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Abstract A series of novel 5-substituted 2-[2-(pyri-

dyl)ethenyl]-1,3,4-oxadiazoles were efficiently synthesized

by cyclocondensation of the appropriate 3-(pyridyl)acrylo-

hydrazides with triethyl orthoesters in the presence of glacial

acetic acid. The products were identified by means of

spectroscopic methods and their pKA ionization constants

were determined. The influence of substituents on the

basicity of the pyridine system has been discussed.
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Introduction

1,3,4-Oxadiazoles belong to the group of five-membered

aromatic heterocycles, containing one oxygen and two

nitrogen atoms. Many of these compounds exhibit a wide

range of pharmaceutical and biological activities such as

antibacterial, antiviral, anti-inflammatory, analgesic, or

anticonvulsant [1–6]. Additionally, 1,3,4-oxadiazole

derivatives act as potential agents in the treatment of

cancer and AIDS [7–10]. They are also used extensively in

agriculture as herbicides, fungicides, or insecticides [11,

12]. These heterocyclic molecules are applied in the

production of heat-resistant polymers, blowing agents,

optical brighteners, and anti-corrosion agents [13–16].

Conjugated p-electronic arrangements based on the elec-

tron-deficient 1,3,4-oxadiazole ring feature excellent

electron-transporting properties with much higher quantum

efficiency in comparison to conventional fluorescent

emitters using silicon and its solid solutions (doped sili-

con). Therefore, they are used as monomers in the

production of fluorescent emitters for organic light-emit-

ting diodes, photovoltaic cells, scintillators, and

photosensitive materials [13–16]. However, many of the

previously investigated compounds applied in organic

electronics suffer from their poor processability and low

thermal and chemical stability. Due to these facts, the study

on designing and synthesis of new organic conjugated

materials whose physicochemical properties may be easily

modified seems to be reasonable.

Synthesis of 1,3,4-oxadiazoles has been first described

by Ainsworth in the 50s last century [17]. The most popular

methods to synthesize 1,3,4-oxadiazole scaffold involve

the use of N,N0-diacylhydrazines or N-acylhydrazones

(Scheme 1). Typically, cyclodehydration of N,N0-diacyl-

hydrazines is carried out using reagents such as PPA [18],

H2SO4 [19], SOCl2 [20, 21], POCl3 [22, 23], P2O5 [24]

(CF3SO2)2O [25], BF3�OEt2 [26] or the Burgess reagent

[27]. 1,3,4-Oxadiazole derivatives may also be prepared by

oxidative cyclization of N-acylhydrazones with oxidizing

agents such as CAN [28], KMnO4 [29], FeCl3 [30], Br2

[31], PbO2 [32], chloramine T [33], HgO/I2 [34], hyper-

valent iodine reagents [35–41]. One-pot syntheses of these

compounds from acid hydrazides with carboxylic acids

[42] or orthoesters [43–45] in the presence of an acidic

catalyst have also been reported. Other synthetic routes

involve acylation and subsequent ring opening and ring

closure of starting tetrazoles [46, 47], heterocyclization of
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semicarbazide, thiosemicarbazide and selenosemicarbazide

derivatives [48–50], as well as transformation of 1,2,4-

oxadiazoles under the influence of UV radiation [51].

Recently, solid phase syntheses of arrangements based on

the 1,3,4-oxadiazole fragment have also been described in

the literature [52–56].

In continuation of our studies on the application of a,b-

unsaturated acid hydrazides in the synthesis of conjugated

2-[2-(aryl)ethenyl]-1,3,4-oxadiazole derivatives, we inves-

tigated structures possessing the pyridylethenyl moiety at

the a position [57]. Herein, we report the synthesis of three

types of 3-(pyridyl)acrylohydrazides and their reactions

with triethyl orthoesters. The presence of the acid-sensitive

pyridyl fragment is particularly important because it allows

the acid–base modification of the physical properties of the

indicated structures which may serve as potential mono-

mers for optoelectronics.

Results and discussion

Hydrazides of selected 3-(pyridyl)acrylic acids 5a–5c

were used as precursors of 1,3,4-oxadiazole derivatives.

These compounds were obtained from the appropriate

commercially available heteroaromatic aldehydes, 2-pyri-

dinecarboxaldehyde (1a), 3-pyridinecarboxaldehyde (1b),

and 4-pyridinecarboxaldehyde (1c) according to a few-step

procedure (Scheme 2).

