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• Barbara Mirosław2

Received: 29 June 2016 / Accepted: 10 December 2016 / Published online: 22 March 2017

� The Author(s) 2017. This article is an open access publication

Abstract Reactions between (E)-2-aryl-1-cyano-1-ni-

troethenes and diazafluorene lead to acyclic 2,3-diazabuta-

1,3-diene derivatives, instead of the expected pyrazoline

systems. DFT calculations suggest that this is a conse-

quence of formation of zwitterionic structure in the first

stage of the reaction. It must be noted that this is a specific

property of the (E)-2-aryl-1-cyano-1-nitroethenes group, in

contrast to most other conjugated nitroalkenes.
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Introduction

Conjugated nitroalkenes (CNA) are very useful and uni-

versal synthons in organic synthesis. On their basis, many

valuable compounds may be prepared, such as nitronic acid

esters [1], amines [2], oximes [3] and others [2]. Addi-

tionally, the presence of a highly electron-withdrawing

nitro group stimulates p-deficiency of a double bond,

which activates these compounds in a stereo-controlled

reaction with nucleophilic reagents such as dienes [2, 4, 5],

1,3-dipoles [3, 6] and acetylenes [4].

(E)-2-Phenyl-1-cyano-1-nitroethene and their aryl-sub-

stituted analogs (ACNE) were prepared for the first time in

the first half of the twentieth century [7]. At present, sev-

eral compounds from this group are known [8–11].

However, their chemical properties are not well known.

Some compounds have been described very recently. In

particular, some examples of participation of ACNE in

Diels–Alder reactions as dienophiles [12–15] as well as

heterodienes [8, 16, 17] are explored. Additionally, some

examples of catalyzed 1,3-dipolar cycloadditions between

ACNE and trimethylsilyl azide are also analyzed [18, 19].

Unfortunately, this method does not yield stable adducts,

because the primary reaction products decompose partially

under reaction conditions. Actually, any examples of

thermal (non-catalyzed) 1,3-dipolar cycloadditions

involving ACNE are unknown. This work is an attempt to

fill this gap and is a continuation of our systematic study

about participation of CNA in cycloaddition reactions

[15, 20–24]. In particular, we have decided to shed light on

the reactions between the homogenous series of ACNE

(1a–1d) and diazafluorene (2), as a model allenyl-type 1,3-

dipole with [(C-)–(N?):N functional group. Theoreti-

cally, these reactions should give attractive, from a

practical point of view, nitrofunctionalized pyrazoline
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systems (Scheme 1). In addition to experimental studies,

we also performed comprehensive quantum chemical

studies to understand better the nature and molecular

mechanism of these reactions.

Results and discussion

Firstly, we prepared the reaction components. For this

purpose, we applied methodologies described earlier (see

the experimental section). Next, the analysis of the inter-

action between the addends in the expected cycloaddition

course was performed. Global and local electronic prop-

erties of (E)-2-aryl-1-cyano-1-nitroethenes had been

analyzed in detail previously [17, 25]. It was discovered

that all these compounds were characterized by a high

global electrophilicity (in the case of compounds 1a–1d

and were in the range of 3.14-3.68eV). In comparison

(Table 1), diazafluorene has evidently weaker electrophilic

nature (x = 1.84 eV). Additionally, 2 is characterized by a

relatively high global nucleophilcity (more than 3.5 eV). In

consequence, the interaction between CNA 1a–1d and 2

may be considered a polar one [26]. Subsequently, the local

electronic properties of addends have been analyzed. As

established earlier, in all CNA 1a–1d, most of the elec-

trophilic center is located at the b-position of the nitrovinyl

moiety [17, 25]. On the other hand, most of the nucle-

ophilic center in the [CNN moiety of 2 is located on the

terminal nitrogen atom. In polar cycloadditions, a reaction

course is controlled by the nature of the local nucleophile–

electrophile interaction. Therefore, we have assumed that

the reaction channel A should be preferred.

To verify the quantum chemical simulations, we per-

formed experimental tests of the reactions of interest. In

the first step, we explored reactions involving ACNE 1a.

It was found that this reaction proceeds in MeNO2 solu-

tion under mild conditions and yields a dark brown solid.

HPLC analysis of the post-reaction mixture shows the

existence of one reaction product, which was isolated by

crystallization from ethanol. Its constitution was estab-

lished by means of elemental analysis as well as spectral

techniques. It was found unexpectedly that the results of

the elemental analysis were fundamentally different from

those of the expected adduct. Next, in the IR spectrum,

any bands from NO2 as well as CN groups were not

observed. On the other hand, the MS spectrum gives a

molecular ion, which suggests that the molecular weight

is less than that in the expected adduct. This suggest the

absence of the C(CN)NO2 moiety in the molecule. Thus,

we established that it is not a five-membered heterocyclic

product, but a 2,3-diazabuta-1,3-diene derivative 5a. This

was fully confirmed by the single crystal X-ray structure

determination (Fig. 1 as well as Supplementary Material).

