Synthesis of fused uracils: pyrano[2,3-d]pyrimidines and $\mathbf{1 , 4}$-bis(pyrano[2,3- d]pyrimidinyl)benzenes by domino Knoevenagel/Diels-Alder reactions

Aleksandra Pałasz

Received: 30 January 2012 / Accepted: 24 April 2012 / Published online: 24 May 2012
(C) The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract

Knoevenagel condensation of barbituric acids with aromatic aldehydes containing one or two formyl groups was carried out. 5-Arylidenebarbituric acids underwent smooth hetero-Diels-Alder (HDA) reactions with enol ethers to afford cis and trans diastereoisomers of pyr-ano[2,3-d]pyrimidine-2,4-diones and 5,5'-(1,4-phenylene)-bis[2H-pyrano[2,3- d]pyrimidine-2,4(3H)-dione] derivatives in excellent yields (75-88 \%). Syntheses were realized by Knoevenagel condensation and HDA reaction in four different reaction conditions: Knoevenagel condensation in water and Diels-Alder reaction in methylene chloride solution, Knoevenagel condensation in water and DielsAlder reaction without solvent, three-component one-pot reaction in methylene chloride solution, or three-component one-pot reaction in water. All reactions were carried out without catalyst at room temperature. The reactions of malononitrile with Knoevenagel condensation products of barbituric acids and heteroaromatic aldehydes or terephthalaldehyde were examined and did not provide corresponding pyranopyrimidines.

Keywords Cycloadditions • Drug research •
Michael addition • One-pot synthesis

Introduction

Pyran derivatives are common structural subunits in a variety of important natural products, including carbohydrates,

[^0]alkaloids, polyether antibiotics, pheromones, and iridoids [1, 2]. Uracil is one of the five nucleobases and therefore an important component of nucleic acids. Uracil and its fused derivatives, such as pyrano[2,3- d]pyrimidines, pyrido[2,3-d]pyrimidines, pyrazo[3,4- d]pyrimidines, or pyrimido[4,5- $d]$ pyrimidines, are reported to have a wide range of biological activities such as antiallergic [3], antihypertensive [4], cardiotonic [5], bronchiodilator [6], antibronchitic [7], or antitumor [8] activity. The preparation of the compounds containing a pyran and an uracil ring poses significant synthetic challenges. 3,4-Dihydro-2H-pyrans can be efficiently synthesized by inverse-electron-demand hetero-Diels-Alder (HDA) reactions of α, β-unsaturated carbonyl compounds representing an 1-oxa-1,3-butadiene system with enol ethers [9-11]. It has been stated that introducing an electron withdrawing group in the 1-oxa-1,3-diene systems can enhance their reactivity [12-15]. In our recent work, we showed that intermolecular and intramolecular HDA reactions are a powerful tool in the synthesis of 2 H -pyran and polycyclic 2 H pyran derivatives [16-24]. Also recently, as a continuation of the investigations of organic reactions performed in aqueous medium, a green approach to the synthesis of fused uracils 2-thioxopyrano[2,3- d]pyrimidin-4-ones and pyrano[2,3- $d]$ -pyrimidin-2,4-diones was made. Three-component one-pot syntheses of annulated uracils were performed in aqueous suspensions by domino Knoevenagel/Diels-Alder reactions without a catalyst and at room temperature [25]. In our last work we also investigated inverse-electron demand DielsAlder cycloadditions of sterically hindered cycloalkylidene derivatives of benzoyl acetonitrile and N, N^{\prime}-dimethylbarbituric acid with enol ethers, cyclic enol ethers, and also sterically hindered cycloalkylidenecycloalkanes [26]. Fused spirouracils and fused dispirouracils can be obtained by this method.

The same α, β-unsaturated carbonyl compounds, obtained by Knoevenagel condensation of the appropriate CH acids
and aromatic aldehydes, can be used as substrates in pyran synthesis by conjugate addition-cyclization with malononitrile or cyanoacetate [27-29]. Pyrano[2,3-d]pyrimidine derivatives can be prepared by conjugate addition-cyclization of malononitrile to 5 -arylidenebarbituric acids, or general procedures include the reaction of arylidenemalononitriles with barbituric acids under traditional hot reaction conditions [30,31] or under microwave irradiation [32]. Recently, the synthesis of pyrano[2,3- d]pyrimidines by simply ball-milling a stoichiometric mixture of an aldehyde, malononitrile, and barbituric acids without any catalyst or solvent was described [33]. Also microwaveassisted three-component cyclocondensation of aldehydes, malononitrile, and barbituric acids proceeds in the absence or presence of triethylamine to afford pyrano[2,3-d]pyrimidines [34]. Direct condensation of aldehydes, malononitrile, and barbituric acids in aqueous media has been reported under heating [35] or under ultrasound irradiation [36].

Therefore, 5-arylidene derivatives of barbituric acids seem to be excellent intermediates in pyran synthesis both by HDA reaction and by conjugate addition-cyclization.

Results and discussion

The main aim of the studies was the synthesis of new (1,4-phenylene)bis[2H-pyrano[2,3-d]pyrimidine-2,4(3H)-dione] derivatives containing two fused uracil moieties joined by a benzene ring. Syntheses were realized by Knoevenagel condensation and HDA reaction in four different reaction conditions: A-Knoevenagel condensation in water and HDA reaction in methylene chloride as solvent, B-

Knoevenagel condensation in water and HDA reaction without solvent, C -three-component one-pot reaction in methylene chloride as solvent, and D-three-component one-pot reaction in water. All the reactions were carried out at room temperature in the absence of catalyst.

First, procedures A-D were examined for the Knoevenagel condensation of barbituric acids with aromatic aldehydes containing only one formyl group and HDA reactions with enol ether. 5-Arylidenebarbituric acids $\mathbf{3 a}-\mathbf{3 c}$, as potential heterodienes in Diels-Alder reactions, were synthesized by condensations of N, N^{\prime}-dimethylbarbituric acid (1a) or barbituric acid (1b) with aromatic aldehydes $\mathbf{2 a}-\mathbf{2 c}$ in water without catalyst and at room temperature according the procedure described in the literature [37] (Scheme 1). The condensations occurred smoothly and were completed in just an hour, giving excellent yields (95-98 \%) of Knoevenagel products 3a-3c. The cycloaddition reactions of $\mathbf{3 a}-\mathbf{3 c}$ with a tenfold excess of ethyl vinyl ether 4 were performed with methylene chloride as the solvent (conditions A) or in the absence of solvent (conditions B) at room temperature for the time given in Table 1. New $2 H$-pyrano[2,3- d]pyrimidine-2,4(3H)-diones 5a-5c were obtained in 77-88 \% yields (Scheme 1; Table 1). Next, three-component one-pot synthesis of uracils 5a-5c by domino Knoevenagel/Diels-Alder reactions was investigated in methylene chloride (conditions C) or in aqueous medium (conditions D). The experimental procedure was simple: equimolar amounts of barbituric acid 1a or 1b and aromatic aldehyde 2a-2c were mixed with a tenfold excess of enol ether $\mathbf{4}$ in methylene chloride (conditions C) or in aqueous medium (conditions D) (Scheme 1; Table 1). The progress of the reactions was monitored by TLC. The ratios of the cis/trans

Scheme 1

Table 1 Synthesis of the cycloadducts 5a-5c by Knoevenagel condensation and HDA reaction in the reaction conditions A-D

