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Summary. Localization of neutralizing, serotype speci®c epitopes of infectious
bronchitis virus has been dif®cult because these epitopes are conformationally
dependent. We identi®ed amino acids involved in a serotype speci®c,
conformationally dependent epitope by analysis of the S1 gene of 13 mono-
clonal antibody-neutralization-resistant mutants. Substitutions in the predicted
amino acid sequence of these mutants were located at residues 304 and/or 386.
Most of the substitutions at residue 304 were from threonine to isoleucine,
whereas the substitutions at residue 386 were from arginine to proline,
histidine, cysteine, or tryptophan. Based on this data, it appears that AA
residues at 304 and 386 on the S1 glycoprotein are involved in a virus neutral-
izing serotype speci®c epitope.

Introduction

Avian infectious bronchitis virus (IBV), the etiologic agent of infectious
bronchitis (IB), causes an upper respiratory tract disease in chickens. In
addition to respiratory disease, IBV may cause damage to the reproductive
tract, and some strains cause nephritis and urolithiasis. Economic losses are due
to poor weight gains in broilers, egg production losses, and decreased egg
quality in layers and breeders [14]. Multiple IBV serotypes complicate vaccina-
tion programs due to a lack of cross protection between serotypes [6, 10, 21].

Infectious bronchitis virus, a member of the Coronaviridae family, contains
the following structural proteins ± a phosphorylated nucleocapsid protein, a
membrane glycoprotein, a small membrane protein, and a spike glycoprotein.
The spike glycoprotein is post-translationally cleaved into S1 and S2 subunits
[14]. The S1 subunit forms a globular structure anchored to the viral membrane
by the S2 subunit [2]. The S1 subunit is associated with virus neutralization,
hemagglutination (HA), membrane fusion, and attachment [3, 4, 15, 18, 19].



The total number of neutralizing epitopes on the S1 subunit of the spike
glycoprotein is not known. However, based on data obtained using monoclonal
antibodies (Mab), there appears to be at least three to ®ve neutralizing,
conformationally dependent epitopes on the S1 subunit in different IBV strains
[13, 15, 20]. One or more of these epitopes is a serotypic determinant [13]. For
production of molecularly engineered vaccines, it is important to localize areas
of the S1 gene encoding these conformationally dependent epitopes.

Mab-neutralization-resistant (NR) mutants have been used to identify
amino acids (AA) involved in conformationally dependent epitopes in the spike
protein of IBV [5, 12]. Based on AA substitutions in Mab-NR mutants, the S1
subunit was divided into three regions associated with neutralizing, con-
formationally dependent epitopes. These are designated I (residues 38±67), II
(residues 91±141), and III (residues 274±387) [12, 16]. Region I, corresponding
to hypervarible region (HVR) I, was associated with a M41 strain-speci®c,
neutralizing, and HA epitope due to a substitution at residue 63 [5]. Other
regions of AA variation, HVR II and residues 269±365, were associated with
neutralizing epitopes in regions II and III, respectively [12].

The objective of this study was to identify AA involved in the serotype-
speci®c, neutralizing epitope on the Arkansas (Ark) DIP strain of IBV. This
extends the work of Kant et al. [12] and Cavanagh et al. [5] by identifying
speci®c AA involved in an epitope [5] that is neutralizing and serotype speci®c.

Materials and methods

Virus strains and propagation

In this study, the Ark DPI strain was used [7]. The Ark DPI strain was adapted to replicate
in primary chicken embryo kidney cells (CEKC) by 11 serial passages (designated Arkp11)
until cytopathic effects (CPE) were observed. Virus was propagated in developing speci®c
pathogen free (SPF) chicken embryos at 9 to 11 days of incubation, or on monolayers of
primary CEKC [8, 11]. Monolayers were grown in M199 culture medium (Gibco BRL)
supplemented with 10% fetal bovine serum (Gibco BRL), 40% of F-10 nutrient mixture
(Gibco BRL), 2% tryptose phosphate broth (Gibco BRL), 2.7% of a 7.5% sodium
bicarbonate solution (Gibco BRL), 50 mM HEPES (Gibco BRL), 50mg/ml of gentamicin
sulphate (Gibco BRL), and 2.5mg/ml of fungizone (Atlanta Biologics, Norcross, GA,
USA). Monolayers were maintained with the M199 culture media supplemented as above
except 1% calf serum (Gibco BRL) was used.

