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Summary. Antibody responses against respiratory bovine coronavirus (RBCV)
infections were monitored in cattle from the onset of a naturally occurring severe
shipping fever (SF) epizootic to complete recovery of affected cattle or fatal out-
comes. The infection with RBCV was detected in nasal secretions of 86 cattle, and
81 of them developed acute respiratory tract disease, including fatal pneumonia.
Cattle nasally shedding RBCV at the beginning of the epizootic experienced char-
acteristic primary immune responses with specific antibodies for hemagglutinin-
esterase (HE) and spike (S) glycoproteins. Virus shedding in nasal secretions of
the majority of the cattle ceased between days 7 and 14 with the appearance of
HE- and S-specific antibodies. Nasal samples and lung tissues from 9 of the 10
fatal cases had high titers of RBCV, but these cattle had only IgM responses to
RBCV infections. Cattle remaining negative in RBCV isolation tests entered this
epizootic with antibodies against HE and S. Protection against respiratory tract
disease was apparently associated with high level of opsonic and virus-neutralizing
IgG2. The HE and S glycoproteins were recognized earliest by the bovine im-
mune system while the N protein induced antibody responses during the later
stage of initial infection and the early stage of reinfection. The membrane (M)
glycoprotein was the least immunogenic of the major viral structural proteins.

Introduction

Coronaviruses, a genus in the familyCoronaviridae, are enveloped, positive-
strand RNA viruses that emerge as increasingly important causes of human and
animal diseases. These diseases include respiratory infections, gastroenteritis,
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hepatic and neurological disorders, immune-mediated disease such as feline in-
fectious peritonitis, and persistent infections [15, 28]. Bovine coronavirus (BCV)
is the second most common cause of virus-induced severe enteritis or occa-
sional pneumoenteritis in calves, and is referred to here as enteropathogenic BCV
(EBCV) [5, 21]. Winter dysentery in adult dairy cattle was also attributed to EBCV
[5, 25].

Recently, high rates of coronavirus infections were detected in respiratory
tract samples of cattle with acute respiratory distress including shipping fever
(SF) [30–33, 37]. Shipping fever is an acute respiratory tract disease particularly
prevalent among 6- to 8-month-old cattle after transport and entry into feed yards
in North America [11, 41]. The role of respiratory bovine coronavirus (RBCV) in
SF was previously not recognized. A refined virus isolation scheme was applied
in recent etiological investigations. It included the G clone of human rectal tumor-
18 (HRT-18) cells, Georgia bovine kidney (GBK) and bovine turbinate (BT) cells
with specific permissiveness for currently known respiratory viruses of cattle
including RBCV [30–33, 37]. This approach led to the first successful isolation
of wild-type RBCV at high rates from nasal swab samples of cattle arriving at feed
yards with respiratory distress, and provided the initial evidence of a potential
etiological role of RBCV in SF.

The genome of EBCV consists of a single, positive-stranded RNA molecule
of about 31 kilobases (kb) [5, 15, 28]. The 3′ end of the genomic RNA consists
of approximately 9.5 kb and contains the genes for 5 structural proteins: (i) a
longer peplomeric 200-kilodalton (kDa) spike glycoprotein (S) with a proteolytic
cleavage site where proteases split S into 110-kDa S1 and 100-kDa S2 subunits,
(ii) a short peplomeric 140-kDa hemagglutinin-esterase glycoprotein (HE) which
is a disulfide-linked dimer of 2 identical 65-kDa subunits, (iii) a 26-kDa integral
membrane glycoprotein (M), (iv) a 9.5-kDa envelope protein (E), and (v) an
internal phosphorylated 50-kDa nucleocapsid protein (N) [1, 7, 12]. Phenotypic
and genotypic properties of RBCV differentiated them from EBCV [4, 30–33,
37]. The distinguishing features are: (i) The RBCV were isolated in the 1st G clone
cell passage without trypsin enhancement. Trypsin activation was required for the
isolation of EBCV [36]. (ii) The RBCV have unusually high cell-fusing activities
for the G clone cells. (iii) The RBCV have a restricted hemagglutination pattern,
and agglutinate only mouse and rat, but not chicken red blood cells (RBC). The
EBCV prototypes agglutinate both rodent and chicken RBC [38]. (iv) The RBCV
have the highest acetylesterase (AE) activities at 37◦C while the AE functions
of EBCV are more active at 39◦C [17]. (v) Comparative nucleotide (n.t.) and
amino acid (a.a.) sequence analysis of the 3′ genomic portion (9.5 kb) of wild-type
RBCV and EBCV strains revealed that RBCV-specific n.t. and a.a. changes were
disproportionally concentrated within the HE gene, the S gene and the genomic
region between the S and E genes [4].