| Entry | Method | $\mathbf{1}$ | R^{1} | $\mathbf{2}$ | R^{2} | $\mathbf{3}$ | $\mathbf{5}$ | $\mathbf{6}$ | Reaction
 time/h | Yield/\% of $\mathbf{5}^{\mathbf{a}}$ | Ratio of cis-5/
 trans- $\mathbf{5}^{\mathbf{b}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | A | $\mathbf{1 a}$ | CH_{3} | $\mathbf{2 a}$ | $4-\mathrm{BrC}_{6} \mathrm{H}_{4}$ | $\mathbf{3 a}$ | $\mathbf{5 a}$ | $\mathbf{-}$ | 15 | 87 | $1.8: 1$ |
| 2 | B | $\mathbf{1 a}$ | CH_{3} | $\mathbf{2 a}$ | $4-\mathrm{BrC}_{6} \mathrm{H}_{4}$ | $\mathbf{3 a}$ | $\mathbf{5 a}$ | - | 12 | 86 | $1.6: 1$ |
| 3 | C | $\mathbf{1 a}$ | CH_{3} | $\mathbf{2 a}$ | $4-\mathrm{-rC}_{6} \mathrm{H}_{4}$ | $\mathbf{-}$ | $\mathbf{5 a}$ | - | 15 | 84 | $2.5: 1$ |
| 4 | D | $\mathbf{1 a}$ | CH_{3} | $\mathbf{2 a}$ | $4-\mathrm{BrC}_{6} \mathrm{H}_{4}$ | $\mathbf{-}$ | $\mathbf{5 a}$ | $\mathbf{6 a}$ | 7 | 82 | $7.2: 1$ |
| 5 | A | $\mathbf{1 a}$ | CH_{3} | $\mathbf{2 b}$ | $4-\mathrm{ClC}_{6} \mathrm{H}_{4}$ | $\mathbf{3 b}$ | $\mathbf{5 b}$ | - | 13 | 81 | $2.3: 1$ |
| 6 | B | $\mathbf{1 a}$ | CH_{3} | $\mathbf{2 b}$ | $4-\mathrm{ClC}_{6} \mathrm{H}_{4}$ | $\mathbf{3 b}$ | $\mathbf{5 b}$ | - | 12 | 82 | $1.8: 1$ |
| 7 | C | $\mathbf{1 a}$ | CH_{3} | $\mathbf{2 b}$ | $4-\mathrm{ClC}_{6} \mathrm{H}_{4}$ | $\mathbf{-}$ | $\mathbf{5 b}$ | - | 13 | 87 | $2.5: 1$ |
| 8 | D | $\mathbf{1 a}$ | CH_{3} | $\mathbf{2 b}$ | $4-\mathrm{ClC}_{6} \mathrm{H}_{4}$ | $\mathbf{-}$ | $\mathbf{5 b}$ | $\mathbf{6 a}$ | 6 | 86 | $6.9: 1$ |
| 9 | A | $\mathbf{1 b}$ | H | $\mathbf{2 c}$ | $4-\mathrm{H}_{3} \mathrm{COC}_{6} \mathrm{H}_{4}$ | $\mathbf{3 c}$ | $\mathbf{5 c}$ | - | 24 | 86 | $2.0: 1$ |
| 10 | B | $\mathbf{1 b}$ | H | $\mathbf{2 c}$ | $4-\mathrm{H}_{3} \mathrm{COC}_{6} \mathrm{H}_{4}$ | $\mathbf{3 c}$ | $\mathbf{5 c}$ | - | 20 | 77 | $1.5: 1$ |
| 11 | C | $\mathbf{1 b}$ | H | $\mathbf{2 c}$ | $4-\mathrm{H}_{3} \mathrm{COC}_{6} \mathrm{H}_{4}$ | - | $\mathbf{5 c}$ | - | 22 | 82 | $2.2: 1$ |
| 12 | D | $\mathbf{1 b}$ | H | $\mathbf{2 c}$ | $4-\mathrm{H}_{3} \mathrm{COC}_{6} \mathrm{H}_{4}$ | - | $\mathbf{5 c}$ | $\mathbf{6 b}$ | 12 | 88 | $5.6: 1$ |

diastereoisomers of the pyrano[2,3- d]pyrimidine-2,4-diones 5a-5c were determined on the basis of ${ }^{1} \mathrm{H}$ NMR spectra of the crude products, analyzing the signals of protons $5-\mathrm{H}$ and $7-\mathrm{H}$. The unexpected $5-$ methyl-substituted derivatives of pyrano[2,3-d] pyrimidines 6a-6b were obtained in aqueous medium (conditions D). This was determined on the basis of the ${ }^{1} \mathrm{H}$ NMR spectra of the crude products. Formation of these compounds can be explained as the result the three-component reaction of barbituric acid 1a or 1b, the in situ generated acetaldehyde and ethyl-vinyl ether 4 . The addition of water to ether 4 catalyzed by barbituric acid provides a hemiacetal, which undergoes ethanol elimination to produce the enol tautomer or finally keto tautomer of acetaldehyde. Only compounds cis-6a and trans-6a were separated in small amounts by column chromatography.

All diastereoisomers of compounds 5a-5c were very easily separated by column chromatography using t-butyl methyl ether as an eluent because the difference between $R_{\mathrm{f}}(c i s)$ and R_{f} (trans) was approximately 0.2 . Cycloadducts cis-5a-5c were the major products in all reactions. Three-component one-pot syntheses of pyrano[2,3-d]pyrimidines performed in aqueous medium (conditions D) were faster than those executed in dichloromethane or under solvent-free conditions, and cis/trans selectivity was significantly improved.

In the second step of the studies, it was decided to test the synthetic approach to the Knoevenagel condensation of barbituric acid with an aromatic aldehyde containing two formyl groups, terephthalaldehyde. HDA reactions with enol ether were performed in conditions A-D. Condensation of N, N^{\prime}-dimethylbarbituric acid with terephthalaldehyde (2d) was carried out in water without catalyst and at room temperature, giving Knoevenagel product 3d with 97% yield after 1 h (Scheme 2). It is worth noting that there is only one synthetic method for this compound described in the literature [38], but it required drastic
conditions, with acetic acid and sulfuric acid as the reactive media. The cycloaddition reactions of $\mathbf{3 d}$ with a tenfold excess of enol ethers $\mathbf{4 a}-\mathbf{4} \mathbf{c}$ were performed with methylene chloride as the solvent (conditions A) or in the absence of solvent (conditions B) at room temperature for the time given in Table 2. Also three-component one-pot syntheses of compounds 7a-7c by domino Knoevenagel/Diels-Alder reactions were investigated in conditions C and D . Equimolar amounts of N, N^{\prime}-dimethylbarbituric acid and 1,4benzenedicarbaldehyde were mixed with a tenfold excess of enol ethers $\mathbf{4 a}-\mathbf{4 c}$ in methylene chloride (conditions C) or in aqueous medium (conditions D) (Scheme 2; Table 2). 5,5'-(1,4-Phenylene)bis[2H-pyrano[2,3- d]pyrimidine-2,4$(3 \mathrm{H})$-dione] derivatives $7 \mathbf{a}-7 \mathbf{c}$ were obtained in 75-82 \% yields. The progress of the reactions was monitored by TLC. The ratios of the cis/trans diastereoisomers of cycloadducts $7 \mathbf{a}-7 \mathbf{c}$ were determined on the basis of ${ }^{1} \mathrm{H}$ NMR spectra of crude products, analyzing the signals of protons $5-\mathrm{H}$ and $7-\mathrm{H}$. Cycloadducts cis-7a-7c were the major products. The unexpected pyrano[2,3- d]pyrimidines 6a-6c (conditions D) and 8a-8c (conditions C, D) were also obtained in small amounts. It was determined on the basis of the ${ }^{1} \mathrm{H}$ NMR spectra of the crude products. Formation of compounds $\mathbf{6 a - 6 c}$ was explained above. Cycloadducts 8a-8c were obtained as the result of Knoevenagel reaction of barbituric acid 1a and only one formyl group of dicarbaldehyde 2d. Only compounds cis-6a, trans-6a, cis-8a, and trans-8a were isolated by column chromatography.

The three-component one-pot syntheses of pyrano [2,3- d]pyrimidines $7 \mathbf{a}-7 \mathbf{c}$ performed in aqueous medium (condition D) were faster than those executed in dichloromethane or under solvent-free conditions, and cis/trans selectivity was the highest for these reactions.

Compounds 5a-5c, 6a, 7a-7c, and 8a were characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR, and elemental analysis. ${ }^{1} \mathrm{H}$ and

Scheme 2

Table 2 Synthesis of the cycloadducts 7a-7c by Knoevenagel condensation and HDA reaction in the reaction conditions A-D
${ }^{\text {a }}$ Isolated yields after column chromatography
${ }^{\text {b }}$ Ratio based on ${ }^{1} \mathrm{H}$ NMR (300 MHz) spectra of crude products

Entry	Method	1	2	3	4	R^{1}	R^{2}	6	7	8	Reaction time/h	Yield/\% of $7^{\text {a }}$	Ratio of cis-7/ trans- $7^{\text {b }}$
1	A	1a	2d	3d	4a	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	-	7a	8a	18	82	$>100: 1$
2	B	1a	2d	3d	4a	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	-	7a	8a	16	81	$>100: 1$
3	C	1a	2d	-	4a	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	-	7a	8 a	15	80	$>100: 1$
4	D	1a	2d	-	4a	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	6 a	7a	8a	8	82	$>100: 1$
5	A	1a	2d	3d	4b	$\mathrm{i}-\mathrm{Bu}$	H	-	7b	8b	18	81	6.3:1
6	B	1a	2d	3d	4b	$i-B u$	H	-	7b	8b	17	78	5.9:1
7	C	1a	2d	-	4b	$i-B u$	H	-	7b	8b	15	77	6.5:1
8	D	1a	2d	-	4b	$\mathrm{i}-\mathrm{Bu}$	H	6b	7b	8b	8	76	8.1:1
9	A	1a	2d	3d	4c	CH_{3}	CH_{3}	-	7c	8c	24	78	5.3:1
10	B	1a	2d	3d	4c	CH_{3}	CH_{3}	-	7c	8c	20	75	5.5:1
11	C	1a	2d	-	4c	CH_{3}	CH_{3}	-	7c	8c	18	82	5.2:1
12	D	1a	2d	-	4c	CH_{3}	CH_{3}	6 c	7c	8c	10	80	7.5:1

${ }^{13} \mathrm{C}$ signal assignments were confirmed by two-dimensional COSY and HETCOR NMR spectra. The relative cis and trans configuration of the C-5, C-7 substituents were assigned on the basis of ${ }^{1} \mathrm{H}$ NMR spectra. They were deduced from the chemical shift values and coupling constants of the protons attached to $\mathrm{C}-5$ and $\mathrm{C}-7$ of the
dihydropyran ring that exists in a half-chair conformation (Table 3).

