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Abstract
The fishing and aquaculture industry is vital for global food security, yet viral diseases can result in mass fish die-off events. 
Determining the viromes of traditionally understudied species, such as fish, enhances our understanding of the global 
virosphere and the factors that influence virome composition and disease emergence. Very little is known about the viruses 
present in New Zealand’s native fish species, including the shortfin eel (Anguilla australis) and the longfin eel (Anguilla 
dieffenbachii), both of which are fished culturally by Māori (the indigenous population of New Zealand) and commercially. 
Through a total RNA metatranscriptomic analysis of longfin and shortfin eels across three different geographic locations 
in the South Island of New Zealand, we aimed to determine whether viruses had jumped between the two eel species and 
whether eel virome composition was impacted by life stage, species, and geographic location. We identified nine viral spe-
cies spanning eight different families, thereby enhancing our understanding of eel virus diversity in New Zealand and the 
host range of these viral families. Viruses of the family Flaviviridae (genus Hepacivirus) were widespread and found in both 
longfin and shortfin eels, indicative of cross-species transmission or virus-host co-divergence. Notably, both host specific-
ity and geographic location appeared to influence eel virome composition, highlighting the complex interaction between 
viruses, hosts, and their ecosystems. This study broadens our understanding of viromes in aquatic hosts and highlights the 
importance of gaining baseline knowledge of fish viral abundance and diversity, particularly in aquatic species that are fac-
ing population declines.

Introduction

Fisheries and aquaculture represent an essential global 
industry, providing a significant source of both food and 
employment worldwide [1]. In 2019, aquatic foods con-
tributed to 17% of the total animal protein globally, with 
demand increasing yearly [1]. Viruses can pose a major 
threat to the fisheries and aquaculture industry, particularly 
in high-density farmed aquatic animals such as salmonid 
species [2]. Viruses, including infectious pancreatic necro-
sis virus, cause up to 100% mortality in young salmonid 
fry [2, 3]. Nevertheless, as more of the virosphere is being 
documented, it is evident that the vast majority of viruses do 
not cause overt disease [4–6]. Consequently, it is important 
to further explore the viromes of relatively under-sampled 
species, such as fish, to enhance our understanding of fac-
tors that drive virome composition and the emergence of 
viral disease.

Aotearoa New Zealand is home to two native species 
of freshwater eel: the longfin eel (Anguilla dieffenbachii) 
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and the shortfin eel (Anguilla australis). The latter can be 
subdivided into two subspecies; the Australian Anguilla 
australis australis and the New Zealand Anguilla australis 
schmidtii, although some taxonomists do not support the 
subspecies classification [7, 8]. Based on fossil records and 
molecular clock dating analysis, eels within the Anguillidae 
evolved during the Eocene (~50–55 million years ago [mya]) 
from a marine anguilliform ancestor, while extant species 
of these eels are believed to have evolved around ~20 mya 
[9–11]. Longfin and shortfin eels form a distinct phyloge-
netic Oceanian group and a sister clade to the Atlantic group, 
comprising the European eel (Anguilla anguilla) and the 
American eel (Anguilla rostrata) [11]. Approximately 50 
years ago, a third species of eel, the Australian speckled 
longfin eel (Anguilla reinhardtii), arrived in New Zealand 
[12, 13]. While observations of this species in New Zealand 
continue to be sporadic, the Australian speckled longfin eel 
is now recognized as part of New Zealand’s fauna [13]. The 
New Zealand longfin eel is one of the largest, slowest grow-
ing, and longest-lived freshwater eels in the world, and this 
species is endemic to New Zealand [14–17]. In comparison, 
shortfin eels, although native to New Zealand, can also be 
found in eastern Australia and some Pacific islands [17].

Both eel species have a complex catadromous life cycle in 
which breeding is believed to occur in only a single spawn-
ing season when the eels migrate to the South Pacific and 
spawn [18–20]. Fertilized eggs hatch and develop into lar-
vae, which drift back towards New Zealand on ocean cur-
rents [21]. Once the larvae reach the continental shelf, they 
transform into glass eels. These transparent fish, around 6 
centimetres in length, enter freshwater habitats and become 
pigmented elvers [21], or young ‘yellow’ eels. This fresh-
water stage, which represents the longest period of an eel’s 
life, reflects its feeding phase. Years later, on reaching their 
adult size, eels go through one final transformation, termed 
silvering, associated with the initiation of puberty and the 
occurrence of a range of morphological changes that aid 
in helping them make the long journey back to the South 
Pacific Ocean to spawn [21–23].

