Skip to main content

Advertisement

Log in

Molecular mechanisms by which the HIV-1 latent reservoir is established and therapeutic strategies for its elimination

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The human immunodeficiency virus type 1 (HIV-1) reservoir, composed of cells harboring the latent, integrated virus, is not eliminated by antiretroviral therapy. It therefore represents a significant barrier to curing the infection. The biology of HIV-1 reservoirs, the mechanisms of their persistence, and effective strategies for their eradication are not entirely understood. Here, we review the molecular mechanisms by which HIV-1 reservoirs develop, the cells and compartments where the latent virus resides, and advancements in curative therapeutic strategies. We first introduce statistics and relevant data on HIV-1 infection, aspects of pathogenesis, the role of antiretroviral therapy, and the general features of the latent HIV reservoir. Then, the article is built on three main pillars: The molecular mechanisms related to latency, the different strategies for targeting the reservoir to obtain a cure, and the current progress in immunotherapy to counteract said reservoirs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nyamweya S, Hegedus A, Jaye A, Rowland-Jones S, Flanagan KL, Macallan DC (2013) Comparing HIV-1 and HIV-2 infection: Lessons for viral immunopathogenesis. Rev Med Virol 23(4):221–240. https://doi.org/10.1002/rmv.1739

    Article  CAS  PubMed  Google Scholar 

  2. UNAIDS, Global HIV & AIDS statistics — Fact sheet | UNAIDS [Internet]. 2022 [cited 2021 Oct 17]. p. 1–6

  3. Fanales-Belasio E, Raimondo M, Suligoi B, Buttò S (2010) HIV virology and pathogenetic mechanisms of infection: a brief overview. Ann Ist Super Sanità 46(1):5–14. https://doi.org/10.4415/ann_10_01_02

    Article  CAS  PubMed  Google Scholar 

  4. Fiebig EW, Wright DJ, Rawal BD, Garrett PE, Schumacher RT, Peddada L et al (2003) Dynamics of HIV viremia and antibody seroconversion in plasma donors. AIDS 17(13):1871–1879. https://doi.org/10.1097/00002030-200309050-00005

    Article  PubMed  Google Scholar 

  5. Taylor D, Durigon M, Davis H, Archibald C, Konrad B, Coombs D et al (2015) Probability of a false-negative HIV antibody test result during the window period: a tool for pre- and post-test counselling. Int J STD AIDS 26(4):215–224. https://doi.org/10.1177/0956462414542987

    Article  PubMed  Google Scholar 

  6. Rolland M, Tovanabutra S, Dearlove B, Li Y, Owen CL, Lewitus E et al (2020) Molecular dating and viral load growth rates suggested that the eclipse phase lasted about a week in HIV-1 infected adults in East Africa and Thailand. PLoS Pathog 16(2):e1008179. https://doi.org/10.1371/journal.ppat.1008179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Coffin J, Swanstrom RHIV, Pathogenesis (2013) Dynamics and Genetics of Viral Populations and Infected Cells. Cold Spring Harb Perspect Med 3(1):a012526. https://doi.org/10.1101/CSHPERSPECT.A012526

    Article  PubMed Central  PubMed  Google Scholar 

  8. Swanstrom R, Coffin J (2012) HIV-1 Pathogenesis: The Virus. Cold Spring Harb Perspect Med 2(a007443):1–18. https://doi.org/10.1101/cshperspect.a007443

    Article  CAS  Google Scholar 

  9. Shen HS, Yin J, Leng F, Teng RF, Xu C, Xia XY et al (2016) HIV coreceptor tropism determination and mutational pattern identification. Sci Rep 6(January):1–11. https://doi.org/10.1038/srep21280

    Article  CAS  Google Scholar 

  10. Haase AT (2005) Perils at mucosal front lines for HIV and SIV and their hosts [Internet]. Nat Reviews Immunol Nat Publishing Group 5:783–792 [cited 2021 Jun 27]. https://doi.org/10.1038/nri1706

    Article  CAS  Google Scholar 

  11. Jaffar S, Grant A, Whitworth J, Smith P, Whittle H (2004) The natural history of HIV-1 and HIV-2 infections in adults in Africa: A literature review. Bull World Health Organ 82(8):571

    Google Scholar 

  12. Boyd MA, Boffito M, Castagna A, Estrada V (2019) Rapid initiation of antiretroviral therapy at HIV diagnosis: definition, process, knowledge gaps. HIV Med 20:3–11. https://doi.org/10.1111/hiv.12708

    Article  PubMed  Google Scholar 

  13. de Oliveira França P, Ayres LR, Pimassoni LH, Cerutti Junior C (2022) Health-Related Quality of Life and Coping Strategies in a Cohort Study of Highly Active Antiretroviral Therapy Naïve Patients Adherence. Int J Clin Pract 2022:8341638. https://doi.org/10.1155/2022/8341638

    Article  PubMed Central  PubMed  Google Scholar 

  14. Yandrapally S, Mohareer K, Arekuti G, Vadankula GR, Banerjee S (2021) HIV co-receptor-tropism: cellular and molecular events behind the enigmatic co-receptor switching. Crit Rev Microbiol 47(4):499–516. https://doi.org/10.1080/1040841X.2021.1902941

    Article  CAS  PubMed  Google Scholar 

  15. Matume ND, Tebit DM, Bessong PO (2020) HIV-1 subtype C predicted co-receptor tropism in Africa: An individual sequence level meta-analysis. AIDS Res Ther 17(1):1–16. https://doi.org/10.1186/s12981-020-0263-x

    Article  CAS  Google Scholar 

  16. Seclén E, del Mar González M, De Mendoza C, Soriano V, Poveda E (2010) Dynamics of HIV tropism under suppressive antiretroviral therapy: Implications for tropism testing in subjects with undetectable viraemia. J Antimicrob Chemother 65(7):1493–1496. https://doi.org/10.1093/jac/dkq156

    Article  CAS  PubMed  Google Scholar 

  17. Bader J, Schöni-Affolter F, Böni J, Gorgievski-Hrisoho M, Martinetti G, Battegay M et al (2016) Correlating HIV tropism with immunological response under combination antiretroviral therapy. HIV Med 17(8):615–622. https://doi.org/10.1111/hiv.12365

    Article  CAS  PubMed  Google Scholar 

  18. Conway JM, Perelson AS (2018) Early HIV Infection Predictions: Role of Viral Replication Errors. SIAM 78(4):1863–90. https://doi.org/10.1137/17M1134019

  19. Yeo JY, Goh GR, Su C, Gan S (2020) The Determination of HIV-1 RT Mutation Rate, Its Possible Allosteric Effects, and Its Implications on Drug Resistance. Viruses 12(297):1–22. https://doi.org/10.3390/v12030297

    Article  CAS  Google Scholar 

  20. Rawson JMO, Nikolaitchik OA, Keele BF, Pathak VK, Hu WS (2018) Recombination is required for efficient HIV-1 replication and the maintenance of viral genome integrity. Nucleic Acids Res 46(20):10535–10545. https://doi.org/10.1093/NAR/GKY910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Domingo E (2020) Molecular basis of genetic variation of viruses: error-prone replication. In: Virus as Populations. p. 32–71. https://doi.org/10.1016/B978-0-12-816331-3.00002-7

  22. Li B, Zhang H, Liu Y, Li Y, Zheng J, Li WX et al (2020) Novel pathways of HIV latency reactivation revealed by integrated analysis of transcriptome and target profile of bryostatin. Sci Rep 2020 101 10(1):1–12. https://doi.org/10.1038/s41598-020-60614-1