Immunoglobulin (Ig) G predominates over other classes in serum of cattle
and accounts for around 90% of the total serum Ig [8, 20, 39]. The 2 major
subclasses of IgG in cattle are IgG1 and IgG2 [2]. Although IgG1 and IgG2 occur
in relatively equal amounts in serum and secretions, IgG1 is the predominant
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isotype in colostrum and milk. Bovine IgG1 and IgG2 fix bovine complement, but
IgG2 does not bind heterologous complement [18, 19]. The antibody responses to
EBCV structural proteins were studied in 5 experimentally exposed, colostrum-
deprived, 20- to 30-hour-old calves that were inoculated orally and intranasally
at birth and challenge exposed 3 weeks after inoculation [10]. About 2 to 3 days
postinoculation, these calves developed enteric disease signs, and virus shedding
was detected in their feces and nasal swab samples for 4 to 9 days and 6 to
9 days, respectively. These calves first developed serum IgM to N and HE at
postinoculation week (PIW) 1, and then they responded with IgG1 directed to N
and S, and with moderate and slower IgG2 response to N and S antigens at PIW 2
and 3. After challenge of the immunity of these calves by EBCV inoculation, virus
shedding was not detected, and calves did not become ill. An increase in IgM to
N, in IgG1 antibody reactions to S, HE, M and N, and in IgG2 responses to S and
HE was detected. The S and HE antigens elicited virus infectivity-neutralizing
antibodies.

Previous investigations on the kinetics of antibody responses of cattle to res-
piratory viruses other than RBCV demonstrated a crucial role of Ig isotypes in
disease development and protection [11, 13, 14, 16, 23, 24, 41]. Consequently,
we monitored antibody responses to RBCV infections during a severe SF epi-
zootic which was prospectively designed, and included sequential examinations
and samplings. These cattle were studied clinically, virologically and immuno-
logically from the initial phases of infection to recovery or fatal outcomes. The
investigation facilitated the first comprehensive assessment of currently prevailing
respiratory virus infections of market-stressed cattle during a naturally occurring
epizootic. A surprisingly high rate of RBCV infections in the virtual absence of
other respiratory bovine viruses was detected in the early stage of this epizootic
[30–33]. The specific objectives of this report were to assess the kinetics of total
antibody responses of immunologically mature cattle to RBCV infections during
a naturally occurring SF epizootic, to define the immunoisotype responses and
the antigenic reactivities of the S, HE, M, N structural proteins of RBCV, and to
relate these findings with isolation of RBCV from nasal swab and lung samples
and development of respiratory tract disease.