In a typical synthetic procedure, the starting aldehydes

were treated with malonic acid in pyridine in the presence

of piperidine as a catalyst under Knoevenagel–Doebner

reaction conditions. Condensation and successive decar-

boxylation of intermediate dicarboxylic acids occurred

giving a,b-unsaturated monocarboxylic acids, 3-(pyri-

dyl)acrylic acids 2a–2c in high yields. The resulting acids

were neutralized with potassium hydroxide to form the

appropriate potassium salts 3a–3c which were then used in

a one-pot, two-step synthesis, yielding acid hydrazides 5a–

5c. First, the potassium salts 3a–3c were treated with ethyl

chloroformate and finally excess amounts of hydrazine

hydrate. The reaction conducted at low temperature in

acetonitrile solution resulted in the formation of the desired

hydrazides 5a–5c in satisfactory yields (73–79 %,

Scheme 2). The same hydrazides 5a–5c were also prepared

by the typical two-step transformation from the appropriate

3-(pyridyl)acrylic acids 2a–2c by esterification with

methanol and thionyl chloride followed by treatment with

hydrazine hydrate. However, the low yields of the final

hydrazides 5a–5c (35–44 %) made the above synthetic

procedure unattractive.

The resulting acid hydrazides 5a–5c were heated with an

excess of triethyl orthoesters (R = Me, Et, Ph; Scheme 3)

Scheme 1
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in glacial acetic acid, yielding a series of 2-[2-(pyri-

dyl)ethenyl]-1,3,4-oxadiazoles 6a–6i substituted at the

5-position with a phenyl or an alkyl group that have not

previously been reported in the literature. The commer-

cially available triethyl orthoesters play the dual role of the

synthon introducing the methylene carbon atom and high-

boiling solvent.

Generally, the reaction yields increased with the

increasing bulk of substituent R on the orthoester. The best

results were obtained in the case of derivatives with a

phenyl group at the 5-position (R = Ph 88–94 %, Table 1),

due to the presence of an extended conjugated system and a

higher boiling point of triethyl orthobenzoate (b.p. 240 �C)

in contrast to the boiling points of the rest of the orthoesters

(b.p. 142–152 �C). The rest of 1,3,4-oxadiazoles with

electron-donating alkyl groups were prepared in lower

yields. We have also observed an influence of the position

of the pyridine nitrogen atom on the reaction yields. The

highest values were obtained in the reactions conducted

with 3-(2-pyridyl)acrylohydrazide (5a, 74–92 %) and 3-(4-

pyridyl)acrylohydrazide (5c, 76–94 %, Table 1).

Our previous studies on the reactions of 3-(2-

furyl)acrylohydrazide or 3-(2-thienyl)acrylohydrazide with

triethyl orthoesters [45, 57] have shown that the reaction

times were relatively shorter (1.5–4 h), what testifies to the

higher reactivity of hydrazide reagents containing a furan

or thiophene ring in comparison to their pyridine-contain-

ing counterparts.

The structures of new products were confirmed with

elemental analysis and spectroscopic methods (1H and 13C

NMR, MS, UV, IR). In the series of 2-[2-(pyridyl)ethenyl]-

1,3,4-oxadiazoles 6a–6i, the diagnostic signals in the 1H

NMR spectra are two doublets with the coupling constants

J = 16.4 Hz associated with two protons of the ethylene

group. The value of the coupling constants suggests that

E geometric isomers of these compounds are formed in the

reaction. The proton adjacent to pyridine ring at the b
position to the 1,3,4-oxadiazole ring is seen in the range

between 7.44 and 7.72 ppm, while the proton a-

CH = appears at high fields in the range of

7.08–7.57 ppm. Interestingly, analysing the spectra of 2-[2-

(2-pyridyl)ethenyl]-1,3,4-oxadiazoles 6a–6c, one should

notice the characteristic ethylene a-CH= and b-CH= proton

shifts. These two protons are observed at a much lower

field due to the neighbouring pyridine nitrogen atom.

Furthermore, the two protons C200-H and C600-H of the

phenyl group substituted at 5-position of the 1,3,4-oxadi-

azole ring of 6c, 6f, and 6i are shifted in the 1H NMR

spectra to lower fields and appear as a doublet of doublets

Scheme 2

Scheme 3

Table 1 Products of the reaction of 3-(pyridyl)acrylohydrazides 5a–

5c with triethyl orthoesters

Product Py R Reaction time/h Yielda/% M.p./�C

6a 2-Py Me 9.0 74 108–110

6b 2-Py Et 8.0 81 50–51

6c 2-Py Ph 5.0 92 126–128

6d 3-Py Me 10.0 69 116–118

6e 3-Py Et 8.5 78 54–56

6f 3-Py Ph 6.0 88 169–171

6g 4-Py Me 9.0 76 118–120

6h 4-Py Et 8.0 84 62–65

6i 4-Py Ph 4.5 94 172–174

a Yield with respect to the starting hydrazide 5a–5c
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in the range from 8.10 to 8.13 ppm. Such significant

changes in the chemical shifts could result from the prox-

imity of these atoms to the ring’s nitrogen and oxygen

atoms. In the 13C NMR spectra of 1,3,4-oxadiazoles 6a–6i,

the characteristic signals are peaks of ethylene carbon

atoms a-CH= and b-CH=, which are observed in ranges of

112–114 ppm and 133–139 ppm, respectively. The ring

carbon atom C2 is seen in the range between 163 and

166 ppm, while the location of the second carbon atom C5

depends on the type of the substituent and appears between

164 and 170 ppm.

