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Introduction

In 1966, turkeys in the United States were the source of an 
avian influenza virus (AIV) H9N2 strain [1], which then 
split into Eurasian and American lineages [2]. According 
to Lee and Song [3], the Eurasian group has been further 
divided into the Korean lineage, the Y280 lineage, and the 
G1-like lineage, with the G1-like lineage being the most 
prevalent of these [3, 4].

In 2010, H9N2 G1-like lineages in Egypt were reported 
[5–7], where the virus subsequently became prevalent in 
domestic poultry. Based on phylogenetic analysis, Egyptian 
H9N2 viruses are classified into two genotypes: genotype 
I, which was found in Egyptian poultry between 2010 and 
2013, and genotype II, which emerged in 2014 as a result of 
reassortment between AIV H9N2 G1 and AIV H9N2 Eur-
asian strains from wild birds [8, 9].

Influenza A virus is a member of the family Orthomyxo-
viridae. Its genome consists of eight dsRNA segments that 
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Abstract
H9N2 avian influenza viruses (AIVs) affect both poultry and humans on a global level, and they are especially prevalent in 
Egypt. In this study, we sequenced the entire genome of AIV H9N2 isolated from chickens in Egypt in 2021, using next-
generation sequencing (NGS) technology. Phylogenetic analysis of the resulting sequences showed that the studied strain 
was generally monophyletic and grouped within the G1 sublineage of the Eurasian lineage. Four segments (polymerase 
basic 2 [PB2], polymerase basic 1 [PB1], polymerase acidic [PA], and non-structural [NS]) were related to Egyptian 
genotype II, while the nucleoprotein (NP), neuraminidase (NA), matrix (M), and haemagglutinin (HA) segments were 
related to Egyptian genotype I. Molecular analysis revealed that HA protein contained amino acid residues (191H and 
234L) that suggested a predilection for attaching to human-like receptors. The antigenic sites of HA had two nonsynony-
mous mutations: V194I at antigenic site A and M40K at antigenic site B. Furthermore, the R403W and S372A mutations, 
which have been observed in H3N2 and H2N2 strains that caused human pandemics, were found in the NA protein of 
the detected strain. The internal proteins contained virulence markers: 504V in the PB2 protein, 622G, 436Y, 207K, and 
677T in the PB1 protein, 127V, 550L, and 672L in PA protein, and 64F and 69P in the M protein. These results show that 
the detected strain had undergone intrasubtype reassortment. Furthermore, it contains changes in the viral proteins that 
make it more likely to be virulent, raising a question about the tendency of AIV H9N2 to become highly pathogenic in 
the future for both poultry and humans.
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encode at least 10 viral proteins and are arranged in ascend-
ing order as follows: polymerase basic protein 2 (PB2), 
polymerase basic protein 1 (PB1), polymerase acidic protein 
(PA), hemagglutinin (HA), nucleoprotein (NP), neuramini-
dase (NA), matrix proteins (M1 and M2), and non-structural 
proteins (NS1 and NS2 or nuclear export protein [NEP]) 
[10].

Despite being categorized as low-pathogenicity avian 
influenza viruses (LPAIs), H9 viruses have been known to 
exhibit a highly pathogenic phenotype in both laboratory 
and field settings due to mutations that increase virulence 
and lethality [11, 12]. Due to their zoonotic potential, H9N2 
viruses also represent a threat to human health worldwide, 
especially since multiple human infections have already 
been reported [13–16].​ Currently, the capability of H9N2 
viruses to contribute their genes to other AIVs that can cross 
the species barrier to infect humans, such as zoonotic H5N6 
[17] and H7N9 [18], is of particular concern worldwide.

Numerous investigations have been carried out to iden-
tify viral factors that are linked to increased pathogenicity, 
virulence, and transmissibility. Specifically, genetic changes 
associated with airborne transmissibility and adaptation to 
replication in mammalian hosts are of particular importance 
[19]. Changes that affect viral entry, viral polymerase activ-
ity, and the host response are the main factors determining 
virulence, and they also affect the efficiency of infection and 
spread to new hosts [20].