    Article  CAS  Google Scholar 

  23. Cohn LB, Chomont N, Deeks SG (2020) The Biology of the HIV-1 Latent Reservoir and Implications for Cure Strategies. Cell Host Microbe 27(4):519–530. https://doi.org/10.1016/J.CHOM.2020.03.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Schilthuis M, Verkaik S, Walhof M, Philipose A, Harlow O, Kamp D et al (2018) Lymphatic endothelial cells promote productive and latent HIV infection in resting CD4 + T cells. Virol J 15(1):1–14. https://doi.org/10.1186/S12985-018-1068-6

  25. Murray AJ, Kwon KJ, Farber DL, Siliciano RF (2016) The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence. J Immunol 197(2):407–417. https://doi.org/10.4049/jimmunol.1600343

    Article  CAS  PubMed  Google Scholar 

  26. Estes JD, Kityo C, Ssali F, Swainson L, Makamdop KN, Del Prete GQ et al (2017) Defining total-body AIDS-virus burden with implications for curative strategies. Nat Med 23(11):1271–1276. https://doi.org/10.1038/nm.4411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Whitney JB, Hill AL, Sanisetty S, Penaloza-Macmaster P, Liu J, Shetty M et al (2014) Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 512(1):74–77. https://doi.org/10.1038/nature13594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Rabezanahary H, Moukambi F, Palesch D, Clain J, Racine G, Andreani G et al (2020) Despite early antiretroviral therapy effector memory and follicular helper CD4 T cells are major reservoirs in visceral lymphoid tissues of SIV-infected macaques. Mucosal Immunol 13(1):149–160. https://doi.org/10.1038/s41385-019-0221-x

    Article  CAS  PubMed  Google Scholar 

  29. Leyre L, Kroon E, Vandergeeten C, Sacdalan C, Colby DJ, Buranapraditkun S et al (2020) Abundant HIV-infected cells in blood and tissues are rapidly cleared upon ART initiation during acute HIV infection. Sci Transl Med 12(533). https://doi.org/10.1126/scitranslmed.aav3491

  30. Eriksson S, Graf EH, Dahl V, Strain MC, Yukl SA, Lysenko ES et al (2013) Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies. PLoS Pathog 9(2):1–17. https://doi.org/10.1371/journal.ppat.1003174

    Article  CAS  Google Scholar 

  31. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T (1999) Latent infection of CD4 + T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 5(5):512–517. https://doi.org/10.1038/8394

    Article  CAS  PubMed  Google Scholar 

  32. Lenasi T, Contreras X, Peterlin BM (2008) Transcriptional Interference Antagonizes Proviral Gene Expression to Promote HIV Latency. Cell Host Microbe 4(2):123–133. https://doi.org/10.1016/j.chom.2008.05.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Rasmussen TA, Tolstrup M, Winckelmann A, Østergaard L, Søgaard OS (2013) Eliminating the latent HIV reservoir by reactivation strategies: Advancing to clinical trials. Hum Vaccines Immunother 9(4):790–799. https://doi.org/10.4161/hv.23202

    Article  CAS  Google Scholar 

  34. Gebara NY, Kamari V, El, Rizk N (2019) HIV-1 elite controllers: an immunovirological review and clinical perspectives. J Virus Erad 5(3):163

    Article  PubMed Central  PubMed  Google Scholar 

  35. Cohen J (2020) An intriguing—but far from proven—HIV cure in the ‘São Paulo Patient.’ Science (80-). https://doi.org/10.1126/SCIENCE.ABD6947

  36. Gupta RK, Peppa D, Hill AL, Gálvez C, Salgado M, Pace M et al (2020) Evidence for HIV-1 cure after CCR5∆32/∆32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV 7(5):e340–e347. https://doi.org/10.1016/S2352-3018(20)30069-2

    Article  PubMed Central  PubMed  Google Scholar 

  37. Sáez-Cirión A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, Lecuroux C et al (2013) Post-Treatment HIV-1 Controllers with a Long-Term Virological Remission after the Interruption of Early Initiated Antiretroviral Therapy ANRS VISCONTI Study. PLOS Pathog 9(3):e1003211. https://doi.org/10.1371/JOURNAL.PPAT.1003211

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ledford H (2014) HIV rebound dashes hope of “Mississippi baby” cure. Nature. https://doi.org/10.1038/NATURE.2014.15535

    Article  PubMed  Google Scholar 

  39. Brown TR (2015) I Am the Berlin Patient: A Personal Reflection. AIDS Res Hum Retroviruses 31(1):2. https://doi.org/10.1089/AID.2014.0224

    Article  PubMed Central  PubMed  Google Scholar 

  40. Darcis G, Van Driessche B, Van Lint CHIV, Latency (2017) Should We Shock or Lock? [Internet]. Vol. 38, Trends in Immunology. Elsevier Ltd; [cited 2021 Jun 28]. p. 217–28. https://doi.org/10.1016/j.it.2016.12.003

  41. Janssens J, Bruggemans A, Christ F, Debyser Z, Frontiers Media SA (2021) Towards a functional cure of HIV-1: insight into the chromatin landscape of the provirus. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.636642

  42. Xu W, Li H, Wang Q, Hua C, Zhang H, Li W et al (2017) Advancements in Developing Strategies for Sterilizing and Functional HIV Cures. Vol. BioMed Research International. Hindawi Limited; 2017. https://doi.org/10.1155/2017/6096134

  43. Ding J, Liu Y, Lai Y (2021) Knowledge From London and Berlin: Finding Threads to a Functional HIV Cure. Front Immunol 0:1852. https://doi.org/10.3389/FIMMU.2021.688747

    Article  Google Scholar 

  44. Verhofstede C, Nijhuis M, Vandekerckhove L (2012) Correlation of coreceptor usage and disease progression. Curr Opin HIV AIDS 7(5):432–439. https://doi.org/10.1097/COH.0b013e328356f6f2

    Article  CAS  PubMed  Google Scholar 

  45. Weichseldorfer M, Tagaya Y, Reitz M, DeVico AL, Latinovic OS (2022) Identifying CCR5 coreceptor populations permissive for HIV-1 entry and productive infection: implications for in vivo studies. J Transl Med 20(1):1–12. https://doi.org/10.1186/s12967-022-03243-8

    Article  CAS  Google Scholar 

  46. Martinson J, Chapman N, Rees D, Liu Y, Clegg J (1997) Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet 16(1):100–103. https://doi.org/10.1038/ng0597-100

    Article  CAS  PubMed  Google Scholar 

  47. Jilg N, Li J (2019) One Patient Has Been Cured of HIV – Will There Ever Be More? Infect Dis Clin North Am. 33(3):857–868. https://doi.org/10.1016/j.idc.2019.04.007

  48. Persaud D, Gay H, Ziemniak C, Chen YH, Piatak M, Chun TW et al (2013) Absence of Detectable HIV-1 Viremia after Treatment Cessation in an Infant. N Engl J Med 369(19):1828–1835. https://doi.org/10.1056/nejmoa1302976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Eisele E, Siliciano RF (2012) Redefining the Viral Reservoirs that Prevent HIV-1 Eradication. Immunity 37(3):377–388. https://doi.org/10.1016/j.immuni.2012.08.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R (2018) Barriers for HIV Cure: The Latent Reservoir. AIDS Res Hum Retroviruses 34(9):739–759. https://doi.org/10.1089/aid.2018.0118

    Article  PubMed Central  PubMed  Google Scholar 

  51. Bozzi G, Simonetti FR, Watters SA, Anderson EM, Gouzoulis M, Kearney MF et al (2019) No evidence of ongoing HIV replication or compartmentalization in tissues during combination antiretroviral therapy: Implications for HIV eradication. Sci Adv 5(9). https://doi.org/10.1126/sciadv.aav2045

  52. Tabler CO, Lucera MB, Haqqani AA, McDonald DJ, Migueles SA, Connors M et al (2014) CD4 + Memory Stem Cells Are Infected by HIV-1 in a Manner Regulated in Part by SAMHD1 Expression. J Virol 88(9):4976–4986. https://doi.org/10.1128/jvi.00324-14