Longfin and shortfin eels have been commercially fished 
in New Zealand since the mid-1960s [16, 24]. In addition, 
longfin and shortfin eels are important customary fish to 
Māori and support mahinga kai (the customary gathering 
of food and natural materials, and the places where those 
resources are gathered) [25, 26]. Eels are also one of New 
Zealand’s top native freshwater apex predators, contributing 
significantly to maintaining the overall health of freshwater 
ecosystems by controlling prey populations such as brown 
trout [27–29]. Based on the New Zealand Department of 
Conservations 2017 threat status assignments, longfin eels 
are classified as ‘At risk - Declining’, while shortfin eels 
are classified as ‘Not Threatened’ [30]. Consequently, with 
longfin eel populations already under pressure, infectious 

diseases pose an additional threat. Such threats will poten-
tially adversely impact fisheries and traditional cultural prac-
tices but may also change the structure of New Zealand’s 
freshwater ecosystems if longfin eel populations continue 
to decline.

To date, very few viruses have been identified infecting 
New Zealand freshwater eels. Short-finned eel ranavirus 
was isolated from a visually healthy shortfin eel imported 
to Italy from New Zealand in 1999 as part of routine screen-
ing of live imported fish [31]. While short-finned eel rana-
virus was found to cause significant mortality in northern 
pike (Esox lucius), the virus has had minimal to no impact 
on other hosts, including juvenile black bullhead catfish 
(Ameiurus melas) and shortfin eels [31–33]. Similarly, eel 
virus European X as well as a picorna-like virus were iden-
tified in seemingly healthy longfin eels in 2004 during an 
investigation into the global distribution of eel viruses [34]. 
More recently, in 2023, a virological survey in the Chatham 
Islands – a remote group of islands about 800 km east of 
New Zealand – identified flaviviruses, nanghoshaviruses, 
arenaviruses, and highly divergent tosoviruses in eels [35]. 
None of the viruses identified thus far in either longfin 
or shortfin eels have been associated with overt disease. 
Despite this, viral infections may contribute to worldwide 
eel population declines associated with decreased spawning. 
For example, European eels infected with eel virus European 
X developed anemia and hemorrhaging, dying before com-
pleting a mock 5500-km migratory distance during swim 
tunnel experiments, while uninfected eels completed the dis-
tance [36]. Viruses including eel virus European, eel virus 
European X, and anguillid herpesvirus 1, all of which have 
been detected in wild and farmed eels globally, can cause 
severe hemorrhagic disease, resulting in significant mortal-
ity, although asymptomatic cases are also common [37, 38].

While the two main eel species in New Zealand have 
partly overlapping distributions, particularly in coastal 
streams [15], they can have different habitat preferences at 
different life stages [14, 39]. Generally, shortfin eels tend to 
populate lowland waterways, while longfin eels prefer inland 
lakes and rivers [40, 41]. The apparently recent cross-spe-
cies transmission of eel tosovirus [35] between the two eel 
species also suggests that they do interact in the wild [35]. 
Additionally, following the construction of the Manapōuri 
Lake Control Structure, located at the junction of the Waiau 
and Mararoa rivers, an eel trap and transfer program was set 
up to relocate longfin and shortfin elvers from the Manapōuri 
Lake Control Structure to Lake Manapōuri and Lake Te 
Anau [42]. The program aimed to allow longfin and shortfin 
eels to reach inland lakes and rivers that would otherwise be 
blocked due to hydroelectricity infrastructure [42]. Conse-
quently, these translocations also provided the opportunity 
for longfin and shortfin eels to interact. In response to the 
limited research on eel viruses in New Zealand, we used 
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a total RNA metatranscriptomic approach to describe the 
viromes of longfin and shortfin eels across three sampling 
sites in the South Island of New Zealand. In particular, we 
aimed to investigate whether viral richness and abundance 
were associated with host phylogenetic effects, reveal if eel 
life stage influenced virome composition, and identify any 
evidence of viral host jumping between these species.

Materials and methods

Permits and animal ethics

Permits were obtained to undertake sampling of freshwa-
ter fish on Public Conservation Land (91654 [Permission 
to operate an electric-fishing device in Public Conservation 
Land]; and to allow longfin eels to be collected for research 
purposes (91655 [Research and Collection Permit]). The 
Otago Animal Ethics Committee approved the use of short-
fin eels (animal use protocol number 20-17).

Characteristics of sampled lakes

Eels were sampled from three lakes in this study: Lake Te 
Anau, Mavora Lakes, and Te Waihora/Lake Ellesmere. Lake 
Te Anau is a glacial lake located 202 m above sea level 
within Fiordland National Park [43]. Lake Te Anau and Lake 
Manapōuri together make up 73% of New Zealand’s longfin 
eel lake habitat, which is protected from commercial fishing 
[44]. There is a flow control structure located at the outlet of 
Lake Te Anau, which is regulated as part of the Manapoūri 
Power Scheme [45]. Due to this barrier, elvers are trapped at 
the Manapōuri Lake Control Structure and are translocated 
into Lake Te Anau [45].