To establish the structure of derivatives 6, X-ray ana-

lysis was also performed. The molecular structure of

5-phenyl-2-[2-(2-pyridyl)ethenyl]-1,3,4-oxadiazole (6c)

and 5-phenyl-2-[2-(3-pyridyl)ethenyl]-1,3,4-oxadiazole

(6f) with the atomic numbering scheme is shown in Fig. 1.

Each of the analysed compounds consists of three rings:

I (the pyridine ring containing atoms C8–C13), II (the

oxadiazole ring containing atoms O1–C5), and III (the

phenyl ring containing atoms C14–C19). The values of the

I/II, I/III, and II/III dihedral angles are collected in Table 2.

According to collected data, it was concluded that both

molecules adopt coplanar conformation. The near planarity

of the systems favours the formation of intramolecular

hydrogen bonds and p-electron delocalization. The C–C

bonds located between the aromatic rings (C2–C6, C6–C7,

C7–C8, and C5–C14) exhibit intermediate values due to p-

electron delocalization in the molecules. This effect is

more pronounced in the more coplanar structure 6c.

The twist along the C2–C6, C7–C8, and C5–C14 bonds

is illustrated by torsion angles and it is rather small in both

compounds (Table 2). In the studied molecules, the

remaining bond lengths and angles are normal and are in

good agreement with the geometry of similar derivatives of

1,3,4-oxadiazole [58–60]. These structures are stabilized

by two intramolecular hydrogen bonds C7–H7���O1 and

C15–H15A���O1 (Table 3) which give rise to the five-

membered ring systems in all cases and confirm existence

of E geometrical form of both compounds.

Considering the fact that physical properties of com-

pounds are also strongly dependent on their ability to acid–

base interactions, the pKA values of 5-substituted 2-[2-

(pyridyl)ethenyl]-1,3,4-oxadiazoles 6a–6i were determined

(Table 4). The determination of the pKA dissociation con-

stants was performed according to the spectrophotometric

method of Albert and Serjeant [61] in 50 % aqueous

methanol solution (10-5 M, room temperature) due to the

low solubility of the examined compounds in water. The

Fig. 1 The molecular structure

of a 5-phenyl-2-[2-(2-

pyridyl)ethenyl]-1,3,4-

oxadiazole (6c), b 5-phenyl-2-

[2-(3-pyridyl)ethenyl]-1,3,4-

oxadiazole (6f) showing 50 %

displacement ellipsoids

(arbitrary spheres for the H

atoms). Dashed lines indicate

intramolecular hydrogen bond
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pKA values determined in aqueous methanol solution are

lower about 0.6 pKA unit comparing with those determined

in aqueous solution which is the result of different ionic

products of these solvents. Absorption maxima of the

1,3,4-oxadiazole ions were selected as analytical wave-

lengths bearing in mind their considerable shifts relative to

the maxima of the non-protonated forms. The conducted

studies have shown that the 1,3,4-oxadiazol-2-ylethenyl

moiety at positions 2, 3, or 4 of the pyridine ring causes an

increase in acidity compared to the pKA value of the un-

substituted pyridine (7, Scheme 4) [62].

Generally, 2-[2-(pyridyl)ethenyl]-1,3,4-oxadiazoles 6a–

6i are stronger acids than the corresponding vinylpyridine

derivatives 9 (Scheme 4). This is probably the result of the

presence of the electron-withdrawing 1,3,4-oxadiazole ring

conjugated via an ethenyl linker to pyridine. This leads to

the decreasing of the electron density of the ring nitrogen

atom. Among the three series of pyridine substituted 1,3,4-

oxadiazoles, 2-[2-(3-pyridyl)ethenyl]-1,3,4-oxadiazoles

6d–6f exhibit the most acidic properties, while the rest 6a–

6c and 6g–6i show the similar acid–base activities. Ana-

logical behaviour was observed in the case of differently

substituted methylpyridine derivatives 8 (Scheme 4).

Conclusion

In conclusion, we have synthesized a series of novel

5-substituted 2-[2-(pyridyl)ethenyl]-1,3,4-oxadiazoles in

the reactions of three types of differently substituted

3-(pyridyl)acrylohydrazides with triethyl orthoesters in

glacial acetic acid. This easy and efficient method has the

advantage of providing the desired products in high yields,

which makes it a useful addition to the existing synthetic

protocols. The presence of the acid-sensitive pyridyl frag-

ment is particularly important because it allows the

electronic properties modification of the indicated struc-

tures by acid–base interactions, which makes them

especially attractive for optoelectronic applications.

Experimental

All solvents and reagents were purchased from commercial

sources and were used without additional purification.