    Article  PubMed Central  PubMed  Google Scholar 

  53. Gornalusse GG, Mummidi S, Gaitan AA, Jimenez F, Ramsuran V, Picton A et al (2015) Epigenetic mechanisms, T-cell activation, and CCR5 genetics interact to regulate T-cell expression of CCR5, the major HIV-1 coreceptor. Proc Natl Acad Sci U S A 112(34):E4762–E4771. https://doi.org/10.1073/pnas.1423228112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Lorenzo-Redondo R, Fryer HR, Bedford T, Kim EY, Archer J, Kosakovsky Pond SL et al (2016) Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530(7588):51–56. https://doi.org/10.1038/nature16933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Nolan DJ, Rose R, Rodriguez PH, Salemi M, Singer EJ, Lamers SL et al (2018) The Spleen Is an HIV-1 Sanctuary during Combined Antiretroviral Therapy. AIDS Res Hum Retroviruses 34(1):123–125. https://doi.org/10.1089/aid.2017.0254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Hu WS, Hughes SH (2012) HIV-1 reverse transcription. Cold Spring Harb Perspect Med 2(10). https://doi.org/10.1101/cshperspect.a006882

  57. Busman-Sahay K, Starke CE, Nekorchuk MD, Estes JD (2021) Eliminating HIV reservoirs for a cure: The issue is in the tissue. Curr Opin HIV AIDS 16(4):200–208. https://doi.org/10.1097/COH.0000000000000688

    Article  PubMed Central  PubMed  Google Scholar 

  58. Pasternak AO, Grijsen ML, Wit FW, Bakker M, Jurriaans S, Prins JM et al (2020) Cell-associated HIV-1 RNA predicts viral rebound and disease progression after discontinuation of temporary early ART. JCI Insight 5(6):1–22. https://doi.org/10.1172/jci.insight.134196

    Article  Google Scholar 

  59. Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H et al (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387(6629):183–188. https://doi.org/10.1038/387183a0

    Article  CAS  PubMed  Google Scholar 

  60. Wong JK, Hezareh M, Günthard HF, Havlir DV, Ignacio CC, Spina CA et al (1997) Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science (80-). 278(5341):1291–1295. https://doi.org/10.1126/science.278.5341.1291

  61. Anderson JL, Khoury G, Fromentin R, Solomon A, Chomont N, Sinclair E et al (2020) Human Immunodeficiency Virus (HIV)-Infected CCR6 + Rectal CD4 + T Cells and HIV Persistence on Antiretroviral Therapy. J Infect Dis 221(5):744–755. https://doi.org/10.1093/infdis/jiz509

    Article  CAS  PubMed  Google Scholar 

  62. Hsiao F, Frouard J, Gramatica A, Xie G, Telwatte S, Lee GQ et al (2020) Tissue memory CD4 + T cells expressing IL-7 receptor-alpha (CD127) preferentially support latent HIV-1 infection. PLoS Pathog 16(4):1–28. https://doi.org/10.1371/journal.ppat.1008450

    Article  CAS  Google Scholar 

  63. Banga R, Procopio FA, Noto A, Pollakis G, Cavassini M, Ohmiti K et al (2016) PD-1 + and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals. Nat Med 22(7):754–761. https://doi.org/10.1038/nm.4113

    Article  CAS  PubMed  Google Scholar 

  64. Crooks AM, Bateson R, Cope AB, Dahl NP, Griggs MK, Kuruc JAD et al (2015) Precise quantitation of the latent HIV-1 reservoir: Implications for eradication strategies. J Infect Dis 212(9):1361–1365. https://doi.org/10.1093/infdis/jiv218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Chaillon A, Gianella S, Dellicour S, Rawlings SA, Schlub TE, de Oliveira MF et al (2020) HIV persists throughout deep tissues with repopulation from multiple anatomical sources. J Clin Invest 130(4):1699–1712. https://doi.org/10.1172/JCI134815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Alexaki A, Liu Y, Wigdahl B (2008) Cellular Reservoirs of HIV-1 and their Role in Viral Persistence. Curr HIV Res 6(5):388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Barton K, Winckelmann A, Palmer S (2016) HIV-1 Reservoirs During Suppressive Therapy [Internet]. Vol. 24, Trends in Microbiology. Elsevier Ltd; [cited 2021 Jun 27]. p. 345–55. https://doi.org/10.1016/j.tim.2016.01.006

  68. Ostrowski MA, Justement SJ, Catanzaro A, Hallahan CA, Ehler LA, Mizell SB et al (1998) Expression of Chemokine Receptors CXCR4 and CCR5 in HIV-1-Infected and Uninfected Individuals. J Immunol 161(6):3195–3201. https://doi.org/10.4049/jimmunol.161.6.3195

    Article  CAS  PubMed  Google Scholar 

  69. Lee B, Sharron M, Montaner LJ, Weissman D, Doms RW (1999) Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A 96(9):5215–5220. https://doi.org/10.1073/pnas.96.9.5215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR (1997) The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci U S A 94(5):1925–1930. https://doi.org/10.1073/pnas.94.5.1925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Luckheeram RV, Zhou R, Verma AD, Xia B (2012) CD4 + T cells: Differentiation and functions. Clin Dev Immunol. https://doi.org/10.1155/2012/925135.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Margolis DM, Archin NM, Cohen MS, Eron JJ, Ferrari G, Garcia JV et al (2020) Cell Cell Press 181:189–206 [cited 2021 Jun 27]. https://doi.org/10.1016/j.cell.2020.03.005. Curing HIV: Seeking to Target and Clear Persistent Infection [Internet]

  73. Houzet L, Matusali G, Dejucq-Rainsford N (2014) Origins of HIV-infected Leukocytes and Virions in Semen. J Infect Dis 210(suppl3):S622–S630. https://doi.org/10.1093/INFDIS/JIU328

    Article  PubMed  Google Scholar 

  74. Cantero-Pérez J, Grau-Expósito J, Serra-Peinado C, Rosero DA, Luque-Ballesteros L, Astorga-Gamaza A et al (2019) Resident memory T cells are a cellular reservoir for HIV in the cervical mucosa. Nat Commun 2019 101 10(1):1–16. https://doi.org/10.1038/s41467-019-12732-2

    Article  CAS  Google Scholar 

  75. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. https://doi.org/10.1038/nri2448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Osborne O, Peyravian N, Nair M, Daunert S, Toborek M (2020) The Paradox of HIV Blood–Brain Barrier Penetrance and Antiretroviral Drug Delivery Deficiencies. Trends Neurosci 43(9):695–708. https://doi.org/10.1016/J.TINS.2020.06.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Coleman CM, Wu L (2009) HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology 6(1):1–12. https://doi.org/10.1186/1742-4690-6-51

  78. Coillard A, Segura E (2019) vivo differentiation of human monocytes. Front Immunol 10(AUG):1–7. https://doi.org/10.3389/fimmu.2019.01907

    Article  CAS  Google Scholar 

  79. Ganor Y, Real F, Sennepin A, Dutertre CA, Prevedel L, Xu L et al (2019) HIV-1 reservoirs in urethral macrophages of patients under suppressive antiretroviral therapy. Nat Microbiol 2019 44 4(4):633–644. https://doi.org/10.1038/s41564-018-0335-z

    Article  CAS  Google Scholar 

  80. Aguzzi A, Kranich J, Krautler NJ (2014) Follicular dendritic cells: Origin, phenotype, and function in health and disease. Trends Immunol 35(3):105–113. https://doi.org/10.1016/j.it.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  81. Heesters BA, Lindqvist M, Vagefi PA, Scully EP, Schildberg FA, Altfeld M et al (2015) Follicular Dendritic Cells Retain Infectious HIV in Cycling Endosomes. PLoS Pathog 11(12):1–18. https://doi.org/10.1371/journal.ppat.1005285