Influenza viruses use both reassortment and individual 
mutations to adapt to their hosts [21]. Since their first dis-
covery in 1966, H9N2 viruses have undergone evolution 
and reassortment with other viral subtypes, resulting in a 
significant increase in their genetic diversity [22]. Accord-
ing to Pusch and Suarez [23], only the G1 and Y280/G9 
lineages of H9N2 viruses have been verified to be infectious 
in humans.​

The current investigation was carried out in order to trace 
the evolution of Egyptian H9N2 viruses and to determine 
whether new reassortment events that increase the zoonotic 
potential and virulence of these viruses are likely to occur.​

Materials and methods

Sample collection

One hundred oropharyngeal and cloacal swabs were col-
lected from birds with respiratory manifestations from 
Egyptian commercial poultry farms (chickens, ducks, and 
turkeys) with a 15–25% mortality rate during the period 
from 2020 to 2021. A total of 5 to 10 individual oropharyn-
geal and/or cloacal swabs collected from each farm were 
pooled together and treated as one sample. The samples were 

obtained from 10 Egyptian governorates (Bahira, Dakahlia, 
Damietta, Giza, Gharbia, Ismailia, Kafr El Sheikh, Menia, 
Menoufia, and Sharkia). The epidemiological data of the 
collected samples are provided in Supplementary Table S1.

Molecular detection and virus isolation

Viral RNA was extracted using a QIAamp Viral RNA Mini 
Kit (QIAGEN, Hilden, Germany) according to the manu-
facturer’s instructions in a class 2 biological safety cabinet 
(SterilGARD, USA). The RNA purity was measured spec-
trophotometrically using a NanoDrop 2000/2000c instru-
ment (Thermo Fisher Scientific, Waltham, MA, USA). 
The purity of the extracted viral RNA (A260/A280 ratio) 
ranged from 1.7 to 2. The extracted RNAs were subjected to 
quantitative reverse transcription polymerase chain reaction 
(RT-qPCR) to test for the presence of the influenza A virus 
matrix (M) gene [24].

Following the standard procedures of the World Orga-
nization for Animal Health (OIE) diagnostic handbook, 
positive samples were inoculated into the allantoic cavi-
ties of 9- to 11-day-old specific-pathogen-free embryonated 
chicken eggs. About 48 hours after inoculation, allantoic 
fluids were collected, viral RNA was extracted, and RT-
PCR was performed for detection of the H5, H9, N8, and 
N2 genes [25, 26].

Whole-genome sequencing

Amplicons of each genome segment of an isolate of the 
H9N2 virus were generated using a SuperScript IV One-
Step RT-PCR Kit with Platinum SuperFi DNA Polymerase. 
The amplicons were sequenced using Ion Torrent next-gen-
eration sequencing (NGS) technology (the Ion PGM System 
with an Ion 316 chip). The reads were analyzed using the 
Geneious Prime work package (Biomatters, Auckland, New 
Zealand) as follows: The primer sequences were removed 
from the raw reads using the “Trim Ends” Geneious Prime 
plugin. Next, the trimmed reads were mapped using bow-
tie2, implemented in Geneious Prime, against a reference 
whole-genome sequence. The resulting sequences were 
submitted to the GenBank database. The strain was desig-
nated A/chicken/Egypt/Menoufia/2021, and the accession 
numbers are listed in Supplementary Table S2. Whole-
genome sequences of H9N2 viruses were downloaded from 
the NCBI database, and a multiple alignment was made for 
each genome segment using the Clustal W multiple align-
ment accessory application in BioEdit software version 
7.2.5 (BioEdit Company, Manchester, UK).
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Phylogenetic profiling and molecular 
characterization

The sequence alignments were used to create a phyloge-
netic tree by the maximum-likelihood method in MEGA11 
software [27], employing the general time-reversible (GTR) 
nucleotide substitution model. The robustness of the tree 
branches was estimated using 1000 bootstrap replicates. 
The antigenic sites and the genetic signature markers asso-
ciated with virulence, host tropism, enhanced replication, 
and drug resistance were identified using the aligned amino 
acid sequences. BioEdit version 7.2.5 was used to compare 
nucleotide and protein sequences. Potential glycosylation 
sites were identified using the NetN-Glyc 1.0 server [28]. 
SWISS-MODEL was used to model the HA protein struc-
tures of the Egyptian H9N2 virus and the parental Egyptian 
AIV H9N2 virus (A/chicken/Egypt/S4456B/2011) [29], and 
their structures were visualized using PyMOL 1.1 (DeLano 
Scientific LLC).

Results

Sample screening and virus detection

RT-qPCR testing for the avian influenza virus M gene 
revealed that the virus was present on 23 farms (23%). 
Three of the positive samples, from farms in Menoufia gov-
ernorate, contained subtype H9N2. The chickens on these 
three farms had been vaccinated with a killed H9 vaccine 
when they were three days old and with an H5 (clade 2.2.1) 
vaccine when they were eight days old. The mortality rate 
ranged from 20–22%. Amplification curves and conven-
tional PCR results are shown in Supplementary Figures S1a 
and b, S2, and S3.