Melting points were measured using a Stuart SMP3 melting

point apparatus. Elemental analyses were performed with a

Scheme 4Table 2 Selected geometric parameters for 5-phenyl-2-[2-(2-pyri-

dyl)ethenyl]-1,3,4-oxadiazole (6c) and 5-phenyl-2-[2-(3-

pyridyl)ethenyl]-1,3,4-oxadiazole (6f)

Parameter 6c 6f

Bond lengths/Å

C2–C6 1.430 (2) 1.443 (3)

C6–C7 1.329 (2) 1.326 (3)

C7–C8 1.463 (2) 1.459 (3)

C5–C14 1.454 (2) 1.463 (4)

Torsion angles/�
N3–C2–C6–C7 -177.4 (2) 173.5 (3)

C6–C7–C8–C13 3.6 (2) -5.4 (4)

N4–C5–C14–C19 8.6 (2) -15.3 (4)

Dihedral angles/�
I/II 6.6 (1) 12.1 (2)

I/III 14.7 (8) 27.5 (1)

II/III 8.6 (1) 16.0 (2)

Table 3 Intramolecular hydrogen bonds geometry for 5-phenyl-2-[2-

(2-pyridyl)ethenyl]-1,3,4-oxadiazole (6c) and 5-phenyl-2-[2-(3-pyri-

dyl)ethenyl]-1,3,4-oxadiazole (6f)

Structure D–H���A DD–H/

Å

DH���A/

Å

DD���A/

Å

\(D–H���A)/�

6c C(7)–

H(7A)���O(1)

0.93 2.57 2.897 (2) 101.4

6f 0.93 2.57 2.903 (3) 101.3

6c C(15)–

H(15A)���O(1)

0.93 2.53 2.846 (2) 100.0

6f 0.93 2.55 2.860 (3) 99.7

Table 4 pKA Ionization constants of 2-[2-(pyridyl)ethenyl]-1,3,4-

oxadiazoles 6a–6i in aqueous methanol solutions

Compound Py R kANAL/nm pKA
a

6a 2-Py Me 300.5 4.03 ± 0.19

6b 2-Py Et 301.0 4.06 ± 0.22

6c 2-Py Ph 312.0 4.10 ± 0.23

6d 3-Py Me 294.0 3.92 ± 0.08

6e 3-Py Et 294.5 3.94 ± 0.16

6f 3-Py Ph 309.5 3.72 ± 0.19

6g 4-Py Me 290.5 4.02 ± 0.15

6h 4-Py Et 291.0 4.09 ± 0.17

6i 4-Py Ph 306.0 4.21 ± 0.12

a Determined by spectrophotometric method (H2O/MeOH, 1:1 v/v); rt
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VarioEL analyser. UV spectra were recorded on a Jasco

V-650 spectrophotometer. The 1H and 13C NMR spectra

were recorded on an Agilent 400-MR spectrometer in

DMSO-d6, CDCl3, or CD3OD solutions using TMS as the

internal standard. Thin-layer chromatography was per-

formed on silica gel 60 F254 (Merck) thin-layer

chromatography plates using MeOH/CHCl3 (1:4 v/v) as the

mobile phase. FT-IR spectra were recorded between 4000

and 650 cm-1 on an FT-IR Nicolet 6700 apparatus with a

Smart iTR accessory. Mass spectra were obtained on a GC/

MS Agilent Technologies 7890A/5975C System with triple

axis detector using the EI technique (70 eV). The pKA

ionization constants of 2-[2-(pyridyl)ethenyl]-1,3,4-oxadi-

azoles 6a–6i were determined by spectrophotometric

method of Albert and Serjeant in 50 % aqueous methanol

solutions (10-5 M) at room temperature.

General procedure for the synthesis

of 3-(pyridyl)acrylic acids 2a–2c

A mixture of 32.1 g pyridinecarboxaldehyde 1a–1c

(0.30 mol) and 31.2 g malonic acid (0.30 mol) in a solu-

tion of 30 cm3 pyridine and 1 cm3 piperidine was heated in

a steam bath and stirred for 2 h. After cooling to room

temperature, the precipitate was collected by filtration,

washed with H2O and dried. The crude product was crys-

tallized from a EtOH/H2O mixture, yielding the

corresponding pure 3-(pyridyl)acrylic acid 2a–2c.

3-(2-Pyridyl)acrylic acid (2a)

White solid; yield 42.0 g (94 %); m.p.: 201–203 �C (Ref.

[63] 202–204 �C).

3-(3-Pyridyl)acrylic acid (2b)

White solid; yield 41.1 g (92 %); m.p.: 232–234 �C (Ref.

[64] 232–235 �C).

3-(4-Pyridyl)acrylic acid (2c)

White solid; yield 42.9 g (96 %); m.p.: 277–279 �C (Ref.

[65] 277–280 �C).