The Mavora Lakes consist of North Mavora Lake (10.83 
km2) and South Mavora Lake (1.23 km2), which are con-
nected by 1.5 km of the Mavora River [46]. The Mavora 
Lakes are located 615 m above sea level [46]. Similar to 
Lake Te Anau, commercial fishing is not allowed, as this 
area is considered a conservation area by the Department 
of Conservation. The Manapoūri Control Structure, located 
at the junction of the Waiau and Mararoa rivers, contains 
a vertical slot fish pass to allow fish to migrate across the 
structure [45]. Additionally, elvers are also translocated 
manually from the Manapōuri Lake Control Structure into 
Lake Te Anau and Lake Manapōuri [42, 45].

In contrast to Lake Te Anau and the Mavora Lakes, Te 
Waihora/Lake Ellesmere is a shallow coastal lake that is 
often regarded as a brackish bar-type lagoon [47]. Unlike 
Lake Te Anau and the Mavora Lakes, commercial fishing 
is allowed. However, declining water quality and loss of 
macrophytes are becoming an increasing concern for Te 

Waihora/Lake Ellesmere fisheries and conservationists [48, 
49].

Eel liver and gill sample collection

In February and March 2021, 102 longfin eels were sampled 
from 22 sampling sites within the Te Anau (79 eels) and 
Mavora Lakes (23 eels) (in the Waiau and Mararoa catch-
ments respectively) in the South Island of New Zealand. 
Coarse (12 mm) and fine (4 mm) mesh fyke nets were used 
to sample lake populations. Rivers on the eastern shoreline 
of Lake Te Anau were also electric fished using a Kainga 
EFM 300 backpack electric fishing machine (NIWA Instru-
ment Systems). The machine settings were 200–400 volts 
pulsed direct current, pulse width ~3 milliseconds, and 60 
pulses per second. Captured eels were euthanised with an 
overdose of AQUI-S, and their livers were extracted. Liver 
tissue samples were submerged in 1 mL of RNAlater and 
stored at 4°C until they were sent to the University of Otago, 
Dunedin, where they were stored at -80°C until total RNA 
was extracted. It is important to note that, while Te Anau and 
the Mavora Lakes are located close to each other, there are 
no waterways that directly connect them.

In March 2021, 14 shortfin eels from Te Waihora/Lake 
Ellesmere were caught by commercial eelers using fyke nets. 
The captured eels were stored in 12°C spring water before 
being transported in aerated tanks to Dunedin, where the 
fish were transferred to 1-cubic-meter circular tanks with 
recirculating water at 10 parts per thousand salinity at an 
indoor ambient temperature (14-18°C). Prior to euthanasia, 
all 14 shortfin eels were used in a study unrelated to the pre-
sent research involving a 15-day swim experiment in which 
seven tanks were set up, each containing one yellow and one 
silver eel. Yellow and silver eels were differentiated based on 
colour, head shape, eye size, and gonad size. Following the 
conclusion of the swim experiment, the eels were euthanised 
with 0.3 g/L benzocaine. The livers and gills were harvested 
from all 14 shortfin eels. Tissue samples were submerged in 
1 mL of RNAlater and stored at -80°C until total RNA was 
extracted.

A total of 116 tissue samples were collected during 2021. 
More information regarding sample locations, species, and 
the number of individual eels caught at each sampling site 
is provided in Supplementary Table S1.

Extraction of total RNA from eel livers and gills

Frozen tissue samples stored in RNAlater were thawed, and 
approximately 30 mg of the tissue was placed in 15-mL 
RNase-free round-bottom tubes containing lysis buffer. 
The samples were homogenised for one minute using a 
TissueRuptor (QIAGEN). Total RNA was then extracted 
using an RNeasy Plus Mini Kit (QIAGEN) according to 
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the manufacturer’s protocol with minor alterations. Briefly, 
two ethanol wash steps were added to remove any residual 
guanidine contamination. Extracted RNA was quantified 
using a NanoDrop spectrophotometer. RNA was obtained 
from 111 of the 116 samples at concentrations suitable for 
downstream processing. Equal volumes of RNA from 4-13 
individuals were pooled into 14 libraries based on the sam-
pling location of longfin eels and the life stage, either yellow 
or silver, of shortfin eels (Supplementary Table S1).

RNA sequencing

Extracted RNA was subject to total RNA sequencing. 
Libraries were prepared using a Stranded Total RNA Prep 
with Ribo-Zero Plus Kit (Illumina). Paired-end 150-bp 
sequencing of the RNA libraries was performed on an Illu-
mina NovaSeq 6000 platform, using a single S4 lane.