Materials and methods

Experimental design

One hundred and five 6- to 8-month-old cattle were included in this naturally evolving and
prospectively monitored epizootic which occurred in 1997. The mixed-breed cattle were as-
sembled on day 0 at an order-buyer barn (OBB), identified by ear tags and clinically examined.
Nasal swab and blood samples were collected, followed by vaccination with commercially
available modified-live vaccines against BHV-1 and PI-3 (Prevail, Rhone Merieux Inc.), and
a 7-way clostridial vaccine (Electroid 7, Mallinckrodt Veterinary Inc.). After a stay at the
OBB, the cattle were transported 1932 kilometers to the feed yard jointly operated by the
Agricultural Research Service and the Texas Agricultural Experimental Station in Bushland,
Texas. Nasal swab samples were taken on days 7, 14, and 21, and blood for serum harvest
was collected on days 7, 14, 21, 28 and 35.
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Table 1. Respiratory coronavirus isolations and clinical signs of cattle in response groups
of the 1997 shipping fever epizootic

Response No. of No. of RBCV isolation-positive cattle Clinical signs No. of
group cattle Ab-tested cattle

Day 0 Day 7 Day 14 Day 21 RTD Death

1a 12 12 0 1 0 Yes No 7
1b 44 44 44 2 3 Yes No 7
1c 6 0 16 1 1 Yes No 7
2 5 2 3 1 0 No No 5
3 10a 6 9 Yes Yes 9
4 11 0 0 0 0 Yes No 7
5 7 0 0 0 0 No No 7
Total 105 64 72 5 4 49

RBCV, respiratory bovine coronavirus; RTD, clinical signs of respiratory tract disease;
aCattle died on days 7 to 11

Clinical signs of respiratory tract diseases and results of RBCV isolation assigned these
cattle into 5 response groups based on results reported elsewhere (Table 1) [31–33]. Response
group 1 included 72 cattle that exhibited clinical signs of respiratory tract disease, and were
shedding RBCV on day 0, day 7 or both. Seven animals were randomly chosen from each
shedding pattern for testing in this study. Response group 2 contained 5 test cattle that se-
creted RBCV in nasal discharges without adverse respiratory signs. The 10 cattle of response
group 3 developed severe pneumonia, and died on days 7 to 11, and 9 that nasally shed
RBCV were selected. Eighteen cattle remained RBCV isolation-negative. Eleven of them
were included in response group 4 because they had fever and other respiratory signs, while
the remaining 7 calves (response group 5) remained clinically healthy during the 5-week
investigation. Samples of 7 representative cattle from response groups 4 and 5 were serolog-
ically analyzed. Test results of 49 cattle on sequential serum samples were included in this
report.

Cell line and virus isolate

The G clone of HRT-18 cells was used at the 24th passage level for RBCV propagation. A
wild-type strain RBCV-97TXSF-Lu15-2 was used at its 2nd passage for antigen preparation
after initial isolation from the lung tissue of a calf that died on day 8 [31, 32].

Virus purification

Virus purification was performed according to Zhang et al. [42]. Infected G clone cultures
with 90% cytopathic expression were subjected to 3 cycles of freezing and thawing, sonica-
tion for 4×15 sec at power setting 4 of a Branson Sonifier cell disruptor 200 (Branson
Ultrasonics Co), and centrifugation at 1,500×g for 30 min. Supernatant fluids were col-
lected, precipitated overnight at 4◦C with 10% (w/v) polyethylene glycol 8,000 and 0.5 M
NaCl in TNE buffer (100 mM Tris, 10 mM NaCl, 1 mM EDTA, pH 7.4), and harvested by cen-
trifugation at 1,500×g. Suspensions of precipitates were loaded onto a 20% sucrose cushion
prepared in TNE buffer, centrifuged at 90,000×g for 2 h. The sediments were collected and
purified by centrifugation at 200,000×g for 16 h through a 20–60% sucrose gradient prepared
in TNE buffer. Isopycnic bands were collected, and the sucrose was removed through TNE
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buffer dilution and centrifugation at 200,000×g for 1.5 h. The purified virus preparations
were resuspended in TNE buffer and stored at−70◦C.