Monoclonal antibody and hemagglutination inhibition test

Monoclonal antibody 1318, previously described, neutralizes the Ark serotype of IBV, and
is speci®c for a conformationally dependent epitope on the S1 subunit [13]. Hemag-
glutination inhibition (HI) tests were conducted by procedures previously described using
Mab 1318 and the Ark 99 strain obtained from SPAFAS (Norwich, CT, USA) [7].

Production of Mab-NR mutants

The experimental design was based on the work reported by Cavanagh et al. and Kant et al.
[5, 12]. Brie¯y, Mab-NR mutants were selected by mixing virus �1:4� 106 plaque forming
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units (PFU)/ml) and Mab 1318 (undiluted, 1 ml neutralizes 1� 106 PFU of virus) in equal
volumes, and incubating at 25 �C for 1 h [11]. The chorioallantoic sac of 11-day-old
developing chicken embryos was inoculated with 0.2 ml of the mixture, and incubated
for 48 h at 37 �C in a humidi®ed incubator. Chorioallantoic ¯uid was collected, and
diluted 1:100 with growth medium. Ten-fold serial dilutions of Mab 1318 were mixed
with an equal volume of chorioallantoic ¯uid, and incubated at 25 �C for 1 h. The
mixture was inoculated on a monolayer of CEKC, and incubated at 37 �C for 1 h before
the agar overlay was added. Plaques were suspended in 0.5 ml media, and stored at ÿ70 �C.
Some Mab-NR mutants were plaque-puri®ed twice before viral stocks were made in
CEKC.

Identi®cation of Mab-NR mutants

Reverse transcriptase-polymerase chain reaction (RT-PCR) with primers MIBVPCR and
NIBVPCR amplify a conserved region in IBV con®rming Mab NR mutants as IBV [1].
Reverse transcriptase-polymerase chain reaction using primers S1OLIGO50 and
S1OLIGO30, and restriction fragment length polymorphism (RFLP) of the S1 gene was
used to serotype the mutants [17].

Neutralization experiments

The titer of each Mab NR mutant and Arkp11 was determined by limiting dilution in a
CEKC microtiter assay. Ten-fold serial dilutions of the Mab-NR mutants were inoculated
(0.05 ml) onto CEKC monolayers with 0.15 ml of M199 culture medium supplemented
with 1% calf serum. The titers were determined by the reciprocal of the last dilution with
CPE.

For virus neutralization, Mab 1318 was diluted in 10-fold serial dilutions, and added to
equal volumes of 10 tissue culture infectious dose 50 (TCID50) of the mutants. The mixture
was incubated for 1 h at 25 �C, and 100mls were added to CEKC in 96-well tissue culture
plates. Monolayers were observed for 4 days for CPE.

DNA sequencing and sequence analysis

Reverse transcriptase PCR with the primers S1OLIGO50 and S1OLIGO30 was used to
amplify the S1 gene [17]. For sequencing, PCR product from six or more reactions
for each sample was combined and puri®ed using Microcon 30 columns (Amicron
Inc., Beverly, MA). Double stranded DNA was sequenced using the Prism DyeDeoxy
terminator cycle sequencing kit as recommended by the manufacturer (Applied
Biosystems, Branchburg, NJ, USA). The majority of automated sequencing was con-
ducted at the USDA Southeastern Poultry Research Facility (Athens, GA, USA),
while some was conducted at the Molecular Genetics Instrumentation Facility
University of Georgia, Athens, GA, USA). OLIGO version 4.0 (National Biosciences,
Inc., Plymouth, MN, USA) was used to design sequencing primers synthesized at the
Molecular Genetics Instrumentation Facility, to various regions within the S1 gene of
Arkp11.