In the ${ }^{1} \mathrm{H}$ NMR spectra of the major diastereoisomers cis-5a-5c, cis-6a, cis-7a-7c, and cis-8a, the signal of $5-\mathrm{H}$ (5-H and $5^{\prime}-\mathrm{H}$ for cis-7a-7c) appeared as a doublet of doublets at $\delta=3.76-4.13 \mathrm{ppm}$ (for cis-6a, ddq

Table 3 Signals of proton 5-H and $7-\mathrm{H}$ in ${ }^{1} \mathrm{H}$ NMR spectra of products 5a-5c, 6a, 7a-7c, and 8a

Compound	dd 5-H δ / ppm $J_{6 \mathrm{ax}, 5} /$ $J_{6 \text { eq, } 5} / \mathrm{Hz}$	dd 7-H δ / ppm $J_{6 \mathrm{ax}, 7} /$ $J_{6 e q, 7} / \mathrm{Hz}$	Compound	dd 5-H δ / ppm $J_{6 \mathrm{ax}, 5} /$ $J_{6 \text { eq, } 5} / \mathrm{Hz}$	dd 7-H δ / ppm $J_{6 \mathrm{ax}, 7} /$ $J_{6 e q, 7} / \mathrm{Hz}$
cis-5a	4.00	5.38	trans-5a	4.11	5.17
	7.5/5.1	4.8/2.7		5.7/5.4	7.5/2.4
cis-5b	4.02	5.38	trans-5b	4.12	5.17
	7.5/5.1	4.5/2.7		5.7/5.1	7.8/2.7
cis-5c	3.76	5.41	trans-5c	3.81	5.08
	7.2/4.8	4.5/2.4		5.4/4.8	8.1/2.4
cis-6a	2.88 ddq	5.40	trans-6a	2.98 ddq	5.30
	$\begin{aligned} & \text { 6.9/6.9/ } \\ & 3.6 \end{aligned}$	3.3/3.0		$\begin{aligned} & \text { 6.9/6.9/ } \\ & 3.9 \end{aligned}$	8.1/2.7
cis-7a	4.00	5.31	trans-7a	-	-
	7.2/6.3	5.7/2.7			
cis-7b	3.99	5.07	trans-7b	4.12	5.28
	7.5/6.0	6.0/2.4		9.3/4.8	5.7/2.4
	4.03	5.11		4.19	5.32
	6.9/5.4	8.4/3.0		5.4/3.9	4.2/3.0
cis-7c	3.97	-	trans-7c	3.93	-
	7.2/5.1			11.7/6.6	
cis-8a	4.13	5.42	trans-8a	4.20	5.24
	7.5/5.1	4.5/2.7		6.3/6.0	6.9/2.4

Major cis-5a-5c, cis-6a($\left.\mathrm{R}^{2}=\mathrm{CH}_{3}\right)$,
cis-8a ($\left.\mathrm{R}^{2}=\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CHO}\right)$

Major cis-7a-7c

Minor trans-5a-5c, trans- $\mathbf{6 a}\left(\mathrm{R}^{2}=\mathrm{CH}_{3}\right)$, trans-8a $\left(\mathrm{R}^{2}=\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CHO}\right)$

Minor trans- 7a-7c

Fig. 1 Preferred cis/trans configurations and conformations of cycloadducts $5 \mathbf{a}-\mathbf{5 c}, \mathbf{6 a}, \mathbf{7 a}-\mathbf{7} \mathbf{c}$, and $\mathbf{8 a}$ based on ${ }^{1} \mathrm{H}$ NMR analysis
$\delta=2.88 \mathrm{ppm})$ with coupling constants $\left({ }^{3} J=6.9-7.5\right.$ and $4.8-6.3 \mathrm{~Hz}$) because of coupling with two protons at C-6 (Table 3). Thus, 5-H (5-H and $5^{\prime}-\mathrm{H}$ for cis-7a-7c) occupies the pseudo-equatorial position, and the aromatic group adopts the pseudo-axial orientation (Fig. 1). The ${ }^{1} \mathrm{H}$ NMR
spectra of cis-5a-5c, cis-6a, cis-7a-7c, and cis-8a reveal the signals of proton $7-\mathrm{H}\left(7-\mathrm{H}\right.$ and $7^{\prime}-\mathrm{H}$ for cis-7a-7c $)$ as a doublet of doublets at $\delta=5.07-5.42 \mathrm{ppm}$ with two small coupling constants ${ }^{3} J=3.3-6.0 \mathrm{~Hz}\left({ }^{3} J=8.4 \mathrm{~Hz}\right.$ only for cis-7b) and $2.4-3.0 \mathrm{~Hz}$. Thus, $7-\mathrm{H}$ ($7-\mathrm{H}$ and $7^{\prime}-\mathrm{H}$ for cis$\mathbf{7 a}-7 \mathbf{c}$) is in the equatorial position, and the alkoxy group occupies the axial position (Fig. 1).

For the minor diastereoisomers trans-5a-5c, trans-6a, trans-7a-7c, and trans-8a; the protons attached to C-5 (C-5 and $\mathrm{C}-5^{\prime}$ for trans-7a-7c) give rise to a doublet of doublets with coupling constants ${ }^{3} J=5.4-11.7$ and $3.9-6.6 \mathrm{~Hz}$ at $\delta=3.81-4.20 \mathrm{ppm}$ (for trans-6a, ddq $\delta=2.98 \mathrm{ppm}$). Thus, $5-\mathrm{H}\left(5-\mathrm{H}\right.$ and $5^{\prime}-\mathrm{H}$ for trans-7a-7c) is pseudo-axial, and the R^{2} moiety occupies the pseudo-equatorial position (Fig. 1). The proton 7-H (7-H and $7^{\prime}-\mathrm{H}$ for trans-7a-7c) of trans-5a-5c, trans-6a, trans-7a-7c, and trans-8a resonates at $\delta=5.08-5.32 \mathrm{ppm}$ as a doublet of doublets with two coupling constants (${ }^{3} J=4.2-8.1$ and $2.4-3.0 \mathrm{~Hz}$). This suggests that for trans-5a-5c, trans-6a, trans-7a-7c, and trans-8a, the conformation with an axial alkoxy group is preferred because of stabilization by the anomeric effect (Fig. 1).

According to the literature, the Knoevenagel condensation products obtained by condensation of barbituric acids and aromatic aldehydes are excellent reagents in pyran synthesis by conjugate addition-cyclization [27-36]. There is no information for the same reactions using heteroaromatic aldehydes or terephthalaldehyde. Therefore, in the next step, the Michael addition-cyclization of malononitrile with α, β-unsaturated carbonyl compounds obtained by Knoevenagel condensation of barbituric acids and heteroaromatic aldehydes or terephthalaldehyde was examined. The reactions of acids $\mathbf{1 a}, \mathbf{1 b}$ with heteroaromatic aldehydes $\mathbf{2 e}, 2 \mathbf{f}$ in water at room temperature gave the condensation products $\mathbf{3 e}$ and $\mathbf{3 f}$ with stoichiometric yields after 1 h . Heating of $\mathbf{3 e}$ or $\mathbf{3 f}$ with malononitrile 9 under reflux in water for 1 h (method E, Scheme 3; Table 4, entries $1,7,13$) or under reflux in acetonitrile in the presence of piperidine for 3 h (method F, Scheme 3; Table 4, entries 2, 8, 14) did not result in compounds $\mathbf{1 2}$.