    Article  CAS  Google Scholar 

  82. Llewellyn GN, Alvarez-Carbonell D, Chateau M, Karn J, Cannon PM (2017) 242 HIV-1 infection of microglial cells in a reconstituted humanized mouse model and identification of compounds that selectively reverse HIV latency. J NeuroVirology (2017);24(2):192–203. https://doi.org/10.1007/S13365-017-0604-2

  83. Castellano P, Prevedel L, Eugenin EA (2017) HIV-infected macrophages and microglia that survive acute infection become viral reservoirs by a mechanism involving Bim. Sci Reports 7(1):1–16. https://doi.org/10.1038/s41598-017-12758-w

  84. Fischer-Smith T, Croul S, Sverstiuk AE, Capini C, L’Heureux D, Régulier EG et al (2001) 76 CNS invasion by CD14+/CD16 + peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J NeuroVirology (2001);7(6):528–41. https://doi.org/10.1080/135502801753248114

  85. Couturier J, Lewis DE (2018) HIV Persistence in Adipose Tissue Reservoirs. Curr HIV/AIDS Reports 15(1):60–71. https://doi.org/10.1007/S11904-018-0378-Z

  86. Ganesan M, Poluektova LY, Kharbanda KK, Osna NA (2018) Liver as a target of human immunodeficiency virus infection. World J Gastroenterol 24(42):4728–37. https://doi.org/10.3748/WJG.V24.I42.4728

  87. Abbas A, Lichtman A, Pillai S (2021) Cellular and Molecular Immunology, 10th edn. Elsevier

  88. Zaikos TD, Terry VH, Kettinger NTS, Lubow J, Painter MM, Virgilio MC et al (2018) Hematopoietic Stem and Progenitor Cells Are a Distinct HIV Reservoir that Contributes to Persistent Viremia in Suppressed Patients. Cell Rep 25(13):3759–3773e9. https://doi.org/10.1016/J.CELREP.2018.11.104

    Article  CAS  PubMed  Google Scholar 

  89. Igarashi T (2001) Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4 + T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): Implications for HIV-1 infections of humans. Proc Natl Acad Sci 98(2):658–663. https://doi.org/10.1073/pnas.021551798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Shen R, Richter HE, Clements RH, Novak L, Huff K, Bimczok D et al (2009) Macrophages in Vaginal but Not Intestinal Mucosa Are Monocyte-Like and Permissive to Human Immunodeficiency Virus Type 1 Infection. J Virol 83(7):3258–3267. https://doi.org/10.1128/jvi.01796-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. McElrath MJ, Smythe K, Randolph-Habecker J, Melton KR, Goodpaster TA, Hughes SM et al (2013) Comprehensive assessment of HIV target cells in the distal human gut suggests increasing HIV susceptibility toward the anus. J Acquir Immune Defic Syndr 63(3):263–271. https://doi.org/10.1097/QAI.0b013e3182898392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Cribbs SK, Lennox J, Caliendo AM, Brown LA, Guidot DM (2015) Healthy HIV-1-infected individuals on highly active antiretroviral therapy harbor HIV-1 in their alveolar macrophages. AIDS Res Hum Retroviruses 31(1):64–70. https://doi.org/10.1089/aid.2014.0133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Deleage C, Moreau M, Rioux-Leclercq N, Ruffault A, Jégou B, Dejucq-Rainsford N (2011) Human immunodeficiency virus infects human seminal vesicles in vitro and in vivo. Am J Pathol 179(5):2397–2408. https://doi.org/10.1016/j.ajpath.2011.08.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Kandathil AJ, Sugawara S, Goyal A, Durand CM, Quinn J, Sachithanandham J et al (2018) No recovery of replication-competent HIV-1 from human liver macrophages. J Clin Invest 128(10):4501–4509. https://doi.org/10.1172/JCI121678

    Article  PubMed Central  PubMed  Google Scholar 

  95. Collin M, Bigley V (2018) Human dendritic cell subsets: an update [Internet]. Vol. 154, Immunology. Blackwell Publishing Ltd; [cited 2021 Jun 27]. p. 3–20. https://doi.org/10.1111/imm.12888

  96. Spiegel H, Herbst H, Niedobitek G, Foss HD, Stein H (1992) Follicular dendritic cells are a major reservoir for human immunodeficiency virus type 1 in lymphoid tissues facilitating infection of CD4 + T-helper cells. Am J Pathol 140(1):15–22

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Li GH, Henderson L, Nath A (2016) Astrocytes as an HIV Reservoir: Mechanism of HIV Infection. Curr HIV Res 14(5):373–381. https://doi.org/10.2174/1570162X14666161006121455

    Article  CAS  PubMed  Google Scholar 

  98. Ranki A, Nyberg M, Ovod V, Haltia M, Elovaara I, Raininko R et al (1995) Abundant expression of HIV Nef and Rev proteins in brain astrocytes in vivo is associated with dementia. AIDS 9(9):1001–1008. https://doi.org/10.1097/00002030-199509000-00004

    Article  CAS  PubMed  Google Scholar 

  99. Takahashi K, Wesselingh SL, Griffin DE, McArthur JC, Johnson RT, Glass JD (1996) Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann Neurol 39(6):705–711. https://doi.org/10.1002/ANA.410390606

    Article  CAS  PubMed  Google Scholar 

  100. Gorry P, Ong C, Thorpe J, Bannwarth S, Thompson K, Gatignol A et al (2003) Astrocyte infection by HIV-1: mechanisms of restricted virus replication, and role in the pathogenesis of HIV-1-associated dementia. Curr HIV Res 1(4):463–473. https://doi.org/10.2174/1570162033485122

    Article  CAS  PubMed  Google Scholar 

  101. Li GH, Maric D, Major EO, Nath A (2020) Productive HIV infection in astrocytes can be established via a non-classical mechanism. AIDS 34(7):963–978. https://doi.org/10.1097/QAD.0000000000002512

    Article  CAS  PubMed  Google Scholar 

  102. Muldoon LL, Alvarez JI, Begley DJ, Boado RJ, del Zoppo GJ, Doolittle ND et al (2013) Immunologic privilege in the central nervous system and the blood–brain barrier. J Cereb Blood Flow Metab 33(1):13. https://doi.org/10.1038/JCBFM.2012.153

    Article  CAS  PubMed  Google Scholar 

  103. Jones C, Perng GC Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle. Interdiscip Perspect Infect Dis (2010);2010. https://doi.org/10.1155/2010/262415

  104. Piatak M, Saag J, Yang MS, Clark LC, Kappes SJ, Luk JC KC, Science et al (1993) High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. 259(5102):1749–54. https://doi.org/10.1126/SCIENCE.8096089

  105. Zhou Y, Zhang H, Siliciano JD, Siliciano RF (2005) Kinetics of Human Immunodeficiency Virus Type 1 Decay following Entry into Resting CD4 + T Cells. J Virol 79(4):2199–2210. https://doi.org/10.1128/JVI.79.4.2199-2210.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Marsden MD, Zack JA (2009) Establishment and maintenance of HIV latency: model systems and opportunities for intervention. Future Virol 5(1):97–109. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037592/

  107. Saleh S, Solomon A, Wightman F, Xhilaga M, Cameron PU, Lewin SR (2007) CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4 + T cells to HIV-1 infection: a novel model of HIV-1 latency. Blood 110(13):4161–4164. https://doi.org/10.1182/BLOOD-2007-06-097907

    Article  CAS  PubMed  Google Scholar 

  108. Chavez L, Calvanese V, Verdin E (2015) HIV Latency Is Established Directly and Early in Both Resting and Activated Primary CD4 T Cells. PLOS Pathog 11(6):e1004955. https://doi.org/10.1371/JOURNAL.PPAT.1004955