Virome assembly and virus identification

Paired reads were trimmed and assembled de novo using 
Trinity v2.11 with the “trimmomatic” flag option and default 
settings [50]. Sequence similarity searches against a local 
copy of the NCBI nucleotide (nt) database (2021) and the 
non-redundant (nr) protein database (2021) using BLASTn 
and Diamond (BLASTx), respectively, were used to anno-
tate assembled contigs [51]. Contigs were categorised into 
higher kingdoms using the BLASTn “sskingdoms” flag 
option. Non-viral blast hits including host contigs with 
sequence similarity to viral sequences (e.g., endogenous 
viral elements) were removed from further analysis during 
manual screening. A maximum expected value of 1 × 10-10 
was used as a cutoff to filter putative viral contigs. Viral con-
tigs that had previously been identified as viral contaminants 
from laboratory components were also removed from further 
analysis [52]. Based on the BLASTn and Diamond results 
(database accessed June 2023), putative viral contigs were 
analysed using Geneious Prime 2022.2.2 to find and trans-
late open reading frames (ORFs). A nearly complete flavivi-
rus genome sequence from one library was recovered using 
this approach. This was then used as a reference to which 
raw reads from other libraries were compared against to 
obtain more complete flavivirus genome sequences using 
Bowtie2 with default settings [53].

Estimating the abundance of viral sequences

Viral abundances were estimated using the “align and 
estimate” tool in Trinity [54]. RNA-Seq by Expectation-
Maximization (RSEM) [55] was selected as the method of 
abundance estimation, Bowtie2 [53] was used as the align-
ment method, and the “prep reference” flag was enabled. To 
mitigate the impact of contamination due to index-hopping, 

viral sequences with an expected abundance of less than 
0.1% of the highest expected abundance for that virus across 
other libraries were removed from further analysis. Total 
viral abundance estimates for viruses from vertebrate hosts 
(i.e., eels) across viral families and orders were compiled 
across libraries. Estimated abundances were standardised 
to the number of paired reads per library.

Phylogenetic analysis

Partial or complete predicted amino acid sequences of the 
viral RNA-dependent RNA (RdRp) or LO7 (hexon-like 
protein) [35] of adomaviruses and the replication-associated 
protein sequences of circoviruses were aligned with those 
of representatives of the same viral family or order obtained 
from NCBI RefSeq as well as the closest BLASTp hit, using 
MAFFT v7.490 (L-INS-I algorithm) (see Supplementary 
Table S2 for lengths of sequence alignments) [56]. Poorly 
aligned regions were removed using trimAL v1.2rev59 with 
the gap threshold flag set to 0.9 [57]. IQ-TREE v1.6.12 was 
used to construct a maximum-likelihood phylogenetic tree 
for each viral species/family/order [58]. The LG amino 
acid substitution model was selected with 1000 ultra-
fast bootstrapping replicates for all phylogenetic trees. 
Phylogenetic trees were annotated using Figtree v1.4.4 [59]. 
Only those viruses that appeared to be directly infecting the 
eels, based on their phylogenetic position on the tree, were 
analysed. All other invertebrate and aquatic-associated 
viruses that were closely related to and phylogenetically 
positioned near previously described fish metagenome 
viruses or invertebrate viruses were omitted from further 
analysis.

Analysis of alpha diversity on virome composition

All statistical analysis plots were created using RStudio 
v2021.09.2 with the tidyverse ggplot2 package [60]. Viral 
family abundance estimates were first standardised accord-
ing to the number of raw reads in each library. Standard-
ised viral family abundance estimates were then normalised 
across each library, and a heatmap was created.

Using the diversity analysis function, which is part of 
the vegan package [61], the Simpson index (Gini-Simpson), 
Richness, and Shannon index were selected as the index 
methods to measure alpha diversity of viral-family-stand-
ardised abundance estimates across eel species and location 
(Lake Te Anau and Mavora Lakes). Welch's t-test was used, 
assuming normal distribution but unequal variance, to deter-
mine whether there was a significant difference (p < 0.05) 
in virome alpha diversity between locations (Lake Te Anau 
and Mavora Lakes).

To analyse whether location affected the virome com-
position of longfin eels, a distance matrix of standardised 
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eel-family-level virome abundances was created using the 
vegedist function from the vegan package with Bray-Curtis 
dissimilarity as the distance measure [61]. The metaMDS 
function of the vegan package was used to perform multi-
variate ordination using non-metric multidimensional scal-
ing (NMDS) on the distance matrix [61]. NMDS data points 
were plotted and coloured by location using ggplot2. The 
adonis2 function in the vegan package was used to complete 
a permutational multivariate analysis of variance (PER-
MANOVA) to test for statistical significance (p < 0.05) of 
the effect of location on virome beta diversity [61].

Full R code and formatted data used in this study are 
available on GitHub (see Data availability).