Antibody detection using indirect enzyme-linked immunosorbent assay (ELISA)

The purified RBCV-97TXSF-Lu15-2 stock was diluted to 1mg protein/ml in 0.1 M carbonate
buffer, pH 9.6, and used to coat Microtitration ELISA plates (Immulon-2, Fisher Scientific).
The coated plates were held overnight at 4◦C, and blocked for 2 h at room temperature with
NET buffer (0.15 M NaCl, 1 mM EDTA, 0.05 M Tris, pH 7.4) containing 1% (w/v) bovine
serum albumin (BSA) and 0.2% (v/v) NaN3. Plates were washed 5 times with NET buffer
containing 0.05% (v/v) Tween-20 prior to addition of each reagent (100ml/well). All the
reagents were added at 100ml/well. Serum samples diluted 1:50 in NET buffer containing
1% BSA were added in triplicate to appropriate wells. Serum 1745 [34, 35] was included
as positive control in the test while RBCV-antibody free serum from a normal calf [34,
35] served as negative control. Plates were incubated for 30 min at room temperature and
washed as described above. Horseradish peroxidase (HRPO)-conjugated, affinity-purified
goat anti-bovine IgG (H+L) (Jackson Immunoresearch Inc.) diluted at 1:20,000 was added for
total Ig detection. A 1:400 dilution of HRPO-conjugated sheep anti-bovine IgM, a 1:30,000
dilution of HRPO-conjugated sheep anti-bovine IgG1, and a 1:4,000 dilution of HRPO-
conjugated sheep anti-bovine IgG2 (Bethyl Laboratories Inc.) were used for IgM, IgG1
and IgG2 isotype quantitation, respectively. Plates were incubated for another 30 min and
washed as described above. The substrate solution containing H2O2 and the chromogen
3,3′,5,5′-tetramethylbenzidine (Kirkegarrd & Perry Laboratories Inc.) was added. Plates were
incubated for 5 min, and then reactions were stopped by addition of 100ml of 0.10 M H2SO4.
The optical density (OD) was measured with an ELISA plate reader (Dynatech MR 5000,
Dynatech Laboratories Inc.) at 450 nm. The OD450 values of triplicate wells were averaged
for each test serum.

Statistical assessments

The kinetics of total and isotype-specific antibody responses in each response group are
presented as means± standard error of the mean (SEM) of OD450 values. The antibody
responses were compared by an analysis of variance of repeated measures designed with a
split-plot arrangement of treatments. Pairwise comparisons of treatment and day differences
were conducted with Scheffe’s test. Interaction effects were examined with pairwise t-tests
of least square means for pre-planned comparisons of treatments at specific day levels. All
tests were considered significant at a probability ofP< 0.05.

Immunoblot assays

Purified RBCV-97TXSF-Lu15-2 (1 mg protein/ml) at a volume of 250ml was mixed with
an equal volume of 2×sample buffer [0.125 M Tris, 20% (v/v) glycerol, 10% (v/v) 2-
Mercaptoethanol, 4.6% (w/v) SDS] and heated to 100◦C for 5 min. A 500-ml volume of
this virus preparation was separated by electrophoresis in a 12% (w/v) polyacrylamide mini-
gel (BioRad Laboratories) at 100 volts for 60–75 min. Proteins in the polyacrylamide gel
were then electrophoretically transferred to pure nitrocellulose protein transfer membranes
(Schleicher & Schuell) at 100 volts for 90 min using an electrophoretic transfer cell (Mini-
Trans-Blot, BioRad Laboratories). Blotted membranes were blocked overnight at 4◦C with
10% (w/v) nonfat-dry milk in NET buffer. The blot was mounted in a 28 chamber miniblot-
ter apparatus (Miniblotter 28, Immunetics). Twenty serum samples diluted 1:5 were tested
on each blot in separate lanes for 1 h at room temperature. Again, serum 1745 and RBCV-
antibody free serum from a normal calf were included as positive and negative controls,
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respectively [34, 35]. Bound antibodies were localized after 1 h-incubation at room temper-
ature with HRPO-conjugated, affinity-purified goat anti-bovine IgG (H+L) (Jackson Im-
munoresearch Inc.) diluted 1:5,000. All dilutions were made with 10% nonfat-dry milk in
NET buffer. Antibody bound conjugate was detected using ECL Western Blot Detection Sys-
tem (Amersham Life Science Inc.). Finally, the blot was exposed to Hyperfilm (Amersham
Life Science Inc.)