    Article  PubMed Central  PubMed  Google Scholar 

  109. Cameron PU, Saleh S, Sallmann G, Solomon A, Wightman F, Evans VA et al (2010) Establishment of HIV-1 latency in resting CD4 + T cells depends on chemokine-induced changes in the actin cytoskeleton. Proc Natl Acad Sci 107(39):16934–16939. https://doi.org/10.1073/PNAS.1002894107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Kondrack RM, Harbertson J, Tan JT, McBreen ME, Surh CD, Bradley LM (2003) Interleukin 7 Regulates the Survival and Generation of Memory CD4 Cells. J Exp Med 198(12):1797–1806. https://doi.org/10.1084/JEM.20030735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Prins JM, Jurriaans S, van Praag RM, Blaak H, van Rij R, Schellekens PT et al (1999) Immuno-activation with anti-CD3 and recombinant human IL-2 in HIV-1-infected patients on potent antiretroviral therapy. AIDS 13(17):2405–2410. https://doi.org/10.1097/00002030-199912030-00012

    Article  CAS  PubMed  Google Scholar 

  112. Jordan A, Bisgrove D, Verdin E (2003) HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 22(8):1868–1877. https://doi.org/10.1093/EMBOJ/CDG188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Bosque A, Planelles V (2009) Induction of HIV-1 latency and reactivation in primary memory CD4 + T cells. Blood 113(1):58–65. https://doi.org/10.1182/BLOOD-2008-07-168393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Gondim MVP, Sherrill-mix S, Bibollet-ruche F, Ronnie M, Trimboli S, Smith AG et al (2021) Heightened resistance to type 1 interferons characterizes HIV-1 at transmission and following treatment interruption. Sci Transl Med 13(576):1–31. https://doi.org/10.1126/scitranslmed.abd8179Gondim

    Article  Google Scholar 

  115. Deng K, Pertea M, Rongvaux A, Wang L, Durand CM, Ghiaur G et al (2015) Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 517(7534):381–385. https://doi.org/10.1038/nature14053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Tamaru H (2010) Confining euchromatin/heterochromatin territory: Jumonji crosses the line. Genes Dev 24(14):1465–1478. https://doi.org/10.1101/gad.1941010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Han Y, Lassen K, Monie D, Sedaghat AR, Shimoji S, Liu X et al (2004) Resting CD4 + T Cells from Human Immunodeficiency Virus Type 1 (HIV-1)-Infected Individuals Carry Integrated HIV-1 Genomes within Actively Transcribed Host Genes. J Virol 78(12):6122–6133. https://doi.org/10.1128/JVI.78.12.6122-6133.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Maldarelli F, Wu X, Su L, Simonetti FR, Shao W, Hill S et al (2014) Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Sci (80-) 345(6193):179–183. https://doi.org/10.1126/SCIENCE.1254194

    Article  CAS  Google Scholar 

  119. Wagner TA, McLaughlin S, Garg K, Cheung CYK, Larsen BB, Styrchak S et al (2014) Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Sci (80-) 345(6196):570–573. https://doi.org/10.1126/SCIENCE.1256304

    Article  CAS  Google Scholar 

  120. Jordan A, Defechereux P, Verdin E (2001) The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J 20(7):1726–1738. https://doi.org/10.1093/EMBOJ/20.7.1726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Rezaei SD, Lu HK, Chang JJ, Rhodes A, Lewin SR, Cameron PU (2018) The Pathway To Establishing HIV Latency Is Critical to How Latency Is Maintained and Reversed. J Virol 92(13). https://doi.org/10.1128/JVI.02225-17

  122. Shah S, Alexaki A, Pirrone V, Dahiya S, Nonnemacher MR, Wigdahl B (2014) Functional properties of the HIV-1 long terminal repeat containing single-nucleotide polymorphisms in Sp site III and CCAAT/enhancer binding protein site I. Virol J 11(1):92. https://doi.org/10.1186/1743-422X-11-92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 Acetylation Controls Chromatin Structure and Protein Interactions. Science (80-). 311(5762):844–847. https://doi.org/10.1126/SCIENCE.1124000

  124. Palermo E, Acchioni C, Di Carlo D, Zevini A, Muscolini M, Ferrari M et al (2019) Activation of Latent HIV-1 T Cell Reservoirs with a Combination of Innate Immune and Epigenetic Regulators. J Virol 93(21):1194–1213. https://doi.org/10.1128/JVI.01194-19

    Article  Google Scholar 

  125. Lamere SA, Chaillon A, Huynh C, Smith DM, Gianella S (2019) Challenges in quantifying cytosine methylation in the HIV provirus. MBio 10(1). https://doi.org/10.1128/MBIO.02268-18

  126. Blazkova J, Trejbalova K, Gondois-Rey F, Philippe H, Patrick P, Verdin E et al (2010) CpG methylation controls reactivation of HIV from latency. Retrovirology 2010 71 7(1):1–1. https://doi.org/10.1186/1742-4690-7-S1-O8

    Article  Google Scholar 

  127. Palacios JA, Perez-Pinar T, Toro C, Sanz-Minguela B, Moreno V, Valencia E et al (2012) Long-Term Nonprogressor and Elite Controller Patients Who Control Viremia Have a Higher Percentage of Methylation in Their HIV-1 Proviral Promoters than Aviremic Patients Receiving Highly Active Antiretroviral Therapy. J Virol 86(23):13081–13084. https://doi.org/10.1128/JVI.01741-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Trejbalová K, Kovářová D, Blažková J, Machala L, Jilich D, Weber J et al (2016) Development of 5‘ LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals. Clin Epigenetics 8(1):1–20. https://doi.org/10.1186/S13148-016-0185-6

    Article  Google Scholar 

  129. Fuda NJ, Ardehali MB, Lis JT (2009) Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nat 2009 4617261 461(7261):186–192. https://doi.org/10.1038/nature08449

    Article  CAS  Google Scholar 

  130. Liu R, Wu J, Shao R, Xue Y hua. Mechanism and factors that control HIV-1 transcription and latency activation. J Zhejiang Univ Sci B 2014 155. (2014);15(5):455–65. https://doi.org/10.1631/JZUS.B1400059

  131. Bassuk AG, Anandappa RT, Leiden JM (1997) Physical interactions between Ets and NF-kappaB/NFAT proteins play an important role in their cooperative activation of the human immunodeficiency virus enhancer in T cells. J Virol 71(5):3563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Kinoshita S, Su L, Amano M, Timmerman LA, Kaneshima H, Nolan GP (1997) The T Cell Activation Factor NF-ATc Positively Regulates HIV-1 Replication and Gene Expression in T Cells. Immunity 6(3):235–244. https://doi.org/10.1016/S1074-7613(00)80326-X

    Article  CAS  PubMed  Google Scholar 

  133. Williams SA, Chen LF, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC (2006) NF-jB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J 25(1):139–149. https://doi.org/10.1038/SJ.EMBOJ.7600900

    Article  CAS  PubMed  Google Scholar 

  134. Kuras L, Struhl K (1999) Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nat 1999 3996736. 399(6736):609–613. https://doi.org/10.1038/21239

  135. Kao SY, Calman AF, Luciw PA, Peterlin BM (1987) Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nat 1987 3306147 330(6147):489–493. https://doi.org/10.1038/330489a0

    Article  CAS  Google Scholar 

  136. Emiliani S, Lint C, Van, Fischle W, Paras P, Ott M, Brady J et al (1996) A point mutation in the HIV-1 Tat responsive element is associated with postintegration latency. Proc Natl Acad Sci 93(13):6377–6381. https://doi.org/10.1073/PNAS.93.13.6377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Karn J (2011) The molecular biology of HIV latency: Breaking and restoring the Tat-dependent transcriptional circuit. Curr Opin HIV AIDS 6(1):4–11. https://doi.org/10.1097/COH.0B013E328340FFBB