General procedure for the preparation

of 3-(pyridyl)acrylohydrazides 5a–5c

The appropriate 3-(pyridyl)acrylic acid 2a–2c (14.9 g,

0.10 mol) was slowly added to a stirred solution of 5.6 g

KOH (0.10 mol) in 100 cm3 H2O. The mixture was stirred

for approximately 10 min and then concentrated using a

rotary evaporator. The precipitate was washed with

2 9 50 cm3 Et2O, collected by filtration and air dried to give

the corresponding crude potassium salt as a white solid:

18.1 g (97 %) 3a, 17.8 g (95 %) 3b, and 18.3 g (98 %) 3c.

To a stirred suspension of 16.8 g potassium salt 3a–3c

(0.09 mol) in 100 cm3 MeCN was added a 1 % solution of

pyridine in 30 cm3 MeCN and 9.8 g ethyl chloroformate

(0.09 mol). The reaction mixture was agitated at 0 �C for

2 h and then slowly poured into a stirred, ice-cooled sus-

pension of 9.0 g hydrazine hydrate (0.18 mol) in 100 cm3

MeCN. After filtration, the filtrate was kept in an ice box

overnight, then washed with 2 9 50 cm3 saturated aqueous

Na2CO3 solution, dried over MgSO4, and concentrated

using a rotatory evaporator. The crude product was purified

by column chromatography with silica gel and an eluent of

MeOH/CHCl3 (1:4 v/v) to yield the 3-(pyridyl)acrylic acid

hydrazides 5a–5c.

3-(2-Pyridyl)acrylohydrazide (5a, C8H9N3O)

Yellow solid; yield 11.0 g (75 %); m.p.: 108–110 �C;

Rf = 0.31 (MeOH/CHCl3, 1:4 v/v); 1H NMR (400 MHz,

DMSO-d6): d = 9.53 (1H, s, NH), 8.58 (1H, d,

J = 4.0 Hz, C60-H), 7.80 (1H, t, J = 7.6 Hz, C40-H),

7.54 (1H, d, J = 7.6 Hz, C30-H), 7.45 (1H, d, J = 15.6 Hz,

b-CH=), 7.34–7.31 (1H, m, C50-H), 7.00 (1H, d,

J = 15.6 Hz, a-CH=), 4.51 (2H, br s, NH2) ppm; 13C

NMR (100.6 MHz, DMSO-d6): d = 164.0 (CO), 153.0,

149.8, 137.6, 137.2, 124.2, 124.0, 123.9 ppm; IR (ATR):
�V = 3,277, 3,176, 3,054, 3,026, 1,989, 1,659, 1,591, 1,486,

1,474, 1,437, 1,336, 1,305, 1,249, 1,218, 1,188, 1,126,

1,095, 1,048, 955, 922, 892, 872, 857, 728, 676 cm-1; UV–

Vis (MeOH): kmax (e 9 10-3) = 291.0 (13.65), 250.0

(13.46), 201.0 (16.65) nm (mol-1 dm3 cm-1); MS (EI,

70 eV): m/z (%) = 163 (M?, 18), 148 (22), 133 (79), 132

(100), 130 (27), 105 (21), 104 (92), 79 (40), 78 (65), 77

(13), 76 (10), 52 (15), 51 (30).

3-(3-Pyridyl)acrylohydrazide (5b)

Yellow solid; yield 10.7 g (73 %); m.p.: 128–130 �C (Ref.

[66] 126 �C).

3-(4-Pyridyl)acrylohydrazide (5c)

Yellow solid; yield 11.6 g (79 %); m.p.: 149–151 �C (Ref.

[67] 150–151 �C).

General procedure for the synthesis of 5-substituted

2-[2-(pyridyl)ethenyl]-1,3,4-oxadiazoles 6a–6i

The starting 3-(pyridyl)acrylohydrazide 5a–5c (1.63 g,

10.0 mmol) was added to a mixture of the appropriate

triethyl orthoester (20.0 mmol) and 10 cm3 glacial AcOH.

The mixture was kept under reflux until the starting

hydrazide was fully consumed (monitored by TLC,

4.5–10 h). After cooling, the excessive orthoester and

AcOH were evaporated under reduced pressure. The crude

products 6a–6i were crystallized from appropriate solvents.

5-Methyl-2-[2-(2-pyridyl)ethenyl]-1,3,4-oxadiazole

(6a, C10H9N3O)

White solid; yield 1.38 g (74 %); m.p.: 108–110 �C;

Rf = 0.66 (MeOH/CHCl3, 1:4 v/v); 1H NMR (400 MHz,
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CD3OD): d = 8.66 (1H, d, J = 4.0 Hz, C60-H), 7.91 (1H,

t, J = 7.6 Hz, C40-H), 7.71 (1H, d, J = 7.6 Hz, C30-H),

7.66 (1H, d, J = 16.4 Hz, b-CH=), 7.55 (1H, d,

J = 16.4 Hz, a-CH=), 7.45–7.42 (1H, m, C50-H), 2.65

(3H, s, CH3) ppm; 13C NMR (100.6 MHz, CD3OD):

d = 165.8, 165.7, 154.1, 150.9, 138.9, 138.8, 125.6, 125.2,

114.5, 10.7 (CH3) ppm; IR (ATR): �V = 3,038, 2,162,

1,648, 1,577, 1,529, 1,476, 1,437, 1,390, 1,353, 1,324,

1,230, 1,162, 1,100, 1,041, 991, 986, 904, 792, 675,

665 cm-1; UV–Vis (MeOH): kmax (e 9 10-3) = 302.0

(21.17), 263.5 (14.13), 201.5 (9.96) nm (mol-1 dm3 cm-1);