For a full characteristic of this compound, 1H and 13C

NMR spectra were also recorded (see ‘‘Experimental’’

section).

Similarly, we analyzed the reactions involving ACNE

1a–1d. In all cases, respectively, 2,3-diazabuta-1,3-diene

derivatives 5b–5d were isolated instead of the expected

nitropyrazolines. Next, we tested the reactions between

diazafluorene 2 and used ACNE in other, different solvents

such as acetonitrile, DCM and chlorobenzene. In all cases,

only 2,3-diazabuta-1,3-diene derivatives were isolated,

without any cycloadducts.

This phenomenon can be explained when assuming that

the primary reaction product 3a–3d spontaneously

decomposed with: C(CN)NO2 carbene elimination

according to the retro-[4 ? 1]-cycloaddition scheme (path

C on Scheme 2). Theoretically, the highly substituted five-

member heterocycles may have decomposed with the ring

Scheme 1
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opening via carbene elimination. It should be highlighted,

however, that any cases of this type of decomposition of

nitropyrazoline systems had not been previously described.

Some of these heterocycles decomposed under mild con-

ditions, but via completely different mechanisms [28–32].

Alternatively, it may be assumed that in the first reaction

stage, a zwitterionic intermediate I is formed. The

zwitterionic structure of I is probably stabilized by a push–

pull electronic effect, which is determined by the presence

of two EWG groups (NO2 and CN) in the terminal position.

A similar effect has been recently explored [11] in detail in

the case of a molecule, which has similar structural moi-

eties. In the next step, it is converted via C(CN)NO2

carbene elimination into a 2,3-diazabuta-1,3-diene deriva-

tive (Scheme 2). It should be noted at this point that the

possibility of the existence of zwitterionic structures on the

paths of reactions involving CNA has been recently

described in the case of interactions between diarylnitrones

and 1-EWG-substituted 1-nitroethenes [33, 34] as well as

between thiocarbonylylides and nitroethene [35, 36].

To confirm this hypothesis, we have performed DFT

simulation of theoretically possible paths for a model

reaction involving CNA 1c. It was found that, in contrast to

the reaction 1c ? 2 ? I, both cycloadditions leading

finally to pyrazoline systems (3c and 4c) should be treated

as forbidden from a kinetic point of view. In particular, for

reactions 1c ? 2 ? 3c(4c), Gibbs free energy of activa-

tion is higher than 141 kJ/mol, whereas in reaction

1c ? 2 ? I about 128 kJ/mol. In consequence, our

Table 1 Selected global and local electronic properties for diazafluorene (2) in comparison to other diazocompounds

Diazocompound Global properties Local properties

x/eV N/eV PC
- PN

- NC/eV NN/eV

Diazafluorene (2) 1.84 3.61 0.23 0.39 0.83 1.41

4-Methylphenyl-phenyl-diazomethane [27] 1.47 4.00 0.21 0.41 0.86 1.63

4-Chlorophenyl-phenyl-diazomethane [27] 1.70 3.75 0.22 0.40 0.81 1.50

Fig. 1 Molecular structure of 5a with atom labels

Scheme 2
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calculations may support mechanism via paths D ? E,

which is illustrated in Scheme 2. The key physical

parameters of all considered transition states are presented

in Fig. 2. It should be noted that the zwitterionic nature of

I, as well as the charge distribution on its molecule, was

confirmed by a population Mulliken analysis (see the

GEDT value).

Finally, it should be noted that the described reaction

course is a specific property of the ACNE group. In com-

parison, a similar reaction between (E)-3,3,3-trichloro-1-

nitroprop-1-ene (6) (which has similar electrophilicity to

ACNE [22]) and diazafluorene proceeds in MeNO2 solu-

tion under mild conditions and gives pyrazoline 7 with

quantitative yield (Scheme 3). Interestingly, this adduct is

easily decomposed into 8 under relatively mild conditions.

This decomposition proceeded via the HCl elimination

stage.