Therefore, in the next step of the studies, the threecomponent one-pot reactions of acids $\mathbf{1 a}, \mathbf{1 b}$, aldehydes $\mathbf{2 e}$, 2f, and malononitrile 9 without solvent at $100{ }^{\circ} \mathrm{C}$ (method G, Scheme 3; Table 4, entries 3, 9, 15) or in water (method H, Scheme 3; Table 4, entries 4, 10, 16) were examined. There was no trace of the desired products $\mathbf{1 2}$ after 1 h of heating, and compounds $\mathbf{3 e}-\mathbf{3 g}$ were obtained in excellent $85-93 \%$ yields as the only products. Therefore, the next attempts to synthesize the compounds $\mathbf{1 2}$ were undertaken. Aldehydes $2 \mathbf{e}, \mathbf{2 f}$ were first stirred with malononitrile 9 in water at room temperature, and after 1 h the condensation products 10a and 10b were isolated with stoichiometric yields. Further, the mixture of compounds $\mathbf{1 0 a}, \mathbf{1 0 b}$ was

Scheme 3

Table 4 Reactions of barbituric acids 1a, 1b, heteroaromatic aldehydes $\mathbf{2 e}, \mathbf{2 f}$, and malononitrile $\mathbf{9}$ in the reaction conditions $\mathrm{E}-\mathrm{H}$

Entry	Reagent	R	Reagent	R	Method	Reagent	R	Product		Yield/\% of 3
								10	3	
1	1a	CH_{3}	2e	2-Thienyl	E	9	-	-	3 e	-
2	1a	CH_{3}	2 e	2-Thienyl	F	9	-	-	3e	-
3	1a	CH_{3}	2e	2-Thienyl	G	9	-	-	3e	89
4	1a	CH_{3}	2 e	2-Thienyl	H	9	-	-	3e	93
5	2e	2-Thienyl	9	-	E	1a	CH_{3}	10a	3e	91
6	2e	2-Thienyl	9	-	F	1a	CH_{3}	10a	3e	85
7	1b	H	2e	2-Thienyl	E	9	-	-	3 f	-
8	1b	H	2e	2-Thienyl	F	9	-	-	3 f	-
9	1b	H	2e	2-Thienyl	G	9	-	-	3 f	85
10	1b	H	2e	2-Thienyl	H	9	-	-	3 f	89
11	2e	2-Thienyl	9	-	E	1b	H	10a	3 f	90
12	2e	2-Thienyl	9	-	F	1b	H	10a	3 f	81
13	1a	CH_{3}	2 f	2-Furyl	E	9	-	-	3g	-
14	1a	CH_{3}	2 f	2-Furyl	F	9	-	-	3g	-
15	1a	CH_{3}	$2 f$	2-Furyl	G	9	-	-	3g	87
16	1a	CH_{3}	2 f	2-Furyl	H	9	-	-	3g	90
17	2 f	2-Furyl	9	-	E	1a	CH_{3}	10b	3g	88
18	$2 f$	2-Furyl	9	-	F	1a	CH_{3}	10b	3g	79

heated to reflux with barbituric acids $\mathbf{1 a}$ or $\mathbf{1 b}$ in water for 1 h (method E, Scheme 3; Table 4, entries 5, 11, 17) or heated to reflux in acetonitrile in the presence of piperidine for 3 h (method F, Scheme 3; Table 4, entries 6, 12, 18). In these cases also, the only compounds, isolated in good yields of $79-91 \%$ after the reactions, were condensation products $\mathbf{3 e}-\mathbf{3 g}$. This result suggests that in the first step of the reactions (Table 4, entries 5, 6, 11, 12, 17, 18), the Michael adducts $\mathbf{1 1}$ are furnished (Scheme 3). Intermediates $\mathbf{1 1}$ did not undergo cyclization with formation of pyrano[2,3-d]pyrimidine derivatives $\mathbf{1 2}$, but the elimination of malononitrile led to undesired $\mathbf{3 e}-\mathbf{3 g}$.

At the end of the study, the reaction procedures $\mathrm{E}-\mathrm{H}$ presented above were examined for acid 1a, terephthalaldehyde 2d, and malononitrile $\mathbf{9}$. The reaction of $\mathbf{1 a}$ with aldehyde 2d in water at room temperature gave condensation product 3d with almost stoichiometric yield after 1 h . When compound $\mathbf{3 d}$ was heated with malononitrile 9 in water for 1 h (method E, Scheme 4) or in acetonitrile in the presence of piperidine for 3 h (method F, Scheme 4), the expected compound $\mathbf{1 3}$ was not obtained.

However, when the three-component one-pot reactions of acid 1a, aldehyde $\mathbf{2 d}$, and malononitrile $\mathbf{9}$ were heated at $100{ }^{\circ} \mathrm{C}$ (method G, Scheme 4) without solvent for 1 h or in water under reflux (method H, Scheme 4), compound 3d was obtained in excellent yield (87-91 \%).

In conclusion, new fused uracils of possible pharmacophore, the pyrano[2,3- d]pyrimidines and (1,4-phenylene)bis[2 H -pyrano[2,3-d] pyrimidine-2,4(3H)-diones], were obtained by domino Knoevenagel/Diels-Alder reactions in different reaction conditions. All reactions were carried out without catalyst and at room temperature. Three-component one-pot syntheses of fused uracils performed in aqueous medium were faster than those executed in dichloromethane or under solventless conditions, and cis/trans selectivity was the highest for these reactions. The reactions of malononitrile with Knoevenagel condensation products of barbituric acids and heteroaromatic aldehydes or terephthalaldehyde were examined, and they do not provide corresponding pyranopyrimidines. The presented methods avoid the use of catalysts and the heating of reaction mixtures for long times at high temperatures, and the advantages of the presented

Scheme 4

syntheses are also the excellent yields and short reactions times.

Experimental

All chemicals were purchased and used without any further purification. The melting points were determined on a Boetius hot stage apparatus. The IR spectra were recorded on a Nicolet IR 200 FT-IR, Thermo Scientific spectrophotometer. NMR spectra were recorded on Bruker Avance II $300\left({ }^{1} \mathrm{H}: 300.18 \mathrm{MHz},{ }^{13} \mathrm{C}: 75.48 \mathrm{MHz}\right)$ in CDCl 3 or DMSO- d_{6} with TMS as an internal standard. Microanalyses were performed with a Euro EA 3000 Elemental Analyzer; their results agreed satisfactorily with the calculated values. 5-Arylidenebarbituric acids $\mathbf{3 a}-\mathbf{3 g}$ were obtained according to the general procedure described in Ref. [37].

Procedures for the synthesis of pyrano[2,3-d]-
pyrimidine-2,4-diones $5 \boldsymbol{a}-\mathbf{5 c}, \boldsymbol{6} \boldsymbol{a}, 8 \boldsymbol{a}$, and 5,5'-(1,4-
phenylene)bis[2H-pyrano[2,3-d]pyrimidine-2,4(3H)dione] derivatives $7 a-7 c$

Procedure A

A solution of $4.0 \mathrm{mmol} \mathbf{3 a}-\mathbf{3 d}(1.29 \mathrm{~g} \mathrm{3a}, 1.11 \mathrm{~g} \mathrm{3b}$, $0.99 \mathrm{~g} \mathrm{3c}, 1.64 \mathrm{~g} \mathrm{3d}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right.$ for $\mathbf{3 a}, \mathbf{3 b}$ and $100 \mathrm{~cm}^{3}$ for $\mathbf{3 c}, \mathbf{3 d}$) and 40 mmol (10 equivalents) of enol ethers $\mathbf{4 a}-\mathbf{4} \mathbf{c}\left(3.8 \mathrm{~cm}^{3} \mathbf{4 a}, 5.2 \mathrm{~cm}^{3} \mathbf{4 b}, 3.8 \mathrm{~cm}^{3} \mathbf{4} \mathbf{c}\right)$ was kept at room temperature for the time given in Tables 1 or 2. The progress of the reactions was monitored by TLC. The solvent and excess of ethers were evaporated, and the mixture was separated and purified by column chromatography on silica gel using t-butyl methyl ether as an eluent. Recrystallization from a mixture of t-butyl methyl ether and petroleum ether gave diastereoisomers 5a-5c, $7 \mathbf{a}-7 \mathbf{c}$ with yields listed in Tables 1 or 2.