Results

Isolation of RBCV and respiratory tract disease in response groups

The results of RBCV isolation and signs of respiratory tract disease were corre-
lated in Table 1. Respiratory bovine coronaviruses were isolated from nasal swab
samples of 72 cattle which had mucopurulent nasal discharges, depression and
rectal temperatures of 40◦C or above (response group 1). Fifty-six of them nasally
shed RBCV on day 0 (subgroup 1a, 1b). Sixteen additional cattle became infected
during transport (subgroup 1c) while 12 cattle discontinued virus shedding on day
7 (subgroup 1a). Four calves continued to shed RBCV on days 14 and 21. Re-
sponse group 2 contained 5 cattle which did not show adverse respiratory signs,
but secreted RBCV in nasal discharges on day 0 or day 7, and 1 of them continued
shedding through day 14. Ten cattle (response group 3) developed severe pneu-
monia and died from respiratory failure on days 7 to 11. Virus isolations on nasal
swab samples proved that 6 of them shed RBCV on days 0 and 7 while 3 had
become infected by day 7. The pneumonic lung tissues of these 9 cattle contained
RBCV infectivity reaching titers of 5×106 plaque forming units per gram. The
remaining case was RBCV isolation-negative. However, RBCV-specific genomic
portions were detected in the lungs by an RT-PCR assay [3]. Eighteen of the 95
remaining cattle did not yield RBCV from sequential nasal swab samples, eleven
(response group 4) had mild respiratory signs, while the other 7 calves remained
clinically healthy throughout the entire epizootic (response group 5).

Total and isotype-specific antibody responses to RBCV infections

Differences in the 5-week total and isotype antibody responses between subgroups
1a, 1b and 1c were not statistically significant, and findings on these 21 cattle were
combined for pertinent analyses. Overall kinetics of total and isotype antibody
responses for response group 1 and 2 did not show significant changes (Fig. 1A,
1B, 1F and 1G). Levels of total antibodies to RBCV for all surviving cattle with
active RBCV infections of the respiratory tracts (response groups 1 and 2) were
initially low with OD450 values of 0.29±0.03 and 0.33±0.05 for cattle with and
without signs of respiratory distress (Fig. 1A and 1B). The increases in these lev-
els were statistically significant between days 7 and 14, and then remained at high

c
Fig. 1. Levels of total (A, B, C, D, E) and isotype antibodies (F, G, H, I, J) to respiratory
bovine coronavirus in serum from cattle of response groups 1 (A, F), 2 (B, G), 3 (C, H), 4
(D, I) and 5 (E, J) during the 1997 shipping fever epizootic.• Total Ig and IgM;◦ IgG1; .
IgG2. Data are means± standard errors of the means (n= 21, 5, 9, 7 and 7 for A+F, B+G,
C+H, D+I, and E+J, respectively)
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OD450 values reaching 0.71±0.04 and 0.68±0.07. In comparison with those for
response group 2, OD450 values of IgM isotype for response group 1 were higher
on days 0 and 7; and these differences were statistically significant (Fig. 1F and
1G). As the IgM levels began to decline after day 7, levels of IgG1 and IgG2
isotype antibodies began to rise. Interestingly, calves of response group 1 had a
more dramatic increase in IgG2 antibody level than cattle of response group 2
during days 14 and 35.