    Article  PubMed Central  PubMed  Google Scholar 

  138. Tyagi M, Pearson RJ, Karn J (2010) Establishment of HIV Latency in Primary CD4 + Cells Is due to Epigenetic Transcriptional Silencing and P-TEFb Restriction. J Virol 84(13):6425–6437. https://doi.org/10.1128/JVI.01519-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Cullen BR, Lomedico PT, Ju G (1984) Transcriptional interference in avian retroviruses—implications for the promoter insertion model of leukaemogenesis. Nat 1984 3075948 307(5948):241–245. https://doi.org/10.1038/307241a0

    Article  CAS  Google Scholar 

  140. Greger IH, Proudfoot NJ, Demarchi F, Giacca M (1998) Transcriptional interference perturbs the binding of Sp1 to the HIV-1 promoter. Nucleic Acids Res 26(5):1294–1300. https://doi.org/10.1093/NAR/26.5.1294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Landry S, Halin M, Lefort S, Audet B, Vaquero C, Mesnard JM et al (2007) Detection, characterization and regulation of antisense transcripts in HIV-1. Retrovirology 2007 41. 4(1):1–16. https://doi.org/10.1186/1742-4690-4-71

  142. Hunt PW, Martin JN, Sinclair E, Epling L, Teague J, Jacobson MA et al (2011) Valganciclovir Reduces T Cell Activation in HIV-Infected Individuals With Incomplete CD4 + T Cell Recovery on Antiretroviral Therapy. J Infect Dis 203(10):1474–1483. https://doi.org/10.1093/INFDIS/JIR060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Cox AL, Siliciano RF (2014) Not-so-innocent bystanders. Nat 2014 5057484 505(7484):492–493. https://doi.org/10.1038/505492a

    Article  CAS  Google Scholar 

  144. Schnittman SM, Lane HC, Greenhouse J, Justement JS, Baseler M, Fauci AS (1990) Preferential infection of CD4 + memory T cells by human immunodeficiency virus type 1: evidence for a role in the selective T-cell functional defects observed in infected individuals. Proc Natl Acad Sci 87(16):6058–6062. https://doi.org/10.1073/PNAS.87.16.6058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Valle-Casuso J, Angin M, Volant S, Chomont N, Sá ez-Cirió Correspondence A, Passaes C et al (2019) Cellular Metabolism Is a Major Determinant of HIV-1 Reservoir Seeding in CD4 + T Cells and Offers an Opportunity to Tackle Infection Cell Metabolism Article Cellular Metabolism Is a Major Determinant of HIV-1 Reservoir Seeding in CD4 + T Cells and Offers. Cell Metab 29:611–626e5. https://doi.org/10.1016/j.cmet.2018.11.015

    Article  CAS  PubMed  Google Scholar 

  146. Loisel-Meyer S, Swainson L, Craveiro M, Oburoglu L, Mongellaz C, Costa C et al (2012) Glut1-mediated glucose transport regulates HIV infection. Proc Natl Acad Sci 109(7):2549–2554. https://doi.org/10.1073/PNAS.1121427109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Palmer CS, Ostrowski M, Gouillou M, Tsai L, Yu D, Zhou J et al (2014) Increased glucose metabolic activity is associated with CD4 + T-cell activation and depletion during chronic HIV infection. AIDS 28(3):297–309. https://doi.org/10.1097/QAD.0000000000000128

    Article  CAS  PubMed  Google Scholar 

  148. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D et al (2014) The Glucose Transporter Glut1 Is Selectively Essential for CD4 T Cell Activation and Effector Function. Cell Metab 20(1):61–72. https://doi.org/10.1016/J.CMET.2014.05.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. Castellano P, Prevedel L, Valdebenito S, Eugenin EA (2019) HIV infection and latency induce a unique metabolic signature in human macrophages. Sci Rep 9(1):91. https://doi.org/10.1038/s41598-019-39898-5

    Article  CAS  Google Scholar 

  150. Chougui G, Margottin-Goguet F (2019) HUSH, a Link Between Intrinsic Immunity and HIV Latency. Front Microbiol. https://doi.org/10.3389/FMICB.2019.00224

    Article  PubMed Central  PubMed  Google Scholar 

  151. Ayinde D, Casartelli N, Schwartz O (2012) Restricting HIV the SAMHD1 way: through nucleotide starvation. Nat Rev Microbiol 2012 1010 10(10):675–680. https://doi.org/10.1038/nrmicro2862

    Article  CAS  Google Scholar 

  152. Sun B, Yang R, Mallardo M (2016) Roles of microRNAs in HIV-1 Replication and Latency. MicroRNA (Shariqah, United Arab Emirates). 5(2):120–123. https://doi.org/10.2174/2211536605666160829123118

  153. Heinson AI, Woo J, Mukim A, White CH, Moesker B, Bosque A et al (2021) Micro RNA Targets in HIV Latency: Insights into Novel Layers of Latency Control. AIDS Res Hum Retroviruses 37(2):109–121. https://doi.org/10.1089/aid.2020.0150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Kessing CF, Nixon CC, Li C, Tsai P, Takata H, Mousseau G et al (2017) In Vivo Suppression of HIV Rebound by Didehydro-Cortistatin A, a “Block-and-Lock” Strategy for HIV-1 Treatment. Cell Rep 21(3):600–611. https://doi.org/10.1016/J.CELREP.2017.09.080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Ait-Ammar A, Kula A, Darcis G, Verdikt R, De Wit S, Gautier V et al (2020) Current Status of Latency Reversing Agents Facing the Heterogeneity of HIV-1 Cellular and Tissue Reservoirs. Front Microbiol 0:3060. https://doi.org/10.3389/FMICB.2019.03060

    Article  Google Scholar 

  156. Matsuda K, Kobayakawa T, Tsuchiya K, Hattori S ichiro, Nomura W, Gatanaga H et al (2019) Benzolactam-related compounds promote apoptosis of HIV-infected human cells via protein kinase C–induced HIV latency reversal. J Biol Chem 294(1):116–29. https://doi.org/10.1074/jbc.RA118.005798

  157. Hattori SI, Matsuda K, Tsuchiya K, Gatanaga H, Oka S, Yoshimura K et al (2018) Minimizes secondary HIV-1 Infection in vitro. Front Microbiol 9(SEP):1–14. https://doi.org/10.3389/fmicb.2018.02022

    Article  Google Scholar 

  158. López-Huertas MR, Jiménez-Tormo L, Madrid-Elena N, Gutiérrez C, Rodríguez-Mora S, Coiras M et al (2017) The CCR5-Antagonist Maraviroc reverses HIV-1 latency in vitro alone or in combination with the PKC-Agonist Bryostatin-1. Sci Rep 7(1):1–13. https://doi.org/10.1038/s41598-017-02634-y

    Article  CAS  Google Scholar 

  159. Ensoli F, Cafaro A, Casabianca A, Tripiciano A, Bellino S, Longo O et al (2015) HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: Results of a randomized phase II exploratory clinical trial. Retrovirology 12(1):1–28. https://doi.org/10.1186/s12977-015-0151-y

    Article  CAS  Google Scholar 

  160. Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM et al (2012) Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nat 2012 4877408 487(7408):482–485. https://doi.org/10.1038/nature11286

    Article  CAS  Google Scholar 

  161. Elliott JH, McMahon JH, Chang CC, Lee SA, Hartogensis W, Bumpus N et al (2015) Short-term administration of disulfiram for reversal of latent HIV infection: a phase 2 dose-escalation study. Lancet HIV 2(12):e520–e529. https://doi.org/10.1016/S2352-3018(15)00226-X