Phylogenetic profiling and sequence similarity of 
H9N2 isolates

Phylogenetic analysis based on the surface genes (HA 
and NA) of the AIV H9N2 virus showed that it belonged 
to the G1 sublineage of the Eurasian lineage. Our isolate 
was monophyletic with recent Egyptian AIV H9N2 iso-
lates in the GenBank database, such as A/chicken/Egypt/
A19610/2021 and A/chicken/Egypt/N19766D/2021 
(Fig. 1), with 99% nucleotide sequence identity in the HA 
and NA genes (Table  1). However, it was was relatively 
distant from the parental Egyptian AIV H9N2 virus (A/
chicken/Egypt/S4456B/2011) (Fig. 1), with 93% nucleotide 
sequence identity in the HA gene and 93.5% identity in the 
NA gene (Table 1). The internal genes (PB2, PB1, PA, NP, 
M, and NS) of our AIV H9N2 isolate grouped with the G1 

sublineage of the Eurasian lineage (Fig. 1), with 99% nucle-
otide sequence identity to recently published PB1, PB2, M, 
NP, and NS sequences of Egyptian AIV H9N2 viruses and 
97% identity in the PA gene (Table 1). The parental Egyp-
tian AIV H9N2 virus (A/chicken/Egypt/S4456B/2011) was 
86%, 89%, 89.55, 94%, 96%, and 89.5% identical in the 
PB2, PB1, Pa, NP, M, and NS gene, respectively (Table 1). 
The PB2, PB1, PA, and NS genes showed a close relation-
ship to isolates of Egyptian genotype II (Fig. 1), while the 
HA, NP, NA, and M genes were more closely related to iso-
lates of Egyptian genotype I (Fig. 1).

Molecular characterization

The Egyptian AIV H9N2 isolate from this study has a 
monobasic motif (PARSSRGLFG) at the cleavage site of 
the HA protein, which resembles those found in low-patho-
genicity AIVs. It also has several amino acid residues in the 
receptor-binding site (RBS) of the HA that are associated 
with a preference for binding to human-like α2,6 sialic acid 
(191H, 232N, 234L, 235I, and 236G) (Fig. 2). In addition, 
when compared with the parental Egyptian H9N2 virus, the 
studied strain was found to have gained two substitutions 
in antigenic sites: V194I in antigenic site A and M40K in 
antigenic site B (Fig. 2). Moreover, the HA had seven poten-
tial N-linked glycosylation sites at positions 29 (NSTE), 
82 (NPSC), 105 (NGTC), 141 (NVTY), 298(NSTL), 
305(NISK), and 492 (NGTY).

Genetic analysis of the region encoding the three loops 
that form the hemadsorption site on the NA gene revealed 
the presence of three amino acid substitutions: S372A (N2 
numbering) in the first loop and I402N and R403W (N2 
numbering) in the second loop (Fig.  3) when compared 
with the A/Quail/Hong Kong/G1/97 prototype (Table 2). In 
addition, the NA gene has six strong N-linked glycosylation 
sites at positions 44 (NTST), 61 (NITE), 69 (NGTI), 86 
(NWSK), 146 (NGTI), and 234 (NGTC). The polymerase 
complex (PB2, PB1, and PA) showed the presence of ten 
markers related to enhanced virulence: V at amino acid 
position 504 in PB2, 13P, 436Y, 207K, 677T, and 622G in 
PB1, V at position 127, D at position 383 and L at positions 
550 and 672 in PA (Table 3), and three mammalian prefer-
ence markers: K318R and M64T substitutions in PB2 and D 
at position 382 in PA.

The M protein was found to have two virulence markers 
– F at amino acid position 64 and P at position 69 (Table 3) 
– and three markers associated with mammalian host-spec-
ificity: N at position 20, V at position 28, and F at position 
55. The NS protein was found to have S at amino acid posi-
tion 42 and A at position 149, both of which are virulence 
markers (Table 3). The NP protein was found to have Q at 
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Fig. 1  Phylogenetic trees of the eight genome segments (A-H, respec-
tively), showing the evolutionary relationship of the studied isolate 
(blue circle) to reference AIVs with sequences in the GenBank data-

base. The trees were constructed using the maximum-likelihood (ML) 
method in MEGA 11
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(H5N2) between the Egyptian H5N8 and H9N2 viruses has 
been reported [31, 32]. Furthermore, the zoonotic potential 
of H9N2 viruses has already been established, with at least 
72 verified cases in humans [16].