Procedure B

A mixture of 4.0 mmol of one of the 5-arylidenebarbituric acids 3a-3d ($1.29 \mathrm{~g} \mathrm{3a}, 1.11 \mathrm{~g} \mathrm{3b}, 0.99 \mathrm{~g} \mathrm{3c}, 1.64 \mathrm{~g} \mathrm{3d}$) with a tenfold excess (40 mmol) of one of the enol ethers $\mathbf{4 a}-\mathbf{4} \mathbf{c}\left(3.8 \mathrm{~cm}^{3} \mathbf{4 a}, 5.2 \mathrm{~cm}^{3} \mathbf{4 b}, 3.8 \mathrm{~cm}^{3} \mathbf{4} \mathbf{c}\right)$ was stirred without solvent at room temperature for the time given in Tables 1 or 2 . The progress of the reactions was monitored by TLC. The excess of ethers was evaporated. Diastereoisomers were separated and recrystallized by the method described in procedure A. Products 5a-5c, 7a-7c were obtained with yields listed in Tables 1 or 2.

Procedure C
Equimolar amounts (4.0 mmol) of barbituric acid 1a $(0.625 \mathrm{~g})$ or $\mathbf{1 b}(0.51 \mathrm{~g})$ and aldehydes $\mathbf{2 a}-\mathbf{2 d}(0.74 \mathrm{~g} \mathrm{2a}$,
$\left.0.56 \mathrm{~g} \mathrm{2b}, 0.5 \mathrm{~cm}^{3} \mathbf{2 c}, 0.27 \mathrm{~g}(2.0 \mathrm{mmol}) \mathbf{2 d}\right)$ were mixed with a tenfold excess (40 mmol) of enol ethers $\mathbf{4 a}-\mathbf{4 c}$ $\left(3.8 \mathrm{~cm}^{3} \mathbf{4 a}, 5.2 \mathrm{~cm}^{3} \mathbf{4 b}, 3.8 \mathrm{~cm}^{3} \mathbf{4 c}\right)$ in $100 \mathrm{~cm}^{3}$ dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for the time given in Tables 1 or 2 . The progress of the reactions was monitored by TLC. The solvent and excess of ethers were evaporated, and the mixture was separated and purified by the method described in procedure A. Products 5a-5c, 7a-7c were obtained with yields listed in Tables 1 or 2 . The diastereoisomers of product 8a were also separated and recrystallized in small amounts.