    Article  PubMed Central  PubMed  Google Scholar 

  162. Rasmussen TA, Tolstrup M, Brinkmann CR, Olesen R, Erikstrup C, Solomon A et al (2014) Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV 1(1):e13–e21. https://doi.org/10.1016/S2352-3018(14)70014-1

    Article  PubMed  Google Scholar 

  163. Søgaard OS, Graversen ME, Leth S, Olesen R, Brinkmann CR, Nissen SK et al (2015) The Depsipeptide Romidepsin Reverses HIV-1 Latency In Vivo. PLOS Pathog 11(9):e1005142. https://doi.org/10.1371/JOURNAL.PPAT.1005142

    Article  PubMed Central  PubMed  Google Scholar 

  164. Laird GM, Bullen CK, Rosenbloom DIS, Martin AR, Hill AL, Durand CM et al (2015) Ex vivo analysis identifies effective HIV-1 latency–reversing drug combinations. J Clin Invest 125(5):1901–1912. https://doi.org/10.1172/JCI80142

    Article  PubMed Central  PubMed  Google Scholar 

  165. Petravic J, Rasmussen TA, Lewin SR, Kent SJ, Davenport MP (2017) Relationship between Measures of HIV Reactivation and Decline of the Latent Reservoir under Latency-Reversing Agents. J Virol 91(9). https://doi.org/10.1128/JVI.02092-16

  166. McKernan LN, Momjian D, Kulkosky J (2012) Protein kinase C: One pathway towards the eradication of latent HIV-1 Reservoirs. Adv Virol. 2012. https://doi.org/10.1155/2012/805347

  167. Gutiérrez C, Serrano-Villar S, Madrid-Elena N, Pérez-Eĺas MJ, Martń ME, Barbas C et al (2016) Bryostatin-1 for latent virus reactivation in HIV-infected patients on antiretroviral therapy. AIDS 30(9):1385–1392. https://doi.org/10.1097/QAD.0000000000001064

    Article  CAS  PubMed  Google Scholar 

  168. Nappi F, Chiozzini C, Bordignon V, Borsetti A, Bellino S, Cippitelli M et al (2009) Immobilized HIV-1 Tat protein promotes gene transfer via a transactivation-independent mechanism which requires binding of Tat to viral particles. J Gene Med 11(11):955–965. https://doi.org/10.1002/JGM.1381

    Article  CAS  PubMed  Google Scholar 

  169. Ghezzi S, Noonan DM, Aluigi MG, Vallanti G, Cota M, Benelli R et al (2000) Inhibition of CXCR4-dependent HIV-1 infection by extracellular HIV-1 Tat. Biochem Biophys Res Commun 270(3):992–996. https://doi.org/10.1006/BBRC.2000.2523

    Article  CAS  PubMed  Google Scholar 

  170. Huang L, Bosch I, Hofmann W, Sodroski J, Pardee AB (1998) Tat protein induces human immunodeficiency virus type 1 (HIV-1) coreceptors and promotes infection with both macrophage-tropic and T-lymphotropic HIV-1 strains. J Virol 72(11):8952–8960. https://doi.org/10.1128/JVI.72.11.8952-8960.1998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  171. Albini A, Ferrini S, Benelli R, Sforzini S, Giunciuglio D, Aluigi MG et al (1998) HIV-1 Tat protein mimicry of chemokines. Proc Natl Acad Sci U S A 95(22):13153–13158. https://doi.org/10.1073/PNAS.95.22.13153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  172. Moretti S, Cafaro A, Tripiciano A, Picconi O, Buttò S, Ensoli F et al (2020) HIV therapeutic vaccines aimed at intensifying combination antiretroviral therapy. Expert Rev Vaccines 19(1):71–84. https://doi.org/10.1080/14760584.2020.1712199

  173. Reuter MA, Estrada PMDR, Buggert M, Petrovas C, Ferrando-Martinez S, Nguyen S et al (2017) HIV-Specific CD8 + T Cells Exhibit Reduced and Differentially Regulated Cytolytic Activity in Lymphoid Tissue. Cell Rep 21(12):3458–3470. https://doi.org/10.1016/J.CELREP.2017.11.075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  174. Perdomo-Celis F, Taborda NA, Rugeles MT (2019) CD8 + T-Cell Response to HIV Infection in the Era of Antiretroviral Therapy. Front Immunol. 1896. https://doi.org/10.3389/fimmu.2019.01896

  175. Tateishi H, Monde K, Anraku K, Koga R, Hayashi Y, Ciftci HI et al (2017) A clue to unprecedented strategy to HIV eradication: “Lock-in and apoptosis. Sci Rep 2017 71 7(1):1–8. https://doi.org/10.1038/s41598-017-09129-w

    Article  CAS  Google Scholar 

  176. Rao S, Lungu C, Crespo R, Steijaert TH, Gorska A, Palstra RJ et al (2021) Selective cell death in HIV-1-infected cells by DDX3 inhibitors leads to depletion of the inducible reservoir. Nat Commun 2021 121 12(1):1–20. https://doi.org/10.1038/s41467-021-22608-z

    Article  CAS  Google Scholar 

  177. Vansant G, Bruggemans A, Janssens J, Debyser Z (2020) Block-and-lock strategies to cure HIV infection [Internet]. Vol. 12, Viruses. MDPI AG; [cited 2021 Jun 28]. https://doi.org/10.3390/v12010084

  178. Mousseau G, Clementz MA, Bakeman WN, Nagarsheth N, Cameron M, Shi J et al (2012) An analog of the natural steroidal alkaloid cortistatin A potently suppresses Tat-dependent HIV transcription. Cell Host Microbe 12(1):97–108. https://doi.org/10.1016/J.CHOM.2012.05.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Mousseau G, Kessing CF, Fromentin R, Trautmann L, Chomont N, Valente ST (2015) The tat inhibitor didehydro-cortistatin a prevents HIV-1 reactivation from latency. MBio 6(4). https://doi.org/10.1128/MBIO.00465-15

  180. Dash PK, Kaminski R, Bella R, Su H, Mathews S, Ahooyi TM et al (2019) Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a Subset of Infected Humanized Mice. Nat Commun 2019 101 10(1):1–20. https://doi.org/10.1038/s41467-019-10366-y

    Article  CAS  Google Scholar 

  181. Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug IIRG et al (2012) In vivo genome editing using a high-efficiency TALEN system. Nat 2012 4917422 491(7422):114–118. https://doi.org/10.1038/nature11537

    Article  CAS  Google Scholar 

  182. Shun MC, Raghavendra NK, Vandegraaff N, Daigle JE, Hughes S, Kellam P et al (2007) LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev 21(14):1767–1778. https://doi.org/10.1101/GAD.1565107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. ML ABGVMB (2021) GS-9822, a preclinical LEDGIN candidate, displays a block-and-lock phenotype in cell culture. Antimicrob Agents Chemother 65(5). https://doi.org/10.1128/AAC.02328-20

  184. LS V et al (2016) J D, S S, A B, G V, R S, LEDGIN-mediated Inhibition of Integrase-LEDGF/p75 Interaction Reduces Reactivation of Residual Latent HIV. EBioMedicine. 8:248–64. https://doi.org/10.1016/J.EBIOM.2016.04.039

  185. Liu Z, Chen S, Jin X, Wang Q, Yang K, Li C et al (2017) Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4 + T cells from HIV-1 infection. Cell Biosci 2017 71 7(1):1–15. https://doi.org/10.1186/S13578-017-0174-2

    Article  Google Scholar 

  186. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  187. Bhowmik R, Chaubey B (2022) CRISPR/Cas9: a tool to eradicate HIV-1. AIDS Res Ther 19(1):58. https://doi.org/10.1186/s12981-022-00483-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  188. Kaminski R, Chen Y, Salkind J, Bella R, Young W, Bin, Ferrante P et al (2016) Negative Feedback Regulation of HIV-1 by Gene Editing Strategy. Sci Rep 6(June):1–11. https://doi.org/10.1038/srep31527