Nucleic acid and predicted AA sequences of the mutants were compared to Arkp11 and
Ark DPI. Analysis of the sequence data and secondary structure predictions were con-
ducted using MacDNASIS ProV3.0 software (Hitachi Software Engineering Co., Ltd., San
Bruno, CA, USA).
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Results

Isolation, identi®cation, and neutralization of Mab-NR mutants

One hundred twenty-four Mab-NR mutants were plaque-puri®ed from CEKC.
Of these 124 mutants, 14 were plaque-puri®ed again, and ampli®ed in CEKC
for characterization.

All 14 mutants were identi®ed as IBV by RT-PCR using the primers
MIBVPCR and NIBVPCR. The expected 1.7 kilobase PCR product was
observed in mutants after RT-PCR with primers S1OLIGO50 and S1OLIGO30.
Restriction fragment length polymorphism patterns of all mutants using
restriction endonucleases BstYI, HaeIII, and XcmI were characteristic of the
Ark serotype [17]. In the microtiter neutralization assay, Mab 1318 at a dilution
of 2� 105 neutralized 10 TCID50 of Arkp11, but neutralization was not
observed for any of the mutants. Hemagglutination inhibition was not observed
for any of the mutants using Mab 1318.

Sequence analysis

Polymerase chain reaction products from the S1 gene of Ark DPI, Arkp11 and
14 Mab NR mutants were sequenced. After 11 passages in CEKC, comparison
between Ark DPI and Arkp 11 showed one point mutation at nucleotide 976
translating to an AA substitution from asparagine to tyrosine at residue 326.

Sequence comparisons between the parent virus, Arkp11, and selected
mutants, allowed for grouping of the mutants by type from A to H (Fig. 1). Type

Fig. 1. The S1 subunit is divided into three regions designated by Koch et al. [15]. Lines
represent S1 mutant types and the number of mutants each type is in parenthesis. Numbers
represent the AA substitutions observed in Mab NR mutants in which 304 and 386 were the
most frequently observed substitutions. (Type A � NR-25; Type B � NR-1 and NR-11;
Type C � NR-5, NR-9, NR-19, NR-20, NR-22, NR-28; Type D = NR-23; Type E � NR-27,

Type F � NR-26; Type G � NR-24; Type H � NR-29)
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A consisted of one mutant containing one AA substitution at residue 304. Type
B consisted of two mutants containing a single AA substitution at residue 386.
Type C consisted of six mutants containing AA substitutions at both residues
304 and 386. Types D, E, and F consisted of one mutant each, containing AA
substitutions at residues 304 and 386 along with other substitutions throughout
the S1 subunit. Types G and H consisted of one mutant each, containing an AA
substitution at residue 386 along with other substitutions throughout the S1
subunit. One mutant, NR-18, was not grouped because no AA substitutions in
the S1 subunit were observed.

The most common AA substitutions were at residues 304 and/or 386
(Table 1). Transitions caused substitutions at residue 304 replacing threonine
(Thr), uncharged polar side chain, with isoleucine (Ile), nonpolar side chain.
Transversions or transitions resulted in AA substitutions at 386. Transversions
caused substitutions are residue 386 replacing arginine (Arg), charged polar
side chain, with proline (Pro), nonpolar side chain. Transitions caused
substitutions at residue 386 replacing Arg with histidine (His), charged side
chain, or Arg with cysteine (Cys), uncharged polar side chain. Two transitions
occurred in NR-29 (type H) causing a substitution at residue 386 in which Arg
was replaced with tryptophan (Trp), nonpolar side chain.

Silent mutations were observed in several mutants at nucleotides 402, 822,
1302, 1335, 1344, 1621, 1623. No predicted N-linked glycosylation sites
(Asn-X-Thr/Ser) were gained or removed.