Procedure D

A suspension of equimolar amounts $(4.0 \mathrm{mmol})$ of barbituric acid 1a $(0.625 \mathrm{~g})$ or $\mathbf{1 b}(0.51 \mathrm{~g})$ and appropriate aldehyde 2a-2d ($0.74 \mathrm{~g} \mathbf{2 a}, 0.56 \mathrm{~g} \mathbf{2 b}, 0.5 \mathrm{~cm}^{3} \mathbf{2 c}, 0.27 \mathrm{~g}$ (2.0 mmol) $\mathbf{2 d}$) with a tenfold excess (40 mmol) of enol ether $\mathbf{4 a}-\mathbf{4} \mathbf{c}\left(3.8 \mathrm{~cm}^{3} \mathbf{4 a}, 5.2 \mathrm{~cm}^{3} \mathbf{4 b}, 3.8 \mathrm{~cm}^{3} \mathbf{4} \mathbf{c}\right)$ in $50 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}$ was allowed to stay under vigorous stirring at room temperature for the time given in Tables 1 or 2. The progress of the reactions was monitored by TLC. After that, the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated under reduced pressure. Diastereoisomers were separated and recrystallized by the method described in procedure A. Products 5a-5c, 7a-7c were obtained with yields listed in Tables 1 or 2 . Both diastereoisomers of product $\mathbf{6 a}$ and product 8a were also separated and recrystallized in small amounts.
(5RS,7SR)-5-(4-Bromophenyl)-7-ethoxy-1,5,6,7-tetrahydro-1,3-dimethyl-2H-pyrano[2,3-d]pyrimidine-2,4(3H)-dione (cis-5a, $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{4}$)
Colorless crystals; mp: $169-170{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.48$ (t-BuOMe); IR (powder): $\bar{v}=3,012,2,926,1,731,1,664$, $1,504,1,190,1,069,1,017 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.13\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.14$ $(1 \mathrm{H}, \mathrm{ddd}, J=14.4,5.1,4.8 \mathrm{~Hz}, 6-\mathrm{H}), 2.34(1 \mathrm{H}$, ddd, $J=14.1,7.5,2.7 \mathrm{~Hz}, 6-\mathrm{H}), 3.28(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 3.43(3 \mathrm{H}$, s , $\mathrm{N}-\mathrm{Me}), 3.58\left(1 \mathrm{H}, \mathrm{dq}, J=9.3,6.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.86$ $\left(1 \mathrm{H}, \mathrm{dq}, J=9.3,6.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.00(1 \mathrm{H}, \mathrm{dd}$, $J=7.5,5.1 \mathrm{~Hz}, 5-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{dd}, J=4.8,2.7 \mathrm{~Hz}$, $7-\mathrm{H}), \quad 7.07(2 \mathrm{H}, \mathrm{d}, \quad J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 7.36(2 \mathrm{H}, \mathrm{d}$, $J=8.7 \mathrm{~Hz}$, Ar) ppm; ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.9,28.0,28.7,33.5,35.4,65.5,89.0,101.9,119.9$, 129.1, 131.1, 142.7, 151.2, 155.1, 162.1 ppm .
(5RS,7RS)-5-(4-Bromophenyl)-7-ethoxy-1,5,6,7-tetrahydro-1,3-dimethyl-2H-pyrano[2,3-d]pyrimidine-
2,4(3H)-dione (trans-5a, $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{4}$)
Colorless crystals; mp: $198-200{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.65$ (t-BuOMe); IR (powder): $\bar{v}=3,011,2,964,1,722,1,651$, $1,503,1,171,1,107,1,017 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.26\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.07$
$(1 \mathrm{H}$, ddd, $J=13.8,4.8,2.4 \mathrm{~Hz}, 6-\mathrm{H}), 2.20(1 \mathrm{H}$, ddd, $J=13.8,7.5,6.3 \mathrm{~Hz}, 6-\mathrm{H}), 3.29(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 3.43(3 \mathrm{H}$, s, $\mathrm{N}-\mathrm{Me}), 3.65\left(1 \mathrm{H}, \mathrm{dq}, ~ J=9.3,6.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.95$ $\left(1 \mathrm{H}, \mathrm{dq}, J=9.3,6.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.11(1 \mathrm{H}, \mathrm{dd}$, $J=5.7,5.4 \mathrm{~Hz}, 5-\mathrm{H}), 5.17(1 \overline{\mathrm{H}}, \mathrm{dd}, J=7.5,2.4 \mathrm{~Hz}$, $7-\mathrm{H}), 7.06(2 \mathrm{H}, \quad \mathrm{d}, \quad J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 7.42(2 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}, \mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=15.1,28.0,28.7,33.6,35.9,66.0,88.2,101.2,120.5$, $128.8,131.8,142.8,151.3,155.4,162.0 \mathrm{ppm}$.
(5RS,7SR)-5-(4-Chlorophenyl)-7-ethoxy-1,5,6,7-tetrahydro-1,3-dimethyl-2H-pyrano[2,3-d]pyrimidine-2,4(3H)-dione (cis-5b, $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{4}$)
Colorless crystals; mp: $141-142{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.41 \quad(t-\mathrm{Bu}-$ OMe); IR (powder): $\bar{v}=2,992,2,959,2,887,1,725$, $1,654,1,503,1,280,1,188,1,046,1,016 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad \delta=1.13 \quad(3 \mathrm{H}, \quad \mathrm{t}, \quad J=7.2 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.14(1 \mathrm{H}$, ddd, $J=14.4,5.1,4.8 \mathrm{~Hz}, 6-\mathrm{H})$, $2.33(1 \mathrm{H}$, ddd, $J=14.1,7.5,2.7 \mathrm{~Hz}, 6-\mathrm{H}), 3.28(3 \mathrm{H}, \mathrm{s}$, $\mathrm{N}-\mathrm{Me}), 3.43(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 3.58(1 \mathrm{H}, \mathrm{dq}, J=9.3,6.9 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.86\left(1 \mathrm{H}, \mathrm{dq}, J=9.3,6.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $4.02(1 \mathrm{H}, \mathrm{dd}, J=7.5,5.1 \mathrm{~Hz}, 5-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{dd}, J=4.5$, $2.7 \mathrm{~Hz}, 7-\mathrm{H}), 7.12(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 7.21(2 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}, \mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.9,28.0,28.7,33.4,35.4,65.5,89.1,102.0,128.2$, 128.7, 131.8, 142.2, 151.2, 155.1, 162.1 ppm .
(5RS,7RS)-5-(4-Chlorophenyl)-7-ethoxy-1,5,6,7-tetrahydro-1,3-dimethyl-2H-pyrano[2,3-d]pyrimidine-2,4(3H)-dione (trans-5b, $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{4}$)
Colorless crystals; mp: $153-155^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.59 \quad(t$-BuOMe); IR (powder): $\bar{v}=3,004,2,960,2,912,2,887$, $1,720,1,651,1,505,1,178,1,118,1,035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad \delta=1.27 \quad(3 \mathrm{H}, \quad \mathrm{t}, \quad J=6.9 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.07(1 \mathrm{H}$, ddd, $J=14.1,5.1,2.7 \mathrm{~Hz}, 6-\mathrm{H})$, $2.20(1 \mathrm{H}$, ddd, $J=13.8,7.5,6.3 \mathrm{~Hz}, 6-\mathrm{H}), 3.29(3 \mathrm{H}, \mathrm{s}$, $\mathrm{N}-\mathrm{Me}), 3.43(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 3.65(1 \mathrm{H}, \mathrm{dq}, J=9.3,6.9 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.98\left(1 \mathrm{H}, \mathrm{dq}, J=9.3,6.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $4.12(1 \mathrm{H}, \mathrm{dd}, J=5.7,5.1 \mathrm{~Hz}, 5-\mathrm{H}), 5.17(1 \mathrm{H}, \mathrm{dd}, \bar{J}=7.8$, $2.7 \mathrm{~Hz}, 7-\mathrm{H}), 7.11(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 7.27(2 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}, \mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.1,28.0,28.7,33.5,36.0,66.0,88.3,101.4,128.6$, $128.8,132.4,142.2,151.3,155.4,162.1 \mathrm{ppm}$.
(5RS, 7SR)-7-Ethoxy-1,5,6,7-tetrahydro-5-
(4-methoxyphenyl)-2H-pyrano[2,3-d]pyrimidine-
2,4(3H)-dione (cis-5c, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$)
Colorless crystals; mp: 299-300 ${ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.39 \quad(t-\mathrm{Bu}-$ OMe); IR (powder): $\bar{v}=3,200,3,170,3,012,2,938$, $2,869,1,732,1,671,1,530,1,270,1,200,1,108,1,068$, $1,048 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=1.00$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.92(1 \mathrm{H}$, ddd, $J=14.1$, $4.8,4.8 \mathrm{~Hz}, 6-\mathrm{H}), 2.23(1 \mathrm{H}$, ddd, $J=14.1,7.2,2.4 \mathrm{~Hz}$, $6-\mathrm{H}), 3.50\left(1 \mathrm{H}, \mathrm{dq}, J=9.6,6.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.69(3 \mathrm{H}$,
s, $\left.\mathrm{OCH}_{3}\right), 3.71\left(1 \mathrm{H}, \mathrm{dq}, J=9.6,7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.76$ $(1 \mathrm{H}, \mathrm{dd}, J=7.2,4.8 \mathrm{~Hz}, 5-\mathrm{H}), 5.41(1 \mathrm{H}, \mathrm{dd}, J=4.5$, $2.4 \mathrm{~Hz}, 7-\mathrm{H}), 6.75(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{Ar}), 7.03(2 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 10.69(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 11.35(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ ppm; ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO- d_{6}): $\delta=14.8,31.4$, $35.4,54.8,64.1,87.8,100.6,112.8,128.2,136.3,150.0$, 156.3, 157.1, 163.4 ppm .
(5RS,7RS)-7-Ethoxy-1,5,6,7-tetrahydro-5-
(4-methoxyphenyl)-2H-pyrano[2,3-d]pyrimidine-
2,4(3H)-dione (trans-5c, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$)
Colorless crystals; mp: $314-315^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.65(t-\mathrm{BuOMe})$; IR (powder): $\bar{v}=3,192,3,120,3,003,2,958,2,884,2,851$, $1,725,1,632,1,529,1,260,1,186,1,088,1,045 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=1.13(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.94(1 \mathrm{H}, \mathrm{ddd}, J=13.8,4.5,2.4 \mathrm{~Hz}, 6-\mathrm{H})$, $2.07(1 \mathrm{H}, \mathrm{ddd}, J=13.8,8.1,6.0 \mathrm{~Hz}, 6-\mathrm{H}), 3.61(1 \mathrm{H}, \mathrm{dq}$, $\left.J=9.6,6.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.81$ $(1 \mathrm{H}, \mathrm{dd}, J=5.4,4.8 \mathrm{~Hz}, 5-\mathrm{H}), 3.84(1 \mathrm{H}, \mathrm{dq}, J=9.6$, $\left.6.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.08(1 \mathrm{H}, \mathrm{dd}, J=8.1,2.4 \mathrm{~Hz}, 7-\mathrm{H})$, $6.83(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}), 7.08(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar})$ $10.72(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 11.38(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO- d_{6}): $\delta=14.9,31.8,36.0,54.9,64.8$, 87.0, $99.8,113.6,128.2,136.0,150.1,156.6,157.5$, 163.4 ppm .
(5RS,7RS)-7-Ethoxy-1,5,6,7-tetrahydro-1,3,5-
trimethyl-2H-pyrano[2,3-d]pyrimidine-2,4(3H)-
dione (cis-6a, $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$)
Colorless crystals; mp: 79-80 ${ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.37$ (t-BuOMe); IR (powder): $\bar{v}=2,968,2,934,2,901,2,879,1,701,1,625$, $1,483, \quad 1,183, \quad 1,144, \quad 1,102, \quad 1,022 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad \delta=1.26 \quad(3 \mathrm{H}, \quad \mathrm{t}, \quad J=7.2 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.35\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 5-\mathrm{CH}_{3}\right), 1.90(1 \mathrm{H}$, ddd, $J=14.1,3.6,3.3 \mathrm{~Hz}, 6-\mathrm{H}), 2.05(1 \mathrm{H}$, ddd, $J=14.1$, $6.9,3.0 \mathrm{~Hz}, 6-\mathrm{H}), 2.88(1 \mathrm{H}, \mathrm{ddq}, J=6.9,6.9,3.6 \mathrm{~Hz}$, $5-\mathrm{H}), 3.34(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 3.65(1 \mathrm{H}, \mathrm{dq}$, $\left.J=9.3, \quad 6.9 \mathrm{~Hz}, \quad \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.89(1 \mathrm{H}, \mathrm{dq}, \quad J=9.3$, $\left.7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.40(1 \mathrm{H}, \mathrm{dd}, J=3.3,3.0 \mathrm{~Hz}, 7-\mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.1,20.1,22.6$, $27.9, ~ 28.6, ~ 33.4, ~ 65.6, ~ 92.0, ~ 101.8, ~ 151.2, ~ 153.4$, 162.7 ppm .
(5RS,7SR)-7-Ethoxy-1,5,6,7-tetrahydro-1,3,5-trimethyl-2H-pyrano[2,3-d]pyrimidine-2,4(3H)-dione (trans-6a, $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$)
Colorless crystals; mp: $88-90{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.43$ (t-BuOMe); IR (powder): $\bar{v}=2,972,2,931,2,908,2,883,1,701,1,630$, $1,491, \quad 1,182, \quad 1,140, \quad 1,098, \quad 1,020 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad \delta=1.26 \quad(3 \mathrm{H}, \quad \mathrm{d}, \quad J=6.9 \mathrm{~Hz}$, $\left.5-\mathrm{CH}_{3}\right), 1.31\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.85(1 \mathrm{H}$, ddd, $J=13.8,3.9,2.7 \mathrm{~Hz}, 6-\mathrm{H}), 1.94(1 \mathrm{H}$, ddd, $J=13.8$, $8.1,6.0 \mathrm{~Hz}, 6-\mathrm{H}), 2.98(1 \mathrm{H}, \mathrm{ddq}, J=6.9,6.9,3.9 \mathrm{~Hz}$, $5-\mathrm{H}), 3.33$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}$), 3.35 ($3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}$), 3.73 ($1 \mathrm{H}, \mathrm{dq}$,