MS (EI, 70 eV): m/z (%) = 187 (M?, 40), 186 (100), 144

(12), 132 (15), 117 (17), 116 (34), 104 (12), 90 (11), 78

(14), 51 (10).

5-Ethyl-2-[2-(2-pyridyl)ethenyl]-1,3,4-oxadiazole

(6b, C11H11N3O)

White solid; yield 1.63 g (81 %); m.p.: 50–51 �C;

Rf = 0.68 (MeOH/CHCl3, 1:4 v/v); 1H NMR (400 MHz,

CD3OD): d = 8.66 (1H, d, J = 4.0 Hz, C60-H), 7.91 (1H,

t, J = 7.6 Hz, C40-H), 7.71 (1H, d, J = 7.6 Hz, C30-H),

7.66 (1H, d, J = 16.4 Hz, b-CH=), 7.56 (1H, d,

J = 16.4 Hz, a-CH=), 7.45–7.42 (1H, m, C50-H), 3.01

(2H, q, J = 7.6 Hz, CH2), 1.46 (3H, t, J = 7.6 Hz, CH3)

ppm; 13C NMR (100.6 MHz, CD3OD): d = 169.7, 165.5,

154.1, 150.9, 138.9, 138.8, 125.6, 125.2, 114.5, 19.8 (CH2),

10.8 (CH3) ppm; IR (ATR): �V = 3,188, 3,062, 1,674,

1,596, 1,554, 1,502, 1,471, 1,420, 1,355, 1,322, 1,288,

1,230, 1,178, 1,134, 1,099, 1,070, 1,037, 967, 919, 891,

841, 829, 673, 662 cm-1; UV–Vis (MeOH): kmax

(e 9 10-3) = 302.5 (17.44), 264.5 (11.03), 200.5 (7.53)

nm (mol-1 dm3 cm-1); MS (EI, 70 eV): m/z (%) = 201

(M?, 46), 200 (13), 144 (32), 132 (22), 117 (28), 116 (100),

104 (13), 90 (10), 89 (14), 78 (21), 57 (17).

5-Phenyl-2-[2-(2-pyridyl)ethenyl]-1,3,4-oxadiazole

(6c, C15H11N3O)

White solid; yield 2.29 g (92 %); m.p.: 126–128 �C;

Rf = 0.70 (MeOH/CHCl3, 1:4 v/v); 1H NMR (400 MHz,

CD3OD): d = 8.61 (1H, d, J = 4.0 Hz, C60-H), 8.10 (2H,

dd, J = 8.0, 1.6 Hz, C200-H, C600-H), 7.86 (1H, t,

J = 7.6 Hz, C40-H), 7.72 (1H, d, J = 16.4 Hz, b-CH=),

7.67 (1H, d, J = 7.6 Hz, C30-H), 7.61-7.58 (3H, m, C300-H,

C400-H, C500-H), 7.57 (1H, d, J = 16.4 Hz, a-CH=),

7.39–7.36 (1H, m, C50-H) ppm; 13C NMR (100.6 MHz,

CD3OD): d = 165.7, 165.3, 153.9, 150.8, 139.2, 138.6,

133.3, 130.3, 127.9, 125.5, 125.2, 124.4, 114.3 ppm; IR

(ATR): �V = 2,919, 2,850, 1,969, 1,667, 1,585, 1,567,

1,519, 1,473, 1,450, 1,430, 1,373, 1,315, 1,275, 1,221,

1,190, 1,152, 1,093, 1,071, 1,015, 993, 973, 845, 830, 744,

690 cm-1; UV–Vis (MeOH): kmax (e 9 10-3) = 312.0

(17.73), 245.5 (8.18), 201.5 (16.65) nm

(mol-1 dm3 cm-1); MS (EI, 70 eV): m/z (%) = 249

(M?, 55), 193 (14), 192 (17), 144 (50), 132 (26), 116

(83), 105 (100), 104 (17), 90 (12), 78 (28), 77 (70), 63 (12),

51 (20).