Nine RBCV isolation-positive cattle with fatal pneumonia in response group
3 had low immune responses on day 0 as OD450 values for total Ig, IgM, IgG1,
and IgG2 antibodies were 0.12±0.02, 0.44±0.13, 0.10±0.01, and 0.33±0.06,
respectively (Fig. 1C and 1H). Increases in antibody levels were not detected
during the 7- or 8-day course of respiratory tract disease pathogenesis except for
a minimal initial IgM response.

Cattle in response group 4 started at a relatively high and stable level of total
antibody with OD450 values of 0.42±0.06, and 0.53±0.03 on days 0 and 7 which
showed statistically significant increases from response groups 1 and 2 (Fig. 1A,
1B and 1D). The total antibody levels increased to 0.59±0.05 on day 14 and were
maintained throughout the testing period. Kinetics of isotype antibody responses
reflected that of the total antibody response (Fig. 1I). Compared with cattle of
response groups 1 and 2, response group 4 cattle also had a higher IgG1 level
during the first 2 weeks, and the increases were statistically significant (Fig. 1F,
1G and 1I). The IgG2 level of response group 4 was significantly higher than that
of response group 1 during the first week, and was also substantially higher than
that of response group 2 in weeks 2 through 5.

Significant differences were not observed in the total, IgM and IgG1 antibody
responses between response groups 4 and 5 during the entire period of this epi-
zootic (Fig. 1D, 1E, 1I and 1J). However, during the time of observation, cattle
in response group 5 had the highest level of IgG2 isotype antibodies to RBCV of
any response group (Fig. 1F, 1G, 1H, 1I and 1J). The level of IgG2 for these cattle
started with an OD450value of 0.84±0.15 on day 0, increased during the following
2 weeks to OD450 value of 1.12±0.15 on day 14, and was then maintained.

Antigenicity of RBCV structural proteins

Antibody responses to specific viral structural proteins in immunoblotting assays
revealed similar reactions among the cattle of each response group, and represen-
tative results from a single calf in each response group are presented. Figure 2
illustrates the immunoblotting reactions for calf 97TXSF-105 of response group 1
which shed RBCV in nasal secretions on day 7. Antibodies directed against viral
structural proteins were not detectable in the serum samples collected on day 0
and day 7, but antibodies of rising levels reacting with HE and S were detected
on day 14. Cattle of response group 2 developed HE- and S-specific antibodies
on day 14, similar to response group 1. Sera from RBCV isolation-positive and
fatal cases of response group 3 failed to react with any of the RBCV structural
proteins (data not shown).
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Fig. 2. Representative western blot analysis of sera
from calf 97TXSF-105 of response group 1.1–6 were
probed with serum samples collected on day 0, 7, 14,
21, 28 and 35, respectively

Fig. 3. Representative western blot analysis of sera
from calf 97TXSF-88 of response group 4.1–6 were
probed with serum samples collected on day 0, 7, 14,
21, 28 and 35, respectively

Western blot analysis of serum samples collected from RBCV isolation-
negative calf 97TXSF-88 of response group 4 which had transient signs of respi-
ratory distress is presented in Fig. 3. Strong antibody bindings of HE, S, and N
viral proteins were detected on day 7 as cattle arrived in the feed yard, and were
maintained for the following 4 weeks. Antibodies directed toward M glycoprotein
were detectable at low level on day 14 and 21, waned on day 28, and disappeared
on day 35.
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Fig. 4. Representative western blot analysis of sera
from calf 97TXSF-4 of response group 5.1–6 were
probed with serum samples collected on day 0, 7, 14,
21, 28 and 35, respectively

Figure 4 presents immunoblot reactivities of sera from calf 97TXSF-4 of re-
sponse group 5 that remained clinically healthy and RBCV isolation-negative
throughout the epizootic. The sera contained high levels of specific antibodies
to HE, S and N viral proteins on day 0. The HE- or N-specific antibodies in
the subsequent serum samples began to decline 3 weeks later, while the S an-
tibody level was maintained or even increased during the next 5 weeks. The M
glycoprotein-specific band became visible on day 7, and disappeared 2 weeks
later.