Viral nomenclature

A virus was arbitrarily considered a member of a new spe-
cies if it shared <90% amino acid sequence identity with 
the most conserved region (i.e. RdRp/polymerase, LO7, and 
replication-associated protein sequences) [62, 63] unless 
otherwise stated. For putative novel virus sequences, we 

have provided a proposed virus name (subject to formal 
verification by the International Committee on Taxonomy 
of Viruses [ICTV]).

Results

Total RNA from 111 eel samples was pooled into 14 rep-
resentative samples based on eel species, sample location 
(of longfin eels), and life stage (of shortfin eels) (see Fig. 1 
and Supplementary Table S1). The number of sequencing 
reads generated from the 14 eel metatranscriptomic libraries 
varied between 164 and 256 million paired-end reads per 
library (Fig. 1b).

Viral abundance and diversity

Analysis of eel metatranscriptomes revealed viral sequences 
spanning eight different viral families (Fig. 2). Notably, 
viral sequences from the family Flaviviridae (genus 
Hepacivirus) were found in nearly all samples (12 of the 
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Fig. 1   a Cladogram (left) illustrating the evolutionary relationships 
of shortfin eels (A. australis schmidtii) and longfin eels (A. dieffen-
bachii) within the family Anguillidae (adapted from Minegishi et al., 
2005 [11]). Map of New Zealand (right) indicating the eel sampling 

locations. Eel illustrations were provided by Hamish Thompson and 
were used with permission. b Total paired-end sequencing reads from 
eel metatranscriptome libraries
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14 libraries). Generally speaking, Flaviviridae sequences 
were highly abundant in longfin eels sampled from Lake 
Te Anau, with 7 out of the 12 eel libraries having a relative 
Flaviviridae sequence abundance of greater than 50% 
of the total viral abundance within each library. Besides 
sequences from the Flaviviridae, viral families were distinct 
between silver and yellow shortfin eels from Te Waihora/
Lake Ellesmere.

Eel RNA viruses

Rhabdoviridae

Shortfin eel rhabdovirus was identified in a library of 
shortfin eels from Te Waihora/Lake Ellesmere. The partial 
sequence of the shortfin eel rhabdovirus L protein, contain-
ing the RdRp, shared 56.31% amino acid sequence identity 
with its closest known genetic relative, Wuhan redfin culter 
dimarhabodovirus (YP_010799340.1), which was identified 
previously in a virological survey of healthy predatory carp 
(Chanodichthys erythropterus) from China (Fig. 3a, Sup-
plementary Table S2) [5].

Nanghoshaviridae

Longfin eel nanghoshavirus was identified in three librar-
ies of longfin eels from Lake Te Anau and Mavora Lakes 
(Fig. 3b). The partial longfin eel nanghoshavirus ORF1b 
protein, containing the RdRp, shared 50.6% amino acid 
sequence identity with its closest known genetic relative, 
shortfin eel nanghoshavirus 2, which was identified in seem-
ingly healthy shortfin eels from the Chatham Islands, New 
Zealand, in 2023 (Supplementary Table S2) [5, 35].

Caliciviridae

Five contigs within the family Caliciviridae were identi-
fied in longfin eel samples from Lake Te Anau and Mavora 
Lakes. All five contigs shared >90% amino acid sequence 
identity with each other, suggesting that they likely represent 
the same viral species, and they were therefore provisionally 
named longfin eel calicivirus (Fig. 3c). A partial sequence 
of the longfin eel calicivirus ORF1 polyprotein, contain-
ing the RdRp, shared 77.31% amino acid sequence identity 
with Atlantic salmon calicivirus (AHX24377.1), which was 
identified previously in Atlantic salmon (Salmo salar) (Sup-
plementary Table S2) where it was associated with systemic 
infection [64, 65].

Astroviridae

A single sequence from a member of the family Astroviridae 
was identified in a library of longfin eels sampled from Lake 
Te Anau (Fig. 3d). This virus was provisionally named long-
fin eel astrovirus. A partial longfin eel astrovirus ORF1ab 
polyprotein, containing the RdRp, shared 67% amino acid 
sequence identity with its closest relative, bottlenose dolphin 
astrovirus 6 (ADX97514.1), which was identified previously 
in faeces of a common bottlenose dolphin (Tursiops trun-
cates) and is likely associated with fish rather than dolphins 
(Supplementary Table S2) [66].

Hepeviridae

Two sequences comprising a nearly full-length genome 
sequence of a member of the family Hepeviridae were iden-
tified in longfin eels from Lake Te Anau and Mavora Lakes. 