Conclusion

Reactions between allenyl-type 1,3 dipoles and ethylene/

acetylene derivatives proceed generally according to the

cycloaddition scheme [27–39]. Unexpectedly, diazafluo-

rene reacts with (E)-2-aryl-1-cyano-1-nitroethenes via

another mechanism. In particular, in these processes,

acyclic 2,3-diazabuta-1,3-diene derivatives are formed

instead of heterocyclic adducts. Probably, this is a conse-

quence of the formation of the zwitterionic structure in the

first reaction stage. This hypothesis is supported by DFT

calculations. It must be noted that there is a specific

property of the (E)-2-aryl-1-cyano-1-nitroethenes group, in

contrast to most other conjugated nitroalkenes. We found

that a similar reaction between (E)-3,3,3-trichloro-1-nitro-

prop-1-ene and diazafluorene proceeds under mild

conditions and gives 4-nitropyrazoline as the product.

Experimental

The melting points were determined on a Boetius apparatus

and are uncorrected. Elemental analyses were performed

on a Perkin-Elmer PE-2400 CHN apparatus. IR spectra

were recorded on a Bio-Rad spectrophotometer in CCl4
solution. The 1H NMR (500 MHz) and 13C NMR

(125 MHz) spectra were recorded on a Bruker AMX 500

spectrometer. Liquid chromatography (HPLC) was done

using a Knauer apparatus equipped with a UV/Vis detector.

For monitoring of the reaction progress, LiChrospher

18-RP 5 lm column (4 9 240 mm) and 75% methanol as

the eluent at a flow rate of 1.0 cm3/min were used.

Nitroalkenes 1a–1d [9, 11] and 6 [46] and diazafluorene

(2) [45] were synthesized according to the procedures

described earlier.

X-ray crystal structure determination

The X-ray diffraction intensities for 5a were collected at

120 K on SuperNova X-ray diffractometer equipped with

Atlas S2 CCD detector using the mirror-monochromatized

CuKa radiation (k = 1.54184 Å). All data were collected

using the x scan technique, with an angular scan width of

1.0�. The programs CrysAlis CCD, CrysAlis Red and

CrysAlisPro [40, 41] were used for data collection, cell

Fig. 2 Views of TSs for reaction between 1c and 2
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refinement and data reduction. The structures were solved

by direct methods using SHELXS-97 and refined by the

full-matrix least squares on F2 using the SHELXL-97 [42].

The H atoms were positioned geometrically and allowed to

ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C). The

molecular plot was drawn with Olex2 [43]. Compound 5a

crystallizes in an orthorhombic Pna21 space group. The

molecule is nearly planar. The two aromatic parts of the

molecule are twisted around the central linear fragment by

ca. 14.6(9)�. The bond lengths in the linear fragment were

as follows: C1 = N1 1.302(6) Å, N1–N2 1.392(6) Å,

N2 = C14 1.298(6) Å, and C14–C15 1.442(7) Å, showing

some degree of electron delocalization along this molecular

fragment in comparison to another related structure of p-

methoxybenzaldehyde 9-fluorenylidenehydrazone with the

respective bond lengths: C8 = N2 1.286 (4) Å, N1–N2

1.418 (3) Å, N1 = C7 1. 264 (4) Å, and C7–C6 1.453 (4) Å

(atom labels as in the original paper) [44].

The experimental details and final atomic parameters for

5a have been deposited with the Cambridge Crystallo-

graphic Data Centre as supplementary material (CCDC ID

1448932). Copies of the data can be obtained free of charge

on request via http://www.ccdc.cam.ac.uk/conts/retrieving.

html (or from the Cambridge Crystallographic Data Centre,

12, Union Road, Cambridge CB2 1EZ, UK; fax: ?44 1223

336033).

Reactions between CNA and diazafluorene: general

procedure

A mixture of appropriate nitroalkene (1a–1d or 6,

0.012 mol) and diazafluorene (0.010 mol) in 5 cm3 of the

appropriate solvent was stirred at room temperature for

12 h. The solvent was evaporated in vacuo to dryness and

the semisolid residue was recrystallized firstly from ethanol

and then from cyclohexane.

1-(4-Chlorophenyl)-2,3-diaza-4-(9-fluorenylidene)buta-

1,3-diene (5a, C20H13ClN2)

Yield: 95%; tR = 10.6 min; yellow crystals; m.p.:

103–105 �C; IR (KBr): �m = 2160, 1954, 1539,

1083 cm-1; 1H NMR (500 MHz, CDCl3): d = 8.54 (s,

1H, CH), 7.92 (d, 1H, J = 7.6 Hz, CHAr), 7.88 (d, 2H,

J = 8.5 Hz, CHAr), 7.68–7.62 (m, 2H, CHAr), 7.52–7.43

(m, 5H, CHAr), 7.35–7.31 (m, 2H, CHAr) ppm; 13C NMR

(125 MHz, CDCl3): d = 158.2, 142.5, 137.3, 132.9, 131.6,

131.3, 131.0, 130.6, 129.8, 129.3, 128.3, 128.2, 123.0,

122.9, 120.1, 120.0, 119.9 ppm; MS: m/z = 316 (M?),

205; UV–Vis (methanol): kmax = 342, 260, 196 nm.

