture and stirred until the starting material was 
consumed (TLC EtOAc/MeOH = 10/1, v/v). The reaction 
mixture was concentrated under reduced pressure and puri-
fied by silica gel chromatography  (CHCl3/MeOH/concd. 
 NH4OH = 12/1/0.01, v/v/v) to give compound 27 (140 mg) 
as yellow solid with small impurities. Rf = 0.45 (cyclohex-
ane/EtOAc = 1/1, v/v); MS: m/z calcd. for  C39H50N4O4Na 
661.3730, found 661.3705; 1H NMR (300 MHz, MeOH-d4): 
δ = 7.67 (s, 1H, H-18), 7.40–7.26 (m, 15H, Ph), 6.90 (s, 1H, 
H-17), 4.82–4.52 (m, 6H, CH2Ph), 3.82–3.65 (m, 3H, H-2, 
H-3, H-4), 3.45 (t, 2H, H-14), 3.12–3.00 (m, 2H, H-1, H-5e), 
2.92–2.73 (m, 4H, H-5a, H-12, H-15), 2.19 (t, 2H, H-8), 
1.79–1.23 (m, 8H, H-6, H-9, H-10, H-11), 0.93 (t, 3H, H-7) 
ppm; 13C NMR (75.5 MHz, MeOH-d4): δ = 176.1 (C-13), 
139.9, 139.7, 139.6 (3x  Cq), 136.0 (C-18), 135.6 (C-16), 
129.5–128.9 (Ph), 118.2 (C-17), 78.5 (C-3), 77.1 (2C, C-2, 
C-4), 75.5, 73.7, 73.6 (3x CH2-Ph), 63.0 (C-1), 54.6 (C-12), 
50.5 (C-5), 40.3 (C-14), 37.0 (C-8), 27.7, 27.5, 27.0, 26.7 
(C-9, C-10, C-11, C-15), 18.1 (C-6), 13.2 (C-7) ppm.

(1R)‑1‑C‑Ethyl‑N‑[(imidazo‑4‑yl)ethylaminocarbonylpentyl]‑
1,5‑dideoxy‑1,5‑imino‑d‑xylitol (28,  C18H32N4O4) Compound 
27 (140 mg, 0.22 mmol) was dissolved in 5 cm3 MeOH/H2O 
(1/1, v/v), Pd(OH)2/C was added and the reaction mixture 
was stirred under hydrogen atmosphere at ambient pres-
sure. Upon consumption of the starting material (detected 
by TLC, eluent:  CHCl3/MeOH/concd.  NH4OH = 2/1/0.25, 
v/v/v), the reaction mixture was filtered, concentrated under 
reduced pressure, and purified by silica gel chromatogra-
phy  (CHCl3/MeOH/concd.  NH4OH = 3/1/0.25, v/v/v), which 
gave compound 28 (70 mg) in a yield of 86% as colorless 
oil. Rf = 0.60  (CHCl3/MeOH/concd  NH4OH = 2/1/0.25, 
v/v/v); MS: m/z calcd. for  C18H32N4O4Na 391.2321, found 
391.2384; [a]20

D
 = + 5.8 (c = 1.04,  H2O); 1H NMR (300 MHz, 

 D2O): δ = 7.95 (s, 1H, H-18), 6.96 (s, 1H, H-17), 3.87 (ddd, 
J4.5e = 3.1 Hz, J4,5a = 6.3 Hz, J4,3 = 5.6 Hz, 1H, H-4), 3.82 
(dd, J2,1 = 3.5 Hz, J2,3 = 5.8 Hz, 1H, H-2), 3.75 (dd, 1H, H-3), 
3.38 (t, 2H, H-14), 3.27–3.16 (m, 2H, H-1, H-5e), 2.98 (dd, 
J5a,5e = 12.5 Hz, J4,5a = 6.4 Hz, 1H, H-5a), 2.93 (t, 2H, H-12), 
2.76 (t, 2H, H-15), 2.13 (t, 2H, H-8), 1.79–1.42 (m, 6H, H-6, 
H-9, H-11), 1.29–1.10 (m, 2H, H-10), 0.92 (t, 3H, H-7) ppm; 
13C NMR (75.5 MHz,  D2O): δ = 176.6 (C-13), 134.7 (C-18), 
133.0 (C-16), 116.8 (C-17), 69.4 (C-3), 68.6 (C-4), 67.6 
(C-2), 62.4 (C-1), 52.7 (C-12), 51.8 (C-5), 38.4 (C-14), 35.4 
(C-8), 25.4 (C-10), 25.2 (C-9), 24.9 (C-15), 22.9 (C-11), 
17.1 (C-6), 10.8 (C-7) ppm.
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