Discussion

Isolation results for RBCV and overt signs of respiratory tract disease divided
the cattle of this experimentally assessed SF epizootic into 5 response groups.
The majority of cattle (response groups 1 and 2) nasally shed RBCV in the early
stage of the epizootic. Their initial total antibody levels were low and rapidly
increased during the first 2 weeks through brisk responses to HE and S antigens.
Increase in IgM appeared first, and was followed by rises in IgG1 and IgG2 as
is characteristic for primary immune responses to antigens. Nasal RBCV shed-
ding of most cattle ceased with the appearance of HE- and S-specific antibodies.
This relationship between the RBCV infections and antibody responses can be
explained by previous findings in EBCV and human respiratory coronavirus in-
fections which revealed that S and HE elicited virus-neutralizing antibodies [6,
26, 27]. These findings differed from a previous report on antibody responses of
newborn calves [10] because N-specific antibodies were not detected during the
primary immune responses to RBCV infection of these immunologically mature
cattle. Based on our virus isolation results and the detected antibody levels, we
concluded that most of these cattle became naturally infected with RBCV shortly
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before they were assembled at the OBB, and that virus spread was enhanced by
stressful conditions during transport and associated crowding.

During the primary immune responses to RBCV, a significantly higher IgM
level in the first week and a substantially higher IgG2 level for the last 3 weeks
were observed in clinically sick cattle (response group 1) as compared to cattle
without adverse respiratory signs (response group 2). Seroconversion was ob-
served in calves between the 14th and the 21st days after intranasal vaccination
with modified-live virus of infectious bovine rhinotracheitis (IBR) [16]. The neu-
tralizing activity in the serum was low at the 14th day, but increased by day 21,
and persisted for 2 or 3 months. Other investigators studied primary immune re-
sponses of seronegative cattle to IBR after intramuscular or nasal inoculations
[23, 24]. They demonstrated an early, transient and complement-dependent IgM
antibody response followed by a complement-requiring IgG antibody response.
Bovine complement component 3 (C3) activation was reported to be enhanced
by bovine respiratory syncytial virus (BRSV)-specific IgM and IgG1, but not
by IgG2 [13]. In the study of the pathogenesis of BRSV-associated disease, C3
was demonstrated in BRSV-infected parts of the lungs of dead calves, and was
suggested to play a role in causing severe dyspnoea [14]. Possibly, RBCV might
have induced adverse respiratory signs in a pathological mechanism similar to
IBR and BRSV through early primary high levels of complement-binding but
non-neutralizing antibodies on RBCV-infected cells. The precise role of comple-
ment components in the pathogenesis of RBCV-induced respiratory tract diseases
should be studied further.

Investigation of fatal cases (response group 3) revealed that the calves were
immunologically näıve to RBCV antigens. Antibody responses to any of the major
viral structural proteins could not be detected with a sensitive immunoblotting
assay. Lack of protective immunity or inability to develop HE- and S-specific
virus-neutralizing antibodies against RBCV evidently resulted in acute infections
of lungs which were further complicated byPasteurella haemolyticainfections,
leading to fatal outcomes, typical for SF pneumonia [11, 41].

Cattle with respiratory disease signs but not shedding RBCV (response group
4) had relatively high levels of total antibody against RBCV on day 0. Strong
RBCV-specific antibody responses against HE, S and N viral proteins had been
mounted by the time of their arrival in the feed yard. These findings mirrored
the late phase of a primary antibody response to the RBCV infections. Failure in
RBCV isolation attempts probably was due to sampling during declining virus
excretion. Additionally, RBCV infectivity in nasal secretions might have been
neutralized by secretory antibodies through formation of antibody-virus com-
plexes. Secretory IgA against RBCV was detected in nasal secretions of these
cattle (data not shown). These cattle may have played an important role in intro-
ducing the RBCV into the large group of susceptible cattle in this severe epizootic.