Fig. 2   Heatmap of the rela-
tive abundance (%) of viruses 
belonging to different families, 
normalised by eel library. Infor-
mation regarding pooled library 
location, number of individuals 
within each pool (n), and eel 
species is provided, as well as 
the life stage (silver or yellow) 
of shortfin eels
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The two partial non-structural polyprotein viral sequences, 
containing the RdRp,  shared >90% amino acid similarity 
with each other and were provisionally named longfin eel 
hepevirus (Fig. 3e). The nearly full-length longfin eel hepe-
virus non-structural polyprotein was most closely related to 
that of Nanhai ghost shark hepevirus (76.12% amino acid 
sequence identity, AVM87559.1), while the other partial 
longfin eel hepevirus non-structural polyprotein shared 
65.59% amino acid sequence identity with that of Wenling 
moray eel hepevirus (65.59% amino acid sequence identity, 
AVM87558.1), which was identified previously in virologi-
cal surveys of a healthy species of ghost shark (Chimaera 
sp.) and moray eels (Gymnothorax reticularis), respectively 
(Supplementary Table S2) [5].

Flaviviridae

Ten partial flavivirus sequences were found in longfin eels 
from Te Anau and Mavora Lakes. All 10 partial polyprotein 
sequences, containing the RdRp, shared >90% sequence 
identity with each other. This virus, provisionally named 
longfin eel flavivirus is most closely related to members of 
the genus Hepacivirus. The partial longfin eel flavivirus poly-
protein shared 33.32% amino acid sequence identity with that 
of Wenling moray eel hepacivirus (AVM87555.1), which was 
identified previously in healthy moray eels (Supplementary 
Table S2) [5]. A nearly full-length genome sequence (8066 
nucleotides [nt]) of this virus was determined (Fig. 3f).

In addition to longfin eel flavivirus, two closely related 
partial Flaviviridae contigs were identified in shortfin eels 
from Te Waihora/Lake Ellesmere, and this virus was named 
shortfin eel flavivirus 1. The viruses from these New Zea-
land eel species formed a monophyletic group (Fig. 3f). Both 
of these partial flavivirus polyprotein sequences, containing 
the RdRp, shared ~45% amino acid sequence identity with 
that of Wenling moray eel hepacivirus. It is important to 
note, however, that while we have assigned these contigs to 
the same virus, they did not overlap and therefore could have 
been derived from different viruses.

Eel DNA viruses

Adomaviridae

A partial longfin eel adomavirus LO7 (hexon-like protein) 
[35] gene sequence was identified in longfin eels from Lake 
Te Anau, and the encoded protein was most closely related 
(56.14% amino acid sequence identity) to that of catfish 
adomavirus (DAC81155.1) previously identified in a viro-
logical survey of healthy yellowhead catfish (Tachysurus 
fulvidraco) (Fig. 4a, Supplementary Table S2) [67].

Circoviridae

A full-length circovirus genome was identified in a library 
of longfin eels from Lake Te Anau (Fig. 4b). The full-length 
replication-associated protein of this virus shared 91.96% 
amino acid sequence identity with the replication-associ-
ated protein of Anguilla anguilla circovirus (APZ87906.1), 
which was identified previously in sabre carp (Pelecus cul-
tratus) and European eels (A. anguilla) from Hungary that 
showed no signs of disease (Supplementary Table S2) [68]. 
The full genome of the circovirus found in longfin eels con-
sisted of 2,139 nt, which is similar to the 1,975-nt genome 
of the previously identified Anguilla anguilla circovirus 
(KU951580.1). These viruses share 96.28% nt sequence 
identity, indicating that the same virus infects longfin eels, 
sabre carp, and European eels. Consequently, we have 
named this virus "Anguilla anguilla circovirus" (Fig. 4b).

Factors shaping the diversity of eel viromes

We next investigated whether alpha diversity, measured 
using the Gini-Simpson index (which accounts for both viral 
richness and abundance, but weighs more importance on 
common species), is influenced by host phylogenetic effects 
(i.e., eel species) or can be better explained by their environ-
ment (i.e., sampling location). Shortfin eel viromes appeared 
to be more diverse than longfin eel viromes, although as 
there were only two pooled samples of shortfin eels, statis-
tical analysis could not be performed (Fig. 5a). Similarly, 
Lake Te Anau longfin eel viromes were more diverse, with 
a mean Gini-Simpson index of 0.2 compared to 0.06 for 
Mavora longfin eels (Welch’s t-test, p = 0.048, 95% con-
fidence interval, 0.001- 0.29, degrees of freedom, 9.9706) 
(Fig. 5b). Additionally, the virome composition of longfin 
eels from Lake Te Anau and Mavora Lakes were signifi-
cantly different (permutational multivariate analysis of vari-
ance, R2 = 0.215; p = 0.011) (Fig. 5c). Despite this, there 
was no significant difference in viral richness (Welch’s t-test, 
p = 0.91, 95% confidence interval, -3.546401 - 3.768623, 
degrees of freedom = 2.1122) or alpha diversity, when 
measured using the Shannon index (Welch’s t-test, p = 0.09, 
confidence interval, -0.04070364 – 0.43717834, degrees of 
freedom = 7.3003), of longfin eels between sampling loca-
tions (Lake Te Anau and Mavora Lakes) (Supplementary 
Fig. S1). We were unable to statistically measure if host 
species influenced richness or alpha diversity, measured by 
the Shannon index, as there were only two pooled samples 
of shortfin eels (Supplementary Fig. S1). Nevertheless, it 
appeared that shortfin eels had a higher overall richness and 
alpha diversity, measured by the Shannon index, compared 
to longfin eels (Supplementary Fig. S1). We were also una-
ble to statistically test if the life stage of shortfin eels affected 
virome composition due to the small sample size.
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Discussion