1-(4-Fluorophenyl)-2,3-diaza-4-(9-fluorenylidene)buta-

1,3-diene (5b, C20H13FN2)

Yield: 93%; tR = 9.5 min; yellow crystals; m.p.:

99–101 �C; IR (KBr): �m = 2160, 1957, 1549, 1103 cm-1;
1H NMR (500 MHz, CDCl3): d = 8.56 (s, 1H, CH), 7.96

(dd, 2H, J = 5.5 Hz, 8.7 Hz, CHAr), 7.92 (d, 1H,

J = 7.6 Hz, CHAr), 7.66–7.62 (m, 2H, CHAr), 7.46–7.43

(m, 3H, CHAr), 7.33 (q, 2H, J = 8.7 Hz, CHAr), 7.22 (t, 2H,

J = 8.5 Hz, CHAr) ppm; 13C NMR (125 MHz, CDCl3):

d = 158.5, 142.1 (d, JC–F = 114.4 Hz), 136.8, 131.7, 131.5,

131.2, 130.7, 130.6, 130.5, 130.3, 128.2, 122.9, 120.0, 119.9,

116.3, 116.1, 116.0 ppm; MS: m/z = 300 (M?), 205; UV–

Vis (methanol): kmax = 338, 259, 201 nm.

1-Phenyl-2,3-diaza-4-(9-fluorenylidene)buta-1,3-diene (5c,

C20H14N2)

Yield: 95%; tR = 8.5 min; orange crystals; m.p.:

83–84 �C; IR (KBr): �m = 2161, 1955, 1543, 1099 cm-1;
1H NMR (500 MHz, CDCl3): d = 8.59 (s, 1H, CH), 8.49

(d, 1H, J = 7.5 Hz, CHAr), 7.97–7.93 (m, 3H, CHAr),

7.66–7.62 (m, 2H, CHAr), 7.54–7.52 (m, 3H, CHAr),

7.46–7.42 (m, 2H, CHAr), 7.36–7.31 (m, 2H, CHAr) ppm;
13C NMR (125 MHz, CDCl3): d = 160.4, 159.6, 142.5,

136.9, 134.4, 131.7, 131.5, 131.2, 130.7, 129.0, 128.7,

128.1, 127.9, 127.7, 125.5, 122.9, 120.8, 119.9 ppm; MS:

m/z = 282 (M?), 205; UV–Vis (methanol): kmax = 338,

255, 208 nm.

1-(4-Methoxylphenyl)-2,3-diaza-4-(9-fluorenylidene)buta-

1,3-diene (5d, C21H16N2O)

Yield: 95%; tR = 9.2 min; yellow crystals; m.p.:

127–130 �C; IR (KBr): �m = 2160, 2038, 1599,

1099 cm-1; 1H NMR (500 MHz, CDCl3): d = 8.58 (s, 1H,

CH), 8.57 (d, 1H, J = 7.8 Hz, CHAr), 7.94 (d, 1H,

J = 9.5 Hz, CHAr), 7.91 (d, 2H, J = 8.6 Hz, CHAr), 7.65

(dd, 2H, J = 8.2 Hz, 5.2 Hz, CHAr), 7.43 (t, 2H,

J = 6.7 Hz, CHAr), 7.35–7.31 (m, 2H, CHAr), 7.05–7.03

Scheme 3
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(m, 2H, CHAr), 3.90 (s, 3H, CH3) ppm; 13C NMR (125 MHz,

CDCl3): d = 162.3, 160.3, 160.0, 142.4, 137.0, 131.8, 131.3,

131.0, 130.8, 130.7, 130.5, 128.2, 128.1, 127.3, 122.8, 119.9,

119.8, 114.5, 55.5 ppm; MS:m/z = 312 (M?), 205; UV–Vis

(methanol): kmax = 358, 225, 197 nm.

40,50-Dihydro-40-nitro-50-(trichloromethyl)spiro[9H-fluo-
rene-9,30-[3H]pyrazole] (7, C16H10Cl3N3O2)

Yield: 93%; tR = 14.8 min; white crystals; m.p.:

138–140 �C; IR (KBr): �m = 2993, 2950, 1557, 1359,

748 cm-1; 1H NMR (500 MHz, CDCl3): d = 7.83 (d,

1H, J = 8.5 Hz, CHAr), 7.79 (d, 1H, J = 6.9 Hz, CHAr),

7.61–7.58 (m, 1H, CHAr), 7.52 (t, 1H, J = 7.6 Hz, CHAr),

7.46–7.42 (m, 2H, CHAr), 7.33–7.29 (m, 1H, CHAr), 7.03

(d, 1H, J = 7.0 Hz, CHAr), 6.82 (d, 1H, J = 7.6 Hz,

CHAr), 5.70 (d, 1H, J = 7.9 Hz, CHAr) ppm; 13C NMR

(125 MHz, CDCl3): d = 142.0, 134.7, 131.5, 131.1, 129.0,

128.4, 125.2, 124.1, 121.0, 120.9, 104.5, 103.8, 94.8,

88.6 ppm.

40,50-Dihydro-40-nitro-50-(dichloromethylene)spiro[9H-flu-
orene-9,30-[3H]pyrazole] (8, C16H9Cl2N3O2)

Yield: 96%; white crystals; m.p.: 175–177.5 �C; IR (KBr):

�m = 3014, 2975, 2910, 1629, 1560, 1353, 742 cm-1; 1H

NMR (500 MHz, CDCl3): d = 7.83–7.81 (m, 2H, CHAr),

7.58–7.52 (m, 2H, CHAr), 7.36–7.31 (m, 2H, CHAr), 7.11

(d, 1H, J = 7.9 Hz, CHAr), 6.86 (d, 1H, J = 8.6 Hz,

CHAr), 5.73 (s, 1H, CHAr) ppm; 13C NMR (125 MHz,

CDCl3): d = 142.2, 140.5 136.4, 134.5, 131.3, 131.0,

129.0, 128.8, 124.9, 122.6, 121.1, 120.9, 101.2, 87.9 ppm;

MS: m/z = 345 (M?).

Quantum chemical calculations

All calculations reported in this paper were performed on

‘‘Zeus’’ supercomputer in the ‘‘Cyfronet’’ computational

center in Cracow. Global and local electronic properties

were estimated on the basis of structures obtained—ac-

cording to Domingo suggestions [47, 48]—on the basis of

B3LYP/6-31G(d) calculations. For this purpose, we have

used structures created by the standard procedure [49]. In

particular, the electronic chemical potentials (l) and

chemical hardness (g) were evaluated in terms of one-

electron energies of FMO (EHOMO and ELUMO) using the

equations:

l � ðEHOMO þ ELUMOÞ=2 g � ELUMO � EHOMO:

Next, the values of l and g were then used for the

calculation of global electrophilicity (x) [47, 48] according

to the formula:

x ¼ l2=2g;

and the global nucleophilicity (N) [50] can be expressed in

terms of the equation:

N ¼ EHOMOðdiazafluoreneÞ � EHOMOðtetracyanoetheneÞ:

The local nucleophilicity (Nk) [51] condensed to atom k

was calculated using global nucleophilicity N and Parr

function Pk
- [52] according to the formula:

Nk ¼ P�
k N:

For the simulation of the reaction paths, hybrid

functional B3LYP with the 6-31 ??G(d), basis set

included in the GAUSSIAN 09 package [53] was used. It

was found previously that calculations using B3LYP

functional illustrate well the structure of transition states

in polar 1,3-dipolar cycloadditions involving conjugated

nitroalkenes [22, 23, 30]. The critical points on the reaction

paths were localized in an analogous manner as in the case

of the previously analyzed cycloadditions of

diaryldiazomethanes with nitroacetylene [54]. In

particular, for structure optimization of the reactants and

the reaction products, the Berny algorithm was applied.

First-order saddle points were localized using the QST2

procedure. The transition states were verified by

diagonalization of the Hessian matrix and by an analysis

of the intrinsic reaction coordinates (IRC).

All calculations were carried out for the simulated

presence of nitromethane as the reaction medium. For this

purpose, PCM [55] was used. For optimized structures, the

thermochemical data for the temperature T = 298 K and

pressure p = 1 atm were computed using vibrational

analysis data. Global electron density transfer (GEDT) [56]

was calculated according to the formula:

GEDT ¼ �RqA;

where qA is the net Mulliken charge and the sum is taken

over all the atoms of the dipolarophile. Indexes of r-bonds

development (l) were calculated according to the formula

[30]:

lA�B ¼ 1 � rTSA�B � rPA�B

rPA�B

;

where rA–B
TS is the distance between the reaction centers A

and B at the TS and rA–B
P is the same distance at the cor-

responding product.
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