During the 5-week investigation, 7 cattle remained healthy and RBCV isola-
tion-negative (response group 5). These cattle had the highest level of IgG2
antibody against RBCV for the entire period of the epizootic, and antigens recog-
nized were HE, S and N viral proteins. The S-specific antibody was more stable
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and persistent than the HE- and N-specific antibodies during the later course of
the epizootic. However, antibody reactions with M protein were sporadically de-
tected throughout the sampling period. The serological response patterns of these
RBCV-resistant cattle characterized a secondary antibody response to RBCV,
the type of protective immunity induced by recovery from initial infection or by
effective vaccination and subsequent challenge exposure. Consequently, it was
inferred that these cattle had been infected with RBCV, and had recovered from
the infections before they were assembled at the OBB. Solid immunity from the
initial infection prevented RBCV reinfection throughout this epizootic.

A major difference observed in immune responses between RBCV isolation-
negative cattle with or without signs of respiratory tract diseases was the ratio of
IgG2 to IgG1 which was higher for clinically normal cattle than sick ones. The
bovine serum IgG1 has a shorter half-life than IgG2 [22]. Studies on the phagocy-
tosis ofStaphylococcus aureusby bovine polymorphonuclear neutrophils (PMN)
indicated that IgG2 was opsonic for bovine PMN, while IgG1 was not opsonic,
and even inhibited IgG2 opsonization [9]. In contrast to IgG2, IgG1 caused nei-
ther adherence nor phagocytosis in vitro by freshly isolated bovine neutrophils
and monocytes [18]. Competitive inhibition tests indicated that binding of IgG2
exceeded that of IgG1, although IgG1 and IgG2 shared a common Fc receptor
on bovine PMN [19, 40]. Re-exposure of cattle to IBR virus resulted in a booster
effect on serum antibodies including a transient IgM response as well as a further
rapid increase in IgG [23, 24]. However, secondary antibody responses seemed
to be less responsive to complement enhancement of the neutralizing activity. We
hypothesized that during the secondary antibody response to RBCV, free RBCV
and RBCV-infected cells were opsonized by high titers of opsonic and RBCV-
neutralizing IgG2, leading to enhanced phagocytosis, more efficient elimination
of RBCV infectivity, and thus alleviation of clinical signs of respiratory tract
disease.

Remarkable differences were observed in the antibody responses to the major
structural proteins of RBCV. The M protein was much less immunogenic than S,
HE, and N viral proteins. This observation can be explained by the low molecu-
lar mass, structural conformation and inaccessible location of M within the viral
envelope. Both HE and S were the viral antigens recognized during the initial
stages of the bovine immune response to RBCV infection. The HE glycoprotein
induced antibodies earlier than the S glycoprotein. The HE glycoprotein consists
of 2 identical, disulfide-linked glycosylated subunits with an N-terminal signal
region and a C-terminal anchorage region [15]. The S glycoprotein contains an N-
terminal signal sequence, a coil-to-coil structure, and a C-terminal hydrophobic
membrane-anchoring domain, and exists as a more stable tetramer. The structure
and abundance of the HE protein might favor exposure of epitopes with earlier
induction of antibodies. The antibody response to N protein was pronounced
during the later phase of the infection when RBCV shedding could not be de-
tected by virus isolation attempts, but a modified PCR detected RBCV genomic
regions in lung samples [3]. We hypothesized that the relatively late appearance
of N-specific antibodies might depend on the quantity of N in the virions, its
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structural binding to the RNA genome, and its internal site within the viral enve-
lope. Findings on cell-mediated immunity to mouse hepatitis virus revealed that
CD8-bearing lymphocytes influenced recovery from infection with N protein as
the major target for cytotoxic lymphocytes [29]. Therefore, HE, S and N proteins
should be the major viral antigens to be included in future vaccines for cattle to
achieve efficient prevention of RBCV as well as EBCV infections.
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