In the current study, the whole genome sequence of an 
Egyptian AIV H9N2 virus was determined to evaluate its 
phylogenetic relationships and to identify molecular genetic 
markers related to virulence, pathogenicity, and mammalian 
host preference that were being carried by circulating AIV 
H9N2 viruses during 2021.

Phylogenetic analysis based on the HA gene showed that 
the H9N2 isolate A/chicken/Egypt/Menoufia/2021 is closely 
related to members of a G1-like lineage of H9N2 viruses 
that were isolated previously in Egypt [9]. Furthermore, a 

amino acid position 398, which is a unique marker for mam-
malian host specificity.

Discussion

Since its identification in Egypt in 2010, the AI H9N2 virus 
has become prevalent due to its simultaneous circulation 
alongside clade 2.2.1 H5N1 viruses, which were endemic 
in the region [30]. In 2017, H5N8 was isolated in Egypt 
for the first time, and the cocirculation of H9N2 and H5N8 
increased the likelihood that reassortment between these 
two subtypes would result in the appearance of new viruses 
with pandemic capability. For instance, a recent reassortant 

Fig. 2  3D structural model of the HA proteins of H9N2 viruses, showing mutations in antigenic sites. (A) A/chicken/Egypt/Menoufia/2021 (this 
study), showing two mutations: V194I and M40K. (B) A/chicken/Egypt/S4456B/2011 (Egyptian parental H9N2 virus)

 

Segment Reference strain
A/chicken/Egypt/S4456B/2011
(First Egyptian parent)

A/pigeon/Egypt/
S10408B/2014
(Egyptian genotype II)

A/chicken/Egypt/
A19610/2021
(Recently pub-
lished strain)

PB2 86% 96% 99%
PB1 89% 97% 99%
PA 89.5% 98% 97%
HA 93% 97% 99%
NP 94% 97% 99%
NA 93.5% 96% 99%
M 96% 96% 99%
NS 89.5% 96% 99%

Table 1  Comparison of the 
nucleotide sequences of the 
genome segments of the detected 
Egyptian H9N2 strain and refer-
ence strains
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for binding to human respiratory epithelial cells, as reported 
by Sorrell et al. [36]. Matrosovich et al. reported that the 
234L variation is characteristic of human pandemic AIV H2 
and H3 subtypes. Additionally, the 191H variation is asso-
ciated with enhanced replication in human respiratory cell 
cultures and a preference for binding to receptors on human 
respiratory cells [37–39]. A higher binding affinity of the 
strain under investigation to human-like receptors is further 
suggested by the presence of numerous substitutions in the 
RBS. Genetic examination of the HA sequence revealed that 
the Egyptian H9N2 strain had seven potential N-linked gly-
cosylation sites, at positions 29 (NSTE), 82 (NPSC), 105 
(NGTC), 141 (NVTY), 298 (NSTL), 305 (NISK), and 492 
(NGTY). These sites play a crucial role in protein folding, 
trafficking, pH stability, receptor binding potential, infectiv-
ity, and cell-associated host immunological reactions [8, 32, 
40]. The N-linked glycosylation site at position 82 has not 
been seen in recently isolated Egyptian AIV H9N2 viruses. 
Variations in the glycosylation pattern can have an impact 

genotype replacement was observed, with phylogenetic 
analysis revealing that four segments (PB2, PB1, PA, and 
NS) were associated with genotype II. In contrast, the seg-
ments HA, NA, M, and NP were found to be related to those 
of genotype I viruses. The HA protein in the identified H9N2 
strain was predicted to have the monobasic cleavage motif 
“PARSSRGLF” in the HA1-HA2 connecting peptide. Pro-
teolytic cleavage activation at this site plays a critical role 
in the viral life cycle [33–35]. Compared with the paren-
tal Egyptian AIV H9N2 virus, the isolate from this study 
has gained two substitutions in antigenic sites: a V194I 
substitution in antigenic site A and an M40K substitution 
in antigenic site B. This suggests that antigenic changes 
have occurred in circulating AIV H9N2 viruses as a result 
of vaccine failure, illustrating the need for continual updat-
ing of commercially used vaccines to match the circulating 
strains. The H9N2 strain from this study has the 191H and 
234L variations, which is associated with a change in the 
HA preference from avian α-2,3 sialic acid (SA) receptors 
to human α-2,6 SA receptors, which suggests the potential 

Avian influenza viruses Hemadsorbing sites No. of 
potential 
glycosyl-
ation sites