$\left.J=9.6, \quad 7.2 \mathrm{~Hz}, \quad \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.01(1 \mathrm{H}, \mathrm{dq}, \quad J=9.6$, $\left.7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.30(1 \mathrm{H}, \mathrm{dd}, J=8.1,2.7 \mathrm{~Hz}, 7-\mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}): $\delta=15.1,20.8,23.2$, 27.9, 28.6, $34.6, ~ 66.0, ~ 91.6, ~ 101.2, ~ 151.2, ~ 153.9$, 162.6 ppm.
(5RS,7SR, $5^{\prime} R S, 7^{\prime} S R$)-5, 5^{\prime}-(1,4-Phenylene)bis[7-ethoxy-1,5,6,7-tetrahydro-1,3-dimethyl-2H-pyrano[2,3-d]pyrimidine-2,4(3H)-dione] (cis-7a, $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{8}$)
Colorless crystals; mp: $>360{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.14(t-\mathrm{BuOMe}) ;$ IR (powder): $\bar{v}=2,973,2,926,2,884,1,703,1,635,1,480$, $1,173,1,132,1,035,1,001 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.15\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.17$ $\left(2 \mathrm{H}\right.$, ddd, $\left.J=14.7,6.3,5.7 \mathrm{~Hz}, 6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 2.32(2 \mathrm{H}$, ddd, $\left.J=14.1,7.2,2.7 \mathrm{~Hz}, 6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 3.27$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}$), 3.42 $(6 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 3.58\left(2 \mathrm{H}, \mathrm{dq}, J=9.3,6.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $3.86\left(2 \mathrm{H}, \mathrm{dq}, J=9.3,7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.00(2 \mathrm{H}, \mathrm{dd}$, $\left.J=7.2,6.3 \mathrm{~Hz}, 5-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 5.31(2 \overline{\mathrm{H}}, \mathrm{dd}, J=5.7,2.7 \mathrm{~Hz}$, $\left.7-\mathrm{H}, 7^{\prime}-\mathrm{H}\right), 7.05(4 \mathrm{H}, \mathrm{br}, \mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz , CDCl_{3}): $\delta=14.9,27.9,28.7,34.0,36.1,65.5,90.0,102.5$, $126.9,141.1,151.3,155.0,162.1 \mathrm{ppm}$.
(5RS,7SR, $\left.5^{\prime} R S, 7^{\prime} S R\right)-5,5^{\prime}$-($1,4-$ Phenylene)bis[1,5,6,7-tetra-hydro-7-isobutoxy-1,3-dimethyl-2H-pyrano[2,3-d]pyrimi-dine-2,4(3H)-dione] (cis-7b, $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{8}$)
Colorless crystals; mp: $>360{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.24$ (t-BuOMe); IR (powder): $\bar{v}=2,959,2,927,2,864,2,853,1,702,1,636$, $1,458, \quad 1,162, \quad 1,154, \quad 1,047, \quad 1,006 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.90\left(12 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right.$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.02(2 \mathrm{H}, \mathrm{ddd}$, $\left.J=1 \overline{3} .8,4.8,2.4 \mathrm{~Hz}, 6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), \overline{2} .20(2 \mathrm{H}$, ddd, $J=13.8$, 8.4, 6.0 Hz, 6-H, $\left.6^{\prime}-\mathrm{H}\right), 3.30(6 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 3.41(6 \mathrm{H}, \mathrm{s}$, $\mathrm{N}-\mathrm{Me}), \quad 3.54\left(1 \mathrm{H}, \quad \mathrm{dd}, \quad J=9.0, \quad 6.3 \mathrm{~Hz}, \quad \mathrm{OCH}_{2} \mathrm{CH}\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 3.67\left(1 \mathrm{H}, \mathrm{dd}, J=9.0,6.6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $3.99(1 \mathrm{H}, \mathrm{dd}, J=7.5,6.0 \mathrm{~Hz}, 5-\mathrm{H}), 4.03(1 \mathrm{H}, \mathrm{dd}, J=6.9$, $\left.5.4 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 5.07(1 \mathrm{H}, \mathrm{dd}, J=6.0,2.4 \mathrm{~Hz}, 7-\mathrm{H}), 5.11$ $\left(1 \mathrm{H}, \mathrm{dd}, J=8.4,3.0 \mathrm{~Hz}, 7^{\prime}-\mathrm{H}\right), 7.00(2 \mathrm{H}, \mathrm{br}, \mathrm{Ar}), 7.05$ (2H, br, Ar) ppm; ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $19.0,19.5,27.8,28.3,28.5,33.5,33.7,36.0,36.1,77.2$, 88.0, 88.3, 101.8, 102.0, 127.3, 127.5, 141.6, 141.7, 151.3, $155.5,162.3 \mathrm{ppm}$.
(5RS, $7 R S, 5^{\prime} R S, 7^{\prime} R S$)-5, 5^{\prime}-(1,4 -Phenylene)bis[1,5,6,7-tetrahydro-7-isobutoxy-1,3-dimethyl-2H-pyrano[2,3-d]pyrimidine-2,4(3H)-dione] (trans-7b, $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{8}$) Colorless crystals; mp: $>360{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.37$ (t-BuOMe); IR (powder): $\bar{v}=2,955,2,921,2,868,2,851,1,699,1,634$, $1,455, \quad 1,166, \quad 1,151, \quad 1,053, \quad 1,002 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \delta=0.91 \quad(12 \mathrm{H}, \quad \mathrm{d}, \quad J=6.9 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.13$ (2 H , ddd, $J=13.8,8.7,3.9 \mathrm{~Hz}, 6-\mathrm{H}, 6^{\prime}-\mathrm{H}$), $2.28(2 \mathrm{H}$, ddd, $\left.J=13.8,5.7,4.8 \mathrm{~Hz}, 6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 3.29$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}$), 3.40 $(6 \mathrm{H}, \quad \mathrm{s}, \mathrm{N}-\mathrm{Me}), \quad 3.58(1 \mathrm{H}, \quad \mathrm{dd}, \quad J=9.0, \quad 6.3 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.65\left(1 \mathrm{H}, \mathrm{dd}, J=9.0,6.6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}\right.$
$\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 4.12(1 \mathrm{H}, \mathrm{dd}, J=9.3,4.8 \mathrm{~Hz}, 5-\mathrm{H}), 4.19(1 \mathrm{H}, \mathrm{dd}$, $\left.J=5.4,3.9 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 5.28(1 \mathrm{H}, \mathrm{dd}, J=5.7,2.4 \mathrm{~Hz}$, $7-\mathrm{H}), 5.32\left(1 \mathrm{H}, \mathrm{dd}, J=4.2,3.0 \mathrm{~Hz}, 7^{\prime}-\mathrm{H}\right), 7.00(2 \mathrm{H}, \mathrm{br}$, Ar), $7.05(2 \mathrm{H}, \mathrm{br}, \mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.1,19.2,28.0,28.6,28.7,33.6,33.7,35.4,35.5$, $77.2,89.2,90.0,102.6,103.0,126.8,126.9,140.8,141.0$, $151.3,154.9,162.0 \mathrm{ppm}$.
(5RS,7SR, $\left.5^{\prime} R S, 7^{\prime} S R\right)-5,5^{\prime}-(1,4-$ Phenylene)bis[1,5,6,7-tetrahydro-7-methoxy-1,3,7-trimethyl-2H-pyrano[2,3-d]pyrimidine-2,4(3H)-dione] (cis-7c, $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{8}$) Colorless crystals; mp: $>360{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.27(t$-BuOMe); IR (powder): $\bar{v}=2984,2958,2887,1700,1627,1485,1455$, 1176, 1072, 1042, $1019 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=1.53\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 1.56\left(3 \mathrm{H}, \mathrm{s}, 7^{\prime}-\mathrm{CH}_{3}\right)$, $2.11\left(2 \mathrm{H}, \mathrm{dd}, J=14.1,7.2 \mathrm{~Hz}, 6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 2.31(2 \mathrm{H}, \mathrm{dd}$, $\left.J=14.1,6.0 \mathrm{~Hz}, 6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 3.19\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.29$ $(6 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 3.42(6 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 3.97(2 \mathrm{H}, \mathrm{dd}, J=7.2$, $5.1 \mathrm{~Hz}, 5-\mathrm{H}), 7.03(4 \mathrm{H}, \mathrm{br}, \mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz , CDCl_{3}): $\delta=22.3,27.9,28.6,34.3,39.8,49.6,88.9,105.6$, 126.7, 126.9, 140.9, 151.4, 155.2, 162.2 ppm.
(5RS, 7RS, $\left.5^{\prime} R S, 7^{\prime} R S\right)-5,5^{\prime}$-(1,4-Phenylene)bis[1,5,6,7-tetra-hydro-7-methoxy-1,3,7-trimethyl-2H-pyrano[2,3-d]-pyrimidine-2,4(3H)-dione] (trans-7c, $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{8}$)
Colorless crystals; $\mathrm{mp}:>360{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.39(t-\mathrm{BuOMe}) ;$ IR (powder): $\bar{v}=2,981,2,952,2,885,1,697,1,631,1,486$, $1,449, \quad 1,172, \quad 1,069, \quad 1,047, \quad 1,018 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.53\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3}\right), 1.55(3 \mathrm{H}$, s, $\left.7^{\prime}-\mathrm{CH}_{3}\right), 2.12\left(2 \mathrm{H}, \mathrm{dd}, J=14.4,11.4 \mathrm{~Hz}, 6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$, $2.33\left(2 \mathrm{H}, \mathrm{dd}, J=14.4,6.9 \mathrm{~Hz}, 6-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 3.23(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.31(6 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 3.42(6 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 3.93(2 \mathrm{H}$, $\left.\mathrm{dd}, J=11.7,6.6 \mathrm{~Hz}, 5-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.02(4 \mathrm{H}, \mathrm{br}, \mathrm{Ar}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}): $\delta=22.1,27.8,28.5,34.2$, $43.3,50.0,91.2,104.0,126.5,127.2,141.6,151.4,154.6$, 161.8 ppm .
(5RS,7SR)-7-Ethoxy-5-(4-formylphenyl)-1,5,6,7-tetrahydro-1,3-dimethyl-2H-pyrano[2,3-d]-
pyrimidine-2,4(3H)-dione (cis-8a, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$)
Colorless crystals; mp: $335-337{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.19(t-\mathrm{Bu}-$ OMe); IR (powder): $\bar{v}=2,975,2,937,2,898,1,703$, $1,634,1,571,1,486,1,379,1,170,1,092,1,004 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.26(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.22(1 \mathrm{H}$, ddd, $J=14.1,4.8,4.5 \mathrm{~Hz}, 6-\mathrm{H})$, $2.38(1 \mathrm{H}$, ddd, $J=14.4,7.5,2.7 \mathrm{~Hz}, 6-\mathrm{H}), 3.28(3 \mathrm{H}, \mathrm{s}$, $\mathrm{N}-\mathrm{Me}), 3.45(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 3.57(1 \mathrm{H}, \mathrm{dq}, J=9.3,6.9 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.84\left(1 \mathrm{H}, \mathrm{dq}, J=9.3,7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $4.13(1 \mathrm{H}, \mathrm{dd}, J=7.5,5.1 \mathrm{~Hz}, 5-\mathrm{H}), 5.42(1 \mathrm{H}, \mathrm{dd}, J=4.5$, $2.7 \mathrm{~Hz}, 7-\mathrm{H}), 7.36(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 7.78(2 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 9.95(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}$ (75.5 MHz, CDCl_{3}): $\delta=14.8,28.0,28.8,33.9,35.0,66.5$, $88.4,101.7,128.1,129.7,134.8,151.1,151.2,155.2$, 162.7, 192.0 ppm .
(5RS,7RS)-7-Ethoxy-5-(4-formylphenyl)-1,5,6,7-
tetrahydro-1,3-dimethyl-2H-pyrano[2,3-d]-
pyrimidine-2,4(3H)-dione (trans-8a, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$)
Colorless crystals; mp: $168-170{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.29(t-\mathrm{Bu}-$
OMe); IR (powder): $\bar{v}=2,951,2,898,2,823,2,732$, $1,698,1,634,1,574,1,488,1,169,1,118,1,043$, $1,005 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.26(3 \mathrm{H}$, $\left.\mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.09(1 \mathrm{H}$, ddd, $J=13.8,6.0$, $2.4 \mathrm{~Hz}, 6-\mathrm{H}), 2.27(1 \mathrm{H}$, ddd, $J=13.8,7.2,6.6 \mathrm{~Hz}, 6-\mathrm{H})$, 3.28 ($3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}$), 3.44 ($3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}$), $3.67(1 \mathrm{H}, \mathrm{dq}$, $\left.J=9.3, \quad 6.9 \mathrm{~Hz}, \quad \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.95(1 \mathrm{H}, \quad \mathrm{dq}, \quad J=9.6$, $\left.7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.20(1 \mathrm{H}, \mathrm{dd}, J=6.3,6.0 \mathrm{~Hz}, 5-\mathrm{H})$, $5.24(1 \mathrm{H}, \mathrm{dd}, \quad J=6.9,2.4 \mathrm{~Hz}, 7-\mathrm{H}), 7.37(2 \mathrm{H}, \mathrm{d}$, $J=8.1 \mathrm{~Hz}, \mathrm{Ar}), 7.83(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}), 9.97(1 \mathrm{H}$, s , CHO) ppm; ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.0$, $28.0,28.7,34.2,35.9,66.0,88.3,100.9,127.9,130.2$, 135.2, 151.1, 151.2, 155.4, 162.0, 191.7 ppm .