    Article  CAS  Google Scholar 

  189. Liao HK, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M et al (2015) Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun 6:1–10. https://doi.org/10.1038/ncomms7413

    Article  CAS  Google Scholar 

  190. Choi WT, Yang Y, Xu Y, An J (2014) Targeting Chemokine Receptor CXCR4 for Treatment of HIV-1 Infection, Tumor Progression, and Metastasis. Curr Top Med Chem 14(13):1574. https://doi.org/10.2174/1568026614666140827143541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  191. Yukl SA, Boritz E, Busch M, Bentsen C, Chun TW, Douek D et al (2013) Challenges in Detecting HIV Persistence during Potentially Curative Interventions: A Study of the Berlin Patient. PLOS Pathog 9(5):e1003347. https://doi.org/10.1371/JOURNAL.PPAT.1003347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  192. Abram ME, Ferris AL, Das K, Quinoñes O, Shao W, Tuske S et al (2014) Mutations in HIV-1 Reverse Transcriptase Affect the Errors Made in a Single Cycle of Viral Replication. J Virol 88(13):7589–7601. https://doi.org/10.1128/jvi.00302-14

    Article  PubMed Central  PubMed  Google Scholar 

  193. Herrera-Carrillo E, Gao Z, Berkhout B (2020) CRISPR therapy towards an HIV cure. Brief Funct Genomics 19(3):201–208. https://doi.org/10.1093/bfgp/elz021

    Article  PubMed  Google Scholar 

  194. Stock PG, Barin B, Hatano H, Rogers RL, Roland ME, Lee TH et al (2014) Reduction of HIV Persistence Following Transplantation in HIV-Infected Kidney Transplant Recipients. Am J Transplant 14(5):1136–1141. https://doi.org/10.1111/AJT.12699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  195. Palmer CS, Ostrowski M, Balderson B, Christian N, Crowe SM (2015) Glucose Metabolism Regulates T Cell Activation, Differentiation, and Functions. Front Immunol. 1. https://doi.org/10.3389/FIMMU.2015.00001

  196. Palmer CS, Hussain T, Duette G, Weller TJ, Ostrowski M, Sada-Ovalle I et al (2016) Regulators of Glucose Metabolism in CD4 + and CD8 + T Cells. Int Rev Immunol 35(6):477–488. https://doi.org/10.3109/08830185.2015.1082178

    Article  CAS  PubMed  Google Scholar 

  197. Hegedus A, Kavanagh Williamson M, Huthoff H (2014) HIV-1 pathogenicity and virion production are dependent on the metabolic phenotype of activated CD4 + T cells. Retrovirology 11(1). https://doi.org/10.1186/S12977-014-0098-4

  198. Romeo C, Seed B (1991) Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell 64(5):1037–1046. https://doi.org/10.1016/0092-8674(91)90327-U

    Article  CAS  PubMed  Google Scholar 

  199. Masiero S, Del Vecchio C, Gavioli R, Mattiuzzo G, Cusi MG, Micheli L et al (2004) T-cell engineering by a chimeric T-cell receptor with antibody-type specificity for the HIV-1 gp120. 12(4):299–310 Gene Ther 2005 124. https://doi.org/10.1038/sj.gt.3302413

  200. Tan R, Xu X, Ogg GS, Hansasuta P, Dong T, Rostron T et al (1999) Rapid Death of Adoptively Transferred T Cells in Acquired Immunodeficiency Syndrome. Blood 93(5):1506–1510. https://doi.org/10.1182/BLOOD.V93.5.1506

    Article  CAS  PubMed  Google Scholar 

  201. Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G, Hege KM et al (2012) Decade-Long Safety and Function of Retroviral-Modified Chimeric Antigen Receptor T Cells. Sci Transl Med 4(132). https://doi.org/10.1126/SCITRANSLMED.3003761

  202. Yang H, Wallace Z, Dorrell L (2018) Therapeutic Targeting of HIV Reservoirs: How to Give T Cells a New Direction. Front Immunol 0:2861. https://doi.org/10.3389/FIMMU.2018.02861

    Article  Google Scholar 

  203. Haran KP, Hajduczki A, Pampusch MS, Mwakalundwa G, Vargas-Inchaustegui DA, Rakasz EG et al (2018) Simian Immunodeficiency Virus (SIV)-Specific Chimeric Antigen Receptor-T Cells Engineered to Target B Cell Follicles and Suppress SIV Replication. Front Immunol 0(MAR):492. https://doi.org/10.3389/FIMMU.2018.00492

    Article  Google Scholar 

  204. Brozy J, Schlaepfer E, Mueller CKS, Rochat MA, Rampini SK, Myburgh R et al (2018) Antiviral Activity of HIV gp120-Targeting Bispecific T Cell Engager Antibody Constructs. J Virol 92(14). https://doi.org/10.1128/JVI.00491-18

  205. Davis-Gardner ME, Alfant B, Weber JA, Gardner MR, Farzan M (2020) A Bispecific Antibody That Simultaneously Recognizes the V2- and V3-Glycan Epitopes of the HIV-1 Envelope Glycoprotein Is Broader and More Potent than Its Parental Antibodies. MBio 11(1). https://doi.org/10.1128/MBIO.03080-19

  206. Mummert C, Hofmann C, Huckelhoven AG, Bergmann S, Mueller-Schmucker SM, Harrer EG et al (2016) T-cell receptor transfer for boosting HIV-1-specific T-cell immunity in HIV-1-infected patients. AIDS 30(14):2149–2158. https://doi.org/10.1097/QAD.0000000000001176

    Article  CAS  PubMed  Google Scholar 

  207. Joseph A, Zheng JH, Follenzi A, DiLorenzo T, Sango K, Hyman J et al (2008) Lentiviral Vectors Encoding Human Immunodeficiency Virus Type 1 (HIV-1)-Specific T-Cell Receptor Genes Efficiently Convert Peripheral Blood CD8 T Lymphocytes into Cytotoxic T Lymphocytes with Potent In Vitro and In Vivo HIV-1-Specific Inhibitory Activity. J Virol 82(6):3078–3089. https://doi.org/10.1128/JVI.01812-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  208. Postow MA, Callahan MK, Wolchok JD (2015) Immune Checkpoint Blockade in Cancer Therapy. 33(17):1974–82. https://doi.org/10.1200/JCO.2014.59.4358https://doi.org/101200/JCO2014594358

  209. Guihot A, Marcelin AG, Massiani MA, Samri A, Soulié C, Autran B et al (2018) Drastic decrease of the HIV reservoir in a patient treated with nivolumab for lung cancer. Ann Oncol 29(2):517–518. https://doi.org/10.1093/ANNONC/MDX696

    Article  CAS  PubMed  Google Scholar 

  210. Harper J, Gordon S, Chan CN, Wang H, Lindemuth E, Galardi C et al (2020) CTLA-4 and PD-1 dual blockade induces SIV reactivation without control of rebound after antiretroviral therapy interruption. Nat Med 26(4):519–28. https://doi.org/10.1038/s41591-020-0782-y

  211. Wightman F, Solomon A, Kumar SS, Urriola N, Gallagher K, Hiener B et al (2015) Effect of ipilimumab on the HIV reservoir in an HIV-infected individual with metastatic melanoma. AIDS 29(4):504–506. https://doi.org/10.1097/QAD.0000000000000562

    Article  PubMed  Google Scholar 

  212. Evans VA, Van Der Sluis RM, Solomon A, Dantanarayana A, McNeil C, Garsia R et al (2018) Programmed cell death-1 contributes to the establishment and maintenance of HIV-1 latency. AