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Abstract Pharmacophore modeling is a widely used

technique in computer-aided drug discovery. Structure-

based pharmacophore models of a ligand in complex with a

protein have proven to be useful for supporting in silico hit

discovery, hit to lead expansion, and lead optimization. As

a structure-based approach it depends on the correct

interpretation of ligand–protein interactions. There are

legitimate concerns about the fidelity of the bound ligand

and about non-physiological contacts with parts of the

crystal and the solvent effects that influence the protein

structure. A possible way to refine the structure of a pro-

tein–ligand system is to use the final structure of a given

MD simulation. In this study we compare pharmacophore

models built using the initial protein–ligand structure

obtained from the protein data bank (PDB) with pharma-

cophore models built with the final structure of a molecular

dynamics simulation. We show that the pharmacophore

models differ in feature number and feature type and that

the pharmacophore models built from the last structure of a

MD simulation shows in some cases better ability to dis-

tinguish between active and decoy ligand structures.

Graphical abstract

Keywords Pharmacophore modelling �
Molecular dynamics � Molecular modelling �
Computational chemistry

Introduction

The aim of this study is to compare pharmacophore

models obtained from the crystal structure of a ligand–

protein complex with the pharmacophore models derived

from the last frame of a molecular dynamics (MD) sim-

ulation. In the following, the pharmacophore model

obtained from the crystal structure of a ligand–protein

complex will be called initial pharmacophore model, the

pharmacophore models derived from the last frame of a

MD simulation will be called MD-refined pharmacophore

model. Considering the final structure of a given MD

simulation is the most basic and straightforward MD-

based structure refinement protocol; although simple it

can resolve some of the problems connected to protein–

ligand structures obtained from X-ray crystallography [1–

3]. We believe that considering the initial pharmacophore

model together with the MD-refined models can give
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valuable additional information for constructing pharma-

cophore models.

We investigated two key questions: (1) are the phar-

macophore model obtained from the crystal structure

different from the pharmacophore model obtained from the

final structure of the MD simulation? (2) is there a differ-

ence in the ability of the initial pharmacophore model and

the MD-refined pharmacophore model to distinguish

between active and decoy compounds?

The first question was answered by visual inspection of

the obtained pharmacophore models. To answer the second

question we screened active/decoy databases of the inves-

tigated protein–ligand complexes to calculate receiver

operating characteristic (ROC) curves and enrichment

factors [4, 5].

Pharmacophore modelling

Structure-based pharmacophore models of a ligand in

complex with a protein have proven to be useful for sup-

porting in silico hit discovery, hit to lead expansion, and

lead optimization [6]. Pharmacophore models are defined

as the ensemble of steric and electronic features that are

necessary to ensure the optimal supramolecular interac-

tions with a specific biological target structure and to

trigger or block its biological response [7]. These features

include H-bond acceptors, H-bond donors, positive and

negative ionizable groups as well as lipophilic regions and

aromatic rings. The protocol for the generation of structure-

based pharmacophore models involves the analysis of the

complementary chemical features of the 3D structure of the

active site and their spatial relationship to assemble the

pharmacophore model. The aim of pharmacophore mod-

elling is to gain insights into ligand–protein interactions, to

retrieve the essential pharmacophore features necessary for

optimal interaction, and to identify novel compounds that

satisfy steric and electrostatic requirements with a high

probability of biological activity [8, 9]. Structure-based

pharmacophore models can be generated using a variety of

software packages including Schrodinger [10], FLAP [11],

GBPM [12], HS-Pharm [13], and LigandScout [14]. The

starting point of structure-based pharmacophore models are

usually the coordinates of a reference protein–ligand

complex obtained from the protein data bank (PDB) [15].

Around 90 % of these coordinate files are generated using

X-ray crystallography. For structure-based modelling it is

mandatory that these structures are correct with respect to

bond length and angles. There are legitimate concerns

about the fidelity of the bound ligand and about non-

physiological contacts with parts of the crystal and the

solvent effects that influence the protein structure [2, 16–

19]. This fact can lead to pharmacophore models that are

not representative for the protein–ligand interaction pattern

in vivo. A possible way to refine the structure of a protein–

ligand system is to use the final structure of a given MD

simulation [1].

Molecular dynamics simulations

MD simulation is a computational technique to solve

Newton’s equation of motions for a given system of atoms.

This technique is widely used to obtain information about

the coordinates of a protein–ligand system as a function of

time. MD simulations can provide detailed information

concerning the dynamics of atoms and molecules and give

insights into dynamic properties, solvent effects and free

energy of protein/ligand binding of a model system [20–

22]. MD has been widely applied in the field of drug dis-

covery [23, 24].

In this study MD simulations are used to obtain the final

protein–ligand structure after 20 ns of simulation time.

Molecular dynamics simulations with reasonable initial

velocity follow the path of steepest descent on the potential

energy surface to a local minimum [25]. Subsequently the

protein–ligand system is trapped if the confining barriers

are significant at the simulation temperature and therefore

the region on conformational space surrounding this min-

imum becomes the most populated region [26].

MD-based approaches to refine protein structures and

regard receptor flexibility are well established for various

modelling methods, especially for molecular docking (see

e.g. [27, 28]).

Systems used for MD simulations

For analysis, six different protein–ligand systems with

PDB code 1J4H, 3BQD, 2HZI, 3L3 M, 1UYG, and 3EL8

were chosen from the DUD-E database. This database

provides known actives and decoys that are calculated

using similar 1-D physico-chemical properties as the

actives (e.g. molecular weight, calculated LogP) but dis-

similar 2-D topology (based on ECFP4 fingerprints) [29].

The choice of complexes was somewhat arbitrary, though

guided by the following considerations: system size (sol-

vated protein–ligand complex less than 70,000 atoms),

only a single ligand, no metal ions involved in the binding.

Subsequently details on the different protein–ligand

systems are provided (the structure of the ligand can be

seen in Fig. 1):

• 1J4H (FKBP12 or FK506 binding protein) is a mostly

hydrophilic monomeric prolyl isomerase with a molecular

weight of 12 kDa which binds the immunosuppressant

molecule tacrolimus (FK506) and is present in homo

sapiens [30]. Previous studies have demonstrated that

FKBP12 does not undergo significant conformation
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variations [31], small spatial rearrangements have been

seen in a remote zone of the protein by Choi et al. [32]. The

activity of the ligand is not known.

• 2HZI is the resolved X-ray structure of the human Abl

kinase domain, a monomeric non-receptor tyrosine-

protein kinase with a molecular weight of 32 kDa, in

complex with PD180970. The BCR-Abl protein plays a

role in many key processes linked to cell growth and

survival and is located in the cytoplasm, nucleus and

mitochondria [33]. The Abl kinase is a rather flexible

protein even though in contact with high-affinity

ligands (like PD180970) the stability is increased.

The ligand has an IC50 of 70 nM [34].

• 3EL8 is the crystal structure of the protooncogen c-Src

in complex with pyrazolopyrimidine from Gallus

gallus. C-Src is a cytoplasmic non-receptor tyrosine

kinase. 3EL8 in complex with its inhibitor show the

energetically unfavored, inactive but stable (Asp-Phe-

Gly)-out (DFG-out) conformation [35, 36]. The ligand

has an IC50 of 25 nm [35].

• 1UYG is the crystal structure of the human HSP90-alpha

N-terminal ATPase domain consisting of 236 amino

acids with a molecular weight of 27 kDa. HSP90-alpha

is a member of a highly abundant family of human

chaperones responsible for the maturation and activity of

a variety of key proteins involved in cell growth and

proliferation [37, 38]. In previous studies it was shown

that HSP90 is a highly dynamic and flexible molecule

that can adopt a wide variety of structurally distinct

states. These changes are ATP-dependent and influence

the whole protein, the N-terminal domain alone appears

to be stable [39]. The ligand has an IC50 of 53 lM [38].

• 3BQD is the crystal structure of the nuclear receptor

ligand-binding domain of the human glucocorticoid

Fig. 1 The root mean square deviation (RMSD) of the protein (in

red) and the ligand (in blue) is provided as a function of time for the

six analyzed protein–ligand complexes. The RMSD is calculated as

described in the method section. For all systems the ligand and the

protein experiences a rapid RMSD deviation from the original

structure of at least 0.5 Å. The different RMSD ranges on the y-axis

should be noted
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receptor with a length of 255 amino-acids and a S602F

mutation. It is a globular domain with 11 alpha-helices, 4

beta-strands and a molecular weight of 31 kDa located

in the cytoplasm and nucleus. The domain is co-

crystallized with deacylcortivazol. The binding of this

ligand to the glucocorticoid receptor expands the binding

pocket yet leaving the structure of the coactivator

binding site intact. This shows that nuclear receptors

have a great degree of conformational capacity [40].

There is no binding data available for the ligand.

• The crystal structure 3L3 M is a subunit obtained from

the poly(ADP-ribose) polymerase (PARP)-1 in complex

with A927929. It involves the PARP alpha helical and

PARP catalytical motif with a molecular weight of

39 kDa. PARPs are a family of nuclear enzymes involved

in detection and repair of DNA damage [41]. The D-loop

and four alpha-helices exhibit higher structural flexibility

as has been shown in MD simulations [42]. There is no

binding data available for the ligand.

For the rest of the article the protein systems will be

referred to by their PDB code. The quality of all PDB

structures was manually checked and models were cor-

rected if necessary.

Virtual screening with pharmacophore models

The virtual screening process uses the pharmacophore

model as a query for classification of compounds into

decoy and active compounds, assigns score values, and

constructs a sorted list of these compounds using the score

as key. The elements in the list are sorted from highest to

lowest scores, higher score indicate that a molecule is

assessed by the screening model as a potential active

compound. A ROC curve is used to visualise this list, the

rate of active compounds on the X axis and the rate of

decoy compounds on the Y axis. A ROC curve that follows

the dotted diagonal line represents an insignificant (ran-

dom) classification model that cannot distinguish between

decoy and active ligands. A ROC curve that is plotted

above the diagonal represents a pharmacophore model that

can detect actives [9].

The enrichment factor describes—in the context of

pharmacophore models—the number of active compounds

found by using a specific pharmacophore model as opposed

to the number hypothetically found if compounds were

screened randomly [43–45]. The enrichment criterion is

evaluated by a numerical factor as defined in Eq. (1).

EFsubset ¼ tphitlist= tphitlist þ fphitlistð Þ= NA=NA þ NDð Þ
ð1Þ

where tphitlist is the number of true positive in the hitlist and

fphitlist corresponds to the number of false positive in the

hitlist. NA and ND are the number of active and decoy

compounds in the testset. Enrichment factors can range

from 1—which means that molecules are sorted ran-

domly—to [100, which means that only a small

percentage of the order list needs to be screened in vitro to

find a large number of active molecules [5].

Results and discussion

Quality control of protein–ligand structures

For one protein (3EL8) it was necessary to add missing

residues. Using the software Modeller 13 residues from

residue number 411–423 were inserted [46, 47]. The amino

acid sequence was obtained from the DNA sequence of the

protein from the NCBI database [48]. The protonation state

and side chain orientation was set in accord with propka

[49, 50] and the quality control check provided by the joint

center for structural genomics [51].

Rmsd

For all protein–ligand systems, the root mean square

deviation (RMSD) for the protein and the ligand was

independently calculated and is shown in Fig. 1. The

ligand and the protein RMSD values were calculated with

the aligned C-alpha atoms of the target and reference

structure.

The RMSD of the protein and ligand was analysed to

detect large-scale movements of the protein or the ligand.

In addition, we used the deviation of the ligand to deter-

mine if the ligand reaches a stable binding state. The

RMSD plots of the different ligands show very similar

behaviour. The RMSD usually changes in the beginning to

an average value from which the ligand deviates only

marginally. This transition happens fast, e.g. 2HZI reaches

the average value of 1.03 Å in less than 0.1 ns and has a

standard deviation of 0.2 Å from the mean. The ligand of

1J4H is the only exception—it takes nearly 2.5 ns to reach

the stable plateau around the average value of 1.58.

For the protein the behaviour of the RMSD was in the

range of normal conduct during a MD simulation.

Comparing pharmacophore models

In Fig. 2 we report the 2D view of the ligand together with

the assigned pharmacophore features. The pharmacophore

model obtained from the PDB file and the MD-refined

pharmacophore model are shown for every protein–ligand

system.

For all analyzed systems the initial pharmacophore

model and the MD-refined pharmacophore model differ. Of
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the six analyzed systems the amount of pharmacophore

features for the initial model decreased in three cases, in

one case the amount of features (but not the kind of fea-

tures) stayed the same and in two cases the amount of

features increased compared to the pharmacophore model

obtained with the MD-refined pharmacophore model.

Looking at specific feature types it is interesting to note

that hydrophobic features do not change (with the

Fig. 2 Comparing the initial pharmacophore model and the MD-

refined pharmacophore model. The features in yellow indicate

hydrophobic features, the vector features in red indicate hydrogen

bond acceptors, the vector features in green indicate hydrogen bond

donors, the feature spheres in blue with associated vectors indicate

aromatic features and the features in blue with multiple lines

associated indicate salt bridges
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notable exception of 1J4H) in amount nor in involved

ligand atoms. In contrast none of the aromatic features are

present in the MD-refined pharmacophore model. Most of

the variability in the pharmacophore features was found to

be due to hydrogen bond acceptors and donors.

Virtual screening results

It should be mentioned that the following paragraph deals

with the default pharmacophore models without any man-

ual refinement. For drug discovery the default

Fig. 2 continued
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pharmacophore model would be submitted to various

refinement steps to yield better results—since these steps

depend heavily on the knowledge of the researcher per-

forming the modeling it could bias a comparison of the

screening results and was therefore omitted.

An additional issue that should be kept in mind is that the

DUD-E database uses known actives but calculated decoys—

that means that there is a chance that some decoys might still

bind to the protein. Also, as a result of the decoy calculating

process, decoys are often similar to the active molecules.

Fig. 3 The receiver operating characteristic (ROC) curve for the

different protein–ligand systems is shown. The true positive rate is

seen on the Y axis and the false positive rate on the X axis. The

number next to the PDB code indicates the number of omitted

features: 0 means that no features were omitted, 1 or 2 means that

either one or two features were omitted during the screening. In the

plots the number of total hits, the area under the curve (AUC) and the

enrichment factor (EF) is shown at 1, 5, 10 and 100 %
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In Fig. 3 the ROC curves, the enrichment factor (EF),

the area under the curve (AUC), and the number of features

for the different pharmacophore models are shown. The

MD-refined and the initial pharmacophore model for all

protein–ligand systems (with the notable exception of

1J4H) are able to retrieve the original ligand (which is not

part of the screening library).

• For 1J4H the initial pharmacophore model and the MD-

refined pharmacophore model cannot distinguish

between actives and decoys.

• For 1UYG the MD-refined pharmacophore model can

distinguish between active and decoy compounds. With

one omitted feature the overall ability to separate

actives and decoys is better than with zero omitted

features, but the enrichment factor for the first percent

is lower. The initial pharmacophore model with zero

omitted features can distinguish between active and

decoy compounds for the first percent of the results, but

above the 5 % mark it favors decoys over actives. The

model with one omitted features has among the top

ranking results only false positive compounds but after

the 1 % mark it favors actives over decoys.

• The MD-refined pharmacophore model for 2HZI favors

active over inactive compounds for zero, one, and two

omitted features. This is not always visible in the ROC

curve but looking at the enrichment factor it becomes

clear that even the pharmacophore model with zero

omitted features favors actives. The model with one

omitted features favors actives only in the highest

ranking results, the model with two omitted features

favors actives for all results. The initial pharmacophore

model with one and two omitted features favors actives.

• For 3BQD the MD-refined pharmacophore model with

one and two omitted features has high enrichment

factors (27.9 and 20.2 for 100 %) as well as the initial

pharmacophore model with one or two omitted features

of 18.6 and 6.6 for 100 %.

• For 3EL8 the MD-refined pharmacophore model with

one and two omitted features has high enrichment

factors (10.8 and 3.3 for 100 %) whereas the initial

pharmacophore model with zero or one omitted

features has no preference for actives, with two omitted

features the model has a slight overall preference for

active compounds (ER: 1.7 for 100 %).

• The MD-refined pharmacophore model for 3L3 M with

zero omitted features has an overall preference for

actives, but this effect is only marginal. The same

model with one omitted features has a significant early

enrichment but the sensitivity decreases after the 5 %

mark. The initial pharmacophore model with zero

omitted features is not able to return any results, with

one omitted feature the model has a good early

enrichment (23.7 %) with constant sensitivity.

The screening results obtained from the MD-refined

pharmacophore model and from the initial pharmacophore

model are different. With the exception of 1J4H, for which

Fig. 3 continued
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both pharmacophore models performed badly, either the

refined pharmacophore model or the initial pharmacophore

model were able to favor active compounds over inactive

ones—in some cases, e.g. 3BQD both were able to dis-

tinguish between the groups. Depending on the preferred

result (early enrichment vs overall enrichment factor) the

interpretation of the overall performance of the two

approaches can vary. Simply looking at early enrichment

(considering only the enrichment factor at 1 % of the total

compounds) the pharmacophore model obtained with the

MD-refined pharmacophore model performs better for

1UYG as well as on average for 2HZI, 3BQD, and 3EL8.

The initial pharmacophore model performs better for the

screening on the compounds for 3L3 M.

Considering the enrichment factor at 100 % of analyzed

compounds the MD-refined pharmacophore model per-

forms better for 1J4H (even though still badly), as well as

on average for 1UYG, 2HZI, and 3BQD. In the analysed

cases the overall enrichment factor mirrors the results

obtained from the early enrichment results.

It can be argued that the increased performance of the

MD refined pharmacophore model of 1UYG is a result of

the structural movement of the ligand as seen in Fig. 1—

but since the MD refined pharmacophore model for 3BQD

(which has very low RMSD values) performs better in

virtual screening as well this line of reasoning was not

followed. There is no obvious connection between high

ligand RMSD (as seen for 1UYG, 3L3 M), medium

RMSD (as seen for 3EL8, 2HZI, 1J4H), low RMSD (as

seen for 3BQD) and performance in virtual screening. The

same argument can be applied looking at protein RMSD

values—there is no trend between the RMSD values for

the protein and the performance of the pharmacophore

model.

Conclusion

The findings reported in this study suggest that even very

simple structure refinement approaches—like the reported

one—can lead to pharmacophore models that perform

better in virtual screening. The refinement of pharma-

cophore models using molecular dynamics simulations is

expedient in more than 50 % of the cases. For some of the

protein–ligand complexes MD refinement did not yield

better results—in these cases additional operations are

necessary to improve the pharmacophore models.

The results shown indicate that additional interaction

information can be unveiled from an analysis of the

dynamics of protein and ligand. Using these information

can lead to better pharmacophore models that can target

specific binding sites or interact with transitional

conformations.

It was not possible to find correlations between the

performance increase of MD refined pharmacophore

models and protein/ligand structure, RMSD values or

number of pharmacophore features. Additional work is

needed to find guidelines for MD structure optimization

related to pharmacophore modeling.

Methods

Charmm

We used CHARMM-GUI to set up the simulations and the

CHARMM software package to run them [52, 53]. The

CGenFF and paramchem was used to obtain parameter and

topology files for the small molecules [54, 55]. For all the

CHARMM/OpenMM version was used to run molecular

dynamics simulations for six protein–ligand complexes

[56]. The systems were solvated in rectangular water boxes

with TIP3P water molecules. Electrostatic interactions

were computed by the particle-mesh-Ewald method. From

the starting structures we carried constant pressure, con-

stant temperature MD simulations (Berendsen thermostat

and barostat). The length of each simulations was 20 ns;

the time step was 2 fs and SHAKE was used to keep all

bonds involving hydrogen atoms fixed. Before each simu-

lation we equilibrated the protein–ligand–water system for

25 ps with a time step length of 1 fs.

RMSD calculation

The RMSD was analysed using the python package

MDAnalysis [57]. The RMSDs were calculated as follows:

all coordinates saved during the MD were fitted against the

starting structure based on the coordinates of the Ca-atoms

of the protein. Using the starting structure as reference, for

these reoriented coordinates the RMSD of the Ca-atoms

was calculated for the protein and the RMSD of the heavy

atoms of the ligand.

LigandScout

For generating structure-based pharmacophore models and

screening libraries LigandScout 4.09.1 was used. The

screening libraries for the systems were generated using the

decoys and actives from the DUD-E database [29].

All molecules were prepared as libraries for the

screening using the command line tool idbgen provided by

LigandScout (see Table 1 for the number of actives and

decoys in the screening libraries). Conformers were gen-

erated using the icon best option in idbgen, this option

produces a maximum number of 200 conformations for

each molecule processed. Screening was performed using
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the command line tool iscreen provided by LigandScout

[14].

PDB quality control

The quality and correctness of the PDB structures were

audited using the Quality Control server [51]. Modeller

9.15 was used if residues were missing [47]. Subsequently

all structures were analysed with PropKa 3.1 to check the

protonation state of the protein and the ligand [49].
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