1st loop 366–373 2nd loop 
399–404

3rd loop 
431–433

A/Quail/Hong_Kong/G1/97 I K K D S R S G D S D I R S P Q 6
A/Turkey/Wisconsin/1/1966 I S K D S R S G D S N N W S P Q 7
A/Guangdong/MZ058/2016 I K E D S R S G D S D N W S P Q 10
A/chicken/Egypt/Menoufia/2021 I K K D S R A G D S N N W P H E 6
A/chicken/Egypt/S4456B/2011 I K K D S R A G D S D S W N K Q 6

Table 2  Amino acid sequence 
differences in the NA gene when 
compared with other selected 
avian influenza strains

 

Fig. 3  3D structural model of the NA protein showing mutations in haemadsorption sites. (A) A/chicken/Egypt/Menoufia/2021 (this study), show-
ing three mutations (R403W, S372A, and I402N). (B) The A/Quail/Hong Kong/G1/97 prototype
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pathogenicity [45, 46], Mutations in the replication complex 
genes, (PB2, PB1, and PA) have the potential to increase the 
viral replication rate [47]. In the present study, nine mark-
ers related to enhanced polymerase activity and increased 
virulence were found in components of the polymerase 
complex: 504V in PB2 [48], 13P, 436Y, 207K, 677T, and 
622G in PB1 [49], and 127V, 550L, and 672L in PA [5, 45]. 
The PA gene plays a major role in the ability of the virus to 
adapt to new hosts [50, 51]. The PA protein of the studied 
isolate retained a D residue at position 383, which is present 
in avian influenza viruses and the G1 prototype strain. This 
residue may facilitate the crossing of species barriers, as it is 
linked to increased polymerase activity in avian and mam-
malian cell lines [52]. The combination of these mutations 
may enhance polymerase activity. NP plays several roles in 
the AIV life cycle and its pathogenicity, replication ability, 
and infectivity in mammals [53]. In this study, the NP pro-
tein had the amino acid residue Q at position 398, which is 
a unique marker of mammalian host preference. A number 
of variations associated with host tropism and the immune 
response were found in the M1 and M2 proteins [54, 55]. 
The M2 protein of our isolate contains markers related to 
virulence and mammalian host preference: the 64S and 
69P variations, which are associated with increased viru-
lence [5], and the 20N, 28V, and 55F variations, which are 

on pathogenicity and the affinity and specificity of receptor 
binding [9, 41, 42].

Previous studies have shown that the length of the stalk, 
the positions of N-glycosylation sites, and residues in the 
enzyme active site are major molecular determinants of the 
functional activities of NA and that hemadsorption (sialic 
acid binding) enhances the catalytic efficiency of NA, and 
therefore, modifications in these locations could potentially 
affect the specificity of the host receptor and sialic acid bind-
ing [42]. In the current study, no stalk deletion was observed 
in the H9N2 isolate, but three amino acid substitutions were 
observed in the hemadsorption sites in comparison to the 
A/Quail/Hong Kong/G1/97 prototype: S372A, I402N, and 
R403W (N2 numbering). The S372A and R403W substi-
tutions have been shown to enhance the capability of the 
virus to overcome species barriers and adapt to mammalian 
hosts. Notably, these substitutions have been observed in 
the H2N2 and H3N2 subtypes, contributing to pandemics in 
the human population [42–44]. In addition, the H9N2 strain 
in this study has six potential N-linked glycosylation sites 
in the NA gene. This pattern of glycosylation facilitates the 
cleavage of NA by cellular proteases, which in turn facili-
tates the spread of infection [9].

The internal proteins (PB2, PB1, PA, NP, M, and NS) 
of avian influenza virus also influence host tropism and 

Table 3  Analysis of molecular markers associated with virulence in the viral proteins of the detected Egyptian H9N2 isolate
Protein Site Avirulent Virulent A/chicken/Egypt/Menoufia/2021 References
PB2 627

147
250
292
504
588
701
404
591

E
M
V
I
I
A
D
F
Q

K
L
G
V
V
V
N
L
K

E
I
V
I
V
A
D
F
Q

[60–62]

PB1 317
622

M/V
D

I
G

M
G

[45, 63, 64]

PA 127
383
224
550
672

I
N
S
I

V
D
P
L
L

V
D
S
L
L

[52, 65]

HA Cleavage site Monobasic Multibasic RSR*GLFG [59, 65]
NS1 42

92
103
106
149
189

A/P
D
F
M
V
D/G

S
E
L
I
A
N

S
D
F
M
A
D

[58, 59, 63, 66, 67]

NS2 31
56

M
H/L

I
Y

M
H

[67]

M2 64
69

P
L

S/A/F
P

F
P

[68]

NP 286
437

A
T

V
M

A
T

[69]
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included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.
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