5-Methyl-2-[2-(3-pyridyl)ethenyl]-1,3,4-oxadiazole

(6d, C10H9N3O)

White solid; yield 1.29 g (69 %); m.p.: 116–118 �C;

Rf = 0.53 (MeOH/CHCl3, 1:4 v/v); 1H NMR (400 MHz,

CDCl3): d = 8.76 (1H, d, J = 2.0 Hz, C20-H), 8.61 (1H,

dd, J = 4.8, 1.6 Hz, C60-H), 7.89 (1H, dt, J = 8.0, 2.0 Hz,

C40-H), 7.50 (1H, d, J = 16.4 Hz, b-CH=), 7.37 (1H, dd,

J = 8.0, 4.8 Hz, C50-H), 7.08 (1H, d, J = 16.4 Hz, a-

CH=), 2.60 (3H, s, CH3) ppm; 13C NMR (100.6 MHz,

CDCl3): d = 163.9, 163.4, 150.6, 149.2, 134.7, 133.4,

130.5, 123.8, 112.1, 11.0 (CH3) ppm; IR (ATR):
�V = 3,050, 3,019, 2,164, 1,645, 1,575, 1,524, 1,503,

1,484, 1,446, 1,419, 1,362, 1,236, 1,131, 1,051, 1,024,

967, 954, 859, 819, 800, 747, 717, 674, 664 cm-1; UV–Vis

(MeOH): kmax (e 9 10-3) = 293.5 (21.38), 283.5 (21.64),

200.5 (10.05) nm (mol-1 dm3 cm-1); MS (EI, 70 eV): m/

z (%) = 187 (M?, 34), 186 (100), 144 (10), 132 (12), 116

(28), 104 (11), 90 (12), 51 (10), 43 (22).

5-Ethyl-2-[2-(3-pyridyl)ethenyl]-1,3,4-oxadiazole

(6e, C11H11N3O)

White solid; yield 1.57 g (78 %); m.p.: 54–56 �C;

Rf = 0.61 (MeOH/CHCl3, 1:4 v/v); 1H NMR (400 MHz,

CDCl3): d = 8.77 (1H, d, J = 2.0 Hz, C20-H), 8.61 (1H,

dd, J = 4.8, 1.6 Hz, C60-H), 7.90 (1H, dt, J = 8.0, 2.0 Hz,

C40-H), 7.50 (1H, d, J = 16.4 Hz, b-CH=), 7.38 (1H, dd,

J = 8.0, 4.8 Hz, C50-H), 7.10 (1H, d, J = 16.4 Hz, a-

CH=), 2.94 (2H, q, J = 7.6 Hz, CH2), 1.44 (3H, t,

J = 7.6 Hz, CH3) ppm; 13C NMR (100.6 MHz, CDCl3):

d = 167.5, 163.7, 150.6, 149.3, 134.6, 133.3, 130.6, 123.8,

112.2, 19.1 (CH2), 10.7 (CH3) ppm; IR (ATR): �V = 3,178,

3,073, 1,645, 1,570, 1,504, 1,463, 1,450, 1,412, 1,379,

1,344, 1,315, 1,248, 1,193, 1,129, 1,083, 1,024, 955, 860,

806, 792, 699, 675 cm-1; UV–Vis (MeOH): kmax

(e 9 10-3) = 294.5 (22.24), 284.0 (22.31), 201.0 (11.39)

nm (mol-1 dm3 cm-1); MS (EI, 70 eV): m/z (%) = (M?,

32), 200 (100), 144 (10), 132 (12), 116 (28), 104 (11), 57

(14).

5-Phenyl-2-[2-(3-pyridyl)ethenyl]-1,3,4-oxadiazole (6f)

White solid; yield 2.19 g (88 %); m.p.: 169–171 �C (Ref.

[68] 170–172 �C).

5-Methyl-2-[2-(4-pyridyl)ethenyl]-1,3,4-oxadiazole

(6g, C10H9N3O)

White solid; yield 1.42 g (76 %); m.p.: 118–120 �C;

Rf = 0.55 (MeOH/CHCl3, 1:4 v/v); 1H NMR (400 MHz,

CDCl3): d = 8.67 (2H, d, J = 6.0 Hz, C20-H, C60-H), 7.44

(1H, d, J = 16.4 Hz, b-CH=), 7.40 (2H, d, J = 6.0 Hz,

C30-H, C50-H), 7.20 (1H, d, J = 16.4 Hz, a-CH=), 2.61

(3H, s, CH3) ppm; 13C NMR (100.6 MHz, CDCl3):

d = 163.7, 163.6, 150.5, 141.8, 135.6, 121.2, 114.3, 11.0
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(CH3) ppm; IR (ATR): �V = 3,188, 3,061, 2,168, 1,946,

1,674, 1,646, 1,577, 1,557, 1,507, 1,471, 1,439, 1,402,

1,360, 1,323, 1,287, 1,233, 1,220, 1,196, 1,134, 1,097,

1,049, 962, 914, 890, 880, 746, 729, 709, 674, 663 cm-1;

UV–Vis (MeOH): kmax (e 9 10-3) = 291.0 (23.16), 282.0

(24.45), 209.5 (9.42) nm (mol-1 dm3 cm-1); MS (EI,

70 eV): m/z (%) = 187 (M?, 66), 186 (100), 132 (17), 130

(12), 117 (10), 104 (11), 90 (16), 89 (10), 78 (11), 51 (13).