We investigated the viromes of longfin and shortfin eels 
caught in three locations across the South Island of New 
Zealand, and in doing so, identified putative viruses belong-
ing to eight different viral families, significantly enhancing 
our understanding of eel virus diversity in New Zealand. 

This study also expanded our understanding of the host range 
of these viruses. Notably, eight of the nine viral sequences 
identified here represented putative novel viruses, further 
highlighting the vast potential to discover new viruses within 
fishes [5, 69]. Fish viruses have historically been understud-
ied, particularly given that fishes account for greater than 
50% of the total vertebrate diversity [70]. Like in previous 
work [5, 69], the eel viruses identified here clustered with 
fish viruses, indicating long-term viral-host co-evolution 
among this class, at least on a broad scale.

Flaviviruses (in particular, hepaciviruses) were highly 
prevalent, with three new putative viruses identified. All 
longfin eel flaviviruses were genetically homogenous, 
with >90% amino acid sequence identity, when compar-
ing across the conserved polymerase region, and formed 
a sister clade to shortfin eel flaviviruses, which is perhaps 
indicative of cross-species viral transmission or viral codi-
vergence, although a broader sampling of eels of the family 

Fig. 3   Maximum-likelihood phylogenetic trees of representative viral 
sequences containing the RdRp from the families (a) Rhabdoviri-
dae, (b) Nanghoshaviridae (order Nidovirales), (c) Caliciviridae, (d) 
Astroviridae, (e) Hepeviridae, and (f) Flaviviridae (genus Hepacivi-
rus). The eel viruses identified in this study are shown in bold, and 
known genera and subfamilies are highlighted. Branches are scaled 
to the number of amino acid substitutions per site. All phylogenetic 
trees were rooted at the midpoint. Nodes with ultrafast bootstrap 
values of >70% are indicated by a black dot. If the near-full-length 
genome sequence of a virus was determined, its genome organisation 
is shown below the corresponding phylogenetic tree
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Fig. 4   Maximum-likelihood phylogenetic trees of representative viral 
sequences containing (a) the LO7 gene from a member of the fam-
ily Adomaviridae and (b) replication-associated protein gene from 
a member of the family Circoviridae. The eel viruses identified in 
this study are shown in bold, and known genera and subfamilies are 
highlighted. Branches are scaled to the number of amino acid substi-

tutions per site. All phylogenetic trees were rooted at the midpoint. 
Nodes with ultrafast bootstrap values >70% are indicated by a black 
dot. In the lower panel, the genome organisation of the previously 
identified Anguilla anguilla circovirus (KU951580.1) and that of the 
Anguilla anguilla circovirus genome found in longfin eels are shown
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Anguillidae is necessary to confirm such patterns. Hepaci-
viruses, once thought to only infect mammals, have a broad 
host range and are typically associated with liver disease 
in humans [71]. Despite this, as our knowledge of hepaci-
virus diversity has expanded, disease-causing viruses are 
becoming less frequently detected [72–74]. The discovery 
of hepaciviruses in New Zealand’s eels further expands our 
understanding of the host range and genetic diversity of 
these viruses.

Viruses such as Eel virus European, Eel virus European 
X, and Anguillid herpesvirus 1 have been detected in wild 
and farmed eels across the world and cause severe hemor-
rhagic disease, resulting in significant mortality [37, 38]. 
While viruses of the families Birnaviridae and Alloherpes-
viridae were not found in this study of New Zealand’s eel 
viruses, we identified a rhabdovirus in shortfin eels caught 
in Te Waihora/Lake Ellesmere. This virus was most closely 
related to Wuhan redfin culter dimarhabodovirus, which 
was identified previously in predatory carp from China, 
and clustered phylogenetically with Porure dimarhabdovi-
rus 1 identified in New Zealand common smelt (Retropinna 
retropinna). Based on their phylogenetic position, these 
viruses fell within the subfamily Alpharhabdovirinae, along-
side Eel virus European X. While there is no evidence that 

shortfin eel rhabdovirus, which was identified in seemingly 
healthy shortfin eels, causes disease in these hosts, it is use-
ful to understand the baseline diversity and abundance of 
these viruses to better identify and mitigate future disease 
outbreaks.