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Boger DL, Weinreb SN (1987) Hetero Diels-Alder methodology in organic synthesis. Academic Press, San Diego
2. Tietze LF, Kettschau G (1997) Top Curr Chem 189:12
3. Kitamura N, Ohnishi A (1984) Eur Pat 163599; Chem Abstr 104:186439u
4. Furuja S, Ohtaki T (1994) Chem Abstr 121:205395w. Eur Pat Appl EP 608565
5. Heber D, Heers C, Ravens U (1993) Pharmazie $48: 537$
6. Coates W (1990) Chem Abstr 113:40711r. J Eur Pat 351058
7. Sakuma Y, Hasegawa M, Kataoka K, Hoshina K, Yamazaki N, Kadota T, Yamaguchi H (1989) Chem Abstr 115:71646. PCT Int Appl WO 9105784
8. Anderson GL, Shim JL, Broom AD (1976) J Org Chem 41:1095
9. Tietze LF, Hartfiel U, Hubsch T, Voss E, Bogdanowicz-Szwed K, Wichmann J (1991) Liebigs Ann Chem 275
10. Ager DJ, East MB (1993) Tetrahedron 49:5683
11. Tietze LF (1990) J Heterocycl Chem $27: 47$
12. John RA, Schmidt V, Wyler H (1987) Helv Chim Acta 70:600
13. Zhuo JC, Wyler H, Schenk K (1995) Helv Chim Acta $78: 151$
14. Tietze LF, Evers H, Topken E (2001) Angew Chem Int Ed 40:903
15. Haag-Zeino B, Schmidt RR (1990) Liebigs Ann Chem 1197
16. Bogdanowicz-Szwed K, Pałasz A (1995) Monatsh Chem 126: 1341
17. Bogdanowicz-Szwed K, Pałasz A (1997) Monatsh Chem 128: 1157
18. Bogdanowicz-Szwed K, Pałasz A (1999) Monatsh Chem 130:795
19. Bogdanowicz-Szwed K, Pałasz A (2001) Z Naturforsch 56b:416
20. Bogdanowicz-Szwed K, Pałasz A (2001) Monatsh Chem 132:393
21. Pałasz A (2005) Org Biomol Chem 3:3207
22. Pałasz A, Jelska K, Ożóg M, Serda P (2007) Monatsh Chem 138:481
23. Pałasz A (2008) Monatsh Chem 139:1397
24. Pałasz A, Bogdanowicz-Szwed K (2008) Monatsh Chem 139:647
25. Pałasz A (2010) Synthesis 23:4021
26. Pałasz A, Pałasz T (2011) Tetrahedron 67:1422
27. Ciller JA, Martin N, Seoane C, Soto JL (1985) J Chem Soc Perkin Trans 1:2581
28. Martin N, Martinez-Grau A, Seoane C, Marco JL, Albert A, Cano FH (1993) Liebigs Ann Chem 801
29. Bogdanowicz-Szwed K, Budzowski A (1999) Monatsh Chem 130:545
30. Sharanin YA, Klokol GV (1984) Zh Org Khim 20:2448
31. Ibrahim MKA, El-Moghayar MRH, Sharaf MAF (1987) Indian J Chem Sect B 26B:216
32. Gao Y, Tu S, Li T, Zhang X, Zhu S, Fang F, Shi S (2004) Synth Commun 34:1295
33. Mashkouri S, Naimi-Jamal MR (2009) Molecules 14:474
34. Devi I, Kumar BSD, Bhuyan PJ (2003) Tetrahedron Lett 44:8307
35. Shaabani A, Samadi S, Rahmati A (2007) Synth Commun 37:491
36. Jin TS, Liu LB, Tu SJ, Zhao Y, Li TS (2005) J Chem Res 3:162
37. Deb ML, Bhuyan PJ (2005) Tetrahedron Lett 46:6453
38. Jursic BS, Stevens ED (2003) Tetrahedron Lett 44:2203

[^0]: A. Pałasz (\triangle)

 Department of Organic Chemistry, Jagiellonian University, Kraków, Poland
 e-mail: palasz@chemia.uj.edu.pl