Table 1. Common nucleotide and AA substitutions in Mab NR mutants

Virus Nucleotide Nucleotide Residue Residue
911 1156 304 386

ArkDPI A-ACA-G T-CGT-G Q-T-A P-R-G
Arkp11 A-ACA-G T-CGT-G Q-T-A P-R-G
1 A-ACA-G T-TGT-G Q-T-A P-C-G
5 A-ATA-G T-CCT-G Q-I-A P-P-G
9 A-ATA-G T-CAT-G Q-I-A P-H-G

11 A-ACA-G T-TGT-G Q-T-A P-C-G
18 A-ACA-G T-CGT-G Q-T-A P-R-G
19 A-ATA-G T-TGT-G Q-I-A P-C-G
20 A-ATA-G T-CAT-G Q-I-A P-H-G
22 A-ATA-G T-CAT-G Q-I-A P-H-G
23 A-ATA-G T-CAT-G Q-I-A P-H-G
24 A-ACA-G T-TGT-G Q-T-A P-C-G
25 A-ATA-G T-CGT-G Q-I-A P-R-G
26 A-ATA-G T-TGT-G Q-I-A P-C-G
27 A-ATA-G T-CCT-G Q-I-A P-P-G
28 A-ATA-G T-CCT-G Q-I-A P-P-G
29 A-ACA-G T-TGG-G Q-T-A P-W-G
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Secondary structure and glycosylation

Due to the conformationally dependent nature of the epitope examined in this
study, changes in the secondary structure of Mab-NR mutants may be
important. The secondary structure for the S1 subunit was predicted by the
Robson method using DNASIS ProV3.0. Comparisons between the parent,
Arkp11, and Mab-NR mutants resulted in four different secondary structures
(data not shown). Those conformational differences were observed between
parent and mutant viruses that had either Pro, Cys, or Trp at residue 386.

None of the AA substitutions observed in Mab-NR mutants caused addition
or substraction of the 16 predicted N-linked glycosylation sites (Asn-X-Thr/
Ser) in the S1 subunit for the Ark serotype.

Discussion

Monoclonal antibody-NR mutants were isolated after mixing Mab 1318 with
Arkp11. The S1 gene was sequenced and compared to the parent virus, Arkp11.
Most of the predicted AA substitutions were observed at residues 304 and 386.

In previous research, AA substitutions in IBV Mab-NR mutants were
divided into three regions associated with neutralizing epitopes. These regions
were designated as I (residues 38±67) associated with the HVR I for the Mass
serotype and HA, II (residues 97±141) associated with the HVR II for the Mass
serotype, and III (residues 274±387) associated with a neutralizing epitope [16]
(Fig. 1). In our research, substitutions at residues 304 and 386 correspond to
region III designated by Koch et al. [15]. Since Mab 1318 is serotype-speci®c,
did not inhibit HA, and the predicted AA substitutions were observed at 304
and 386, we associate region III with a serotype-speci®c, neutralizing epitope
that is not involved in HA.

Some of the Mab-NR mutants reported herein had more than two AA
substitutions. Koch et al. [15] or [16] also reported that multiple substitutions
were observed in some of their Mab mutants.

Predicted secondary structures, used to formulate general ideas about native
protein structure, showed conformational differences between the parent virus
and mutants containing either Pro, Cys, or Try at residue 386 (data not shown).
Changes in the predicted glycosylation sites on the spike glycoprotein, which
has been reported to be important in virus attachment to host cells [22], were
not observed.

Interestingly, NR-18 did not have any AA substitutions in the S1 subunit.
Similarly, in mouse hepatitis virus (MHV) Mab-NR mutants selected with a
Mab speci®c for the S1 subunit did not have any substitutions in S1, though
some were observed in S2. In MHV, no major conformational changes were
observed, and it was suggested that residues in the S2 subunit interact with
residues in the S1 subunit [9]. Further analysis of NR-18 may provide more
information about interactions between S1 and S2 for IBV.

In summary, we identi®ed that residues 304 and 386 are involved in a virus-
neutralizing, serotype-speci®c epitope on the S1 subunit of IBV using Mab-NR
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mutants. Localization of virus-neutralizing serotype-speci®c epitopes from
other serotypes of IBV would contribute to our understanding of neutralizing
epitopes on the S1 subunit, and possibly facilitate the construction of
molecularly engineered vaccines.
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