We have further expanded the known host range of mem-
bers of the newly created viral family Nanghoshaviridae, 
identifying longfin eel nanghoshavirus in samples from both 
Lake Te Anau and Mavora Lakes. Currently, this family only 
includes shortfin eel nanghoshaviruses 1 and 2 sampled from 
a remote New Zealand Chatham Island lake [35], Nanhai ghost 
shark arterivirus identified in ghost sharks in China [5], and 
Neolamprologus nanghoshavirus identified in a species of 
cichlid fish from Tanzania [75]. Very little is known about the 
members of the family Nanghoshaviridae, which were only 
formally classified in 2019. This family belongs to the subor-
der Nanidovirineae in the order Nidovirales [76]. It should be 
noted that none of the previously discovered nanghoshaviruses 
are known to cause disease, and all of the nanghoshaviruses 
discovered so far have also been identified in fish [35, 75, 76], 
indicating a possible marine origin of nanghoshaviruses, and 
potentially of the order Nidovirales in general [77].

The shortfin eels examined here were primarily used in 
a larger experiment not associated with this study before 

Fig. 5   Alpha and beta diversity 
analysis of eel family-level 
viromes. (Gini-Simpson Index 
boxplots of eel viruses across 
eel libraries in relation to (a) eel 
species (b) and location. Sig-
nificant differences in the Gini-
Simpson index, measured using 
Welch’s t-test (p < 0.05), are 
denoted by an asterisk. (c) Non-
metric multidimensional scaling 
(NMDS) plot investigating 
location on family-level virome 
composition. The NMDS plot 
was based on Bray-Curtis dis-
similarities and was coloured by 
location. The effect of location 
on virome composition of 
longfin eels was measured using 
a PERMANOVA
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tissues were sampled for RNA sequencing. During this time, 
there was the potential for viruses to be transmitted between 
co-housed silvering and yellow shortfin eels, particularly 
since the experimental manipulation conceivably induced 
stress in the animals. Stressed fish are known to release 
cortisol, suppressing the inflammatory response and thus 
increasing susceptibility to viral infection [78]. Addition-
ally, stress has also been associated with lowering antibody 
responses and impairing antiviral innate immune responses, 
further increasing susceptibility to disease [78, 79]. Never-
theless, aside from flavivirus sequences that were identified 
in both silvering and yellow shortfin eels, which may indi-
cate viral codivergence rather than cross-species virus trans-
mission, there is no other evidence of viral transfer between 
the two shortfin eel samples. Indeed, the viral richness was 
similar between longfin and shortfin eels, indicating that that 
the differences in sampling and handling strategy likely had 
minimal effect on the virome composition overall.

Virome composition is often driven by host specificity 
as well as environmental factors [35, 69]. For example, the 
diversity of viruses in Chatham Island fishes was found to be 
significantly host-specific [35]. Comparatively, analysis of 
the Pacific Ocean Virome dataset identified environmental 
factors, including geographic region, depth, and proximity 
to the shore, that significantly influence virome composition 
[80]. Similarly, we found that both host species specificity 
and location (of longfin eels) appeared to be important for 
shaping virome composition, although this requires further 
scrutiny because of the small sample sizes involved. Con-
sequently, further sampling is required to obtain a better 
understanding of the extent to which these factors influence 
virome composition. However, it is particularly interesting 
that the location of longfin eels in this study significantly 
influenced virome composition, given that elvers from the 
Manapōuri Lake Control Structure are translocated manually 
to Lake Te Anau [42, 45]. Nevertheless, given that longfin 
eels can spend 20-90 years in their freshwater environments 
before migrating to the Pacific Ocean [81, 82], it is perhaps 
unsurprising that viruses in these hosts evolve location-spe-
cific differences, even with species translocations. It will be 
valuable in the future to further explore location-specific 
differences between the lakes and determine whether char-
acteristics such as lake temperature, salinity, depth, and diet 
also influence eel virome composition.

We have expanded our knowledge of the viruses in New 
Zealand’s longfin and shortfin eels. Both host specificity 
and geography seemingly contribute to virome composition, 
highlighting the complex interaction between viruses, their 
hosts, and their ecosystems. These insights help broaden 
our understanding of aquatic host viromes, emphasising the 
importance of such studies to reveal the viromes of healthy 
species. This information can be used in the future alongside 
other more-extensive pathological studies to form a baseline 

to compare changes in virus diversity during disease out-
breaks or translocations of species or to monitor the effect 
climate change has on virome composition over time.
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