5-Ethyl-2-[2-(4-pyridyl)ethenyl]-1,3,4-oxadiazole

(6h, C11H11N3O)

White solid; yield 1.69 g (84 %); m.p.: 62–65 �C;

Rf = 0.59 (MeOH/CHCl3, 1:4 v/v); 1H NMR (400 MHz,

CDCl3): d = 8.68 (2H, d, J = 6.0 Hz, C20-H, C60-H), 7.44

(1H, d, J = 16.4 Hz, b-CH=), 7.40 (2H, d, J = 6.0 Hz,

C30-H, C50-H), 7.22 (1H, d, J = 16.4 Hz, a-CH=), 2.95

(2H, q, J = 7.6 Hz, CH2), 1.44 (3H, t, J = 7.6 Hz, CH3)

ppm; 13C NMR (100.6 MHz, CDCl3): d = 167.3, 163.9,

150.5, 141.7, 135.6, 121.2, 114.3, 19.2 (CH2), 10.8 (CH3)

ppm; IR (ATR): �V = 3,194, 3,082, 1,646, 1,587, 1,549,

1,502, 1,484, 1,411, 1,335, 1,291, 1,227, 1,170, 1,124,

1,092, 1,060, 1,037, 967, 925, 871, 821, 677, 662 cm-1;

UV–Vis (MeOH): kmax (e 9 10-3) = 292.0 (24.28), 282.5

(25.75), 210.0 (10.18) nm (mol-1 dm3 cm-1); MS (EI,

70 eV): m/z (%) = 201 (M?, 52), 200 (100), 132 (16), 116

(23), 104 (11), 90 (14), 89 (10), 78 (21), 57 (17).

5-Phenyl-2-[2-(4-pyridyl)ethenyl]-1,3,4-oxadiazole

(6i, C15H11N3O)

White solid; yield 2.34 g (94 %); m.p.: 172–174 �C;

Rf = 0.67 (MeOH/CHCl3, 1:4 v/v); 1H NMR (400 MHz,

CDCl3): d = 8.69 (2H, d, J = 6.0 Hz, C20-H, C60-H), 8.13

(2H, dd, J = 8.0, 1.6 Hz, C200-H, C600-H), 7.56 (1H, d,

J = 16.4 Hz, b-CH=), 7.55–7.51 (3H, m, C300-H, C400-H,

C500-H), 7.43 (2H, d, J = 6.0 Hz, C30-H, C50-H), 7.29 (1H,

d, J = 16.4 Hz, a-CH=) ppm; 13C NMR (100.6 MHz,

CDCl3): d = 164.5, 163.3, 150.6, 141.8, 135.9, 132.0,

129.1, 127.0, 123.4, 121.2, 114.3 ppm; IR (ATR):
�V = 3,188, 3,062, 1,962, 1,674, 1,596, 1,555, 1,502,

1,471, 1,420, 1,356, 1,322, 1,288, 1,230, 1,178, 1,134,

1,099, 1,070, 1,038, 971, 918, 891, 880, 817, 728,

663 cm-1; UV–Vis (MeOH): kmax (e 9 10-3) = 307.0

(29.03), 248.0 (13.56), 202.0 (26.35) nm

(mol-1 dm3 cm-1); MS (EI, 70 eV): m/z (%) = 249

(M?, 57), 248 (100), 132 (14), 105 (47), 78 (10), 77

(43), 51 (13).

X-ray crystal structure analysis for 6c and 6f

The single crystal of 5-phenyl-2-[2-(2-pyridyl)ethenyl]-

1,3,4-oxadiazole (6c) and 5-phenyl-2-[2-(3-pyridyl)eth-

enyl]-1,3,4-oxadiazole (6f) were used for data collection at

100.0(1) K on a four-circle Oxford Diffraction Xcalibur

diffractometer equipped with a two-dimensional area CCD

detector using graphite-monochromatized MoKa radiation

(k = 0.71073 Å) and the x-scan technique. Integration of

the intensities and correction for Lorenz and polarization

effects were performed using CrysAlis RED software [69].

The crystal structures were solved by direct methods and

refined by a full-matrix least-squares method on F2 using

the program SHELXL-97 [70].

Complete crystallographic details for 6c and 6f are

available as Supplementary data (CCDC 994,076 and

994,077) and have been deposited at the Cambridge

Crystallographic Data Centre (CCDC), 12 Union Road,

Cambridge, CB21EZ, UK; e-mail: depos-

it@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk. Any

request to the CCDC for this material should quote the full

literature citation.
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43. Kudelko A, Zieliński W, Ejsmont K (2011) Tetrahedron 67:7838

44. Kudelko A (2012) Tetrahedron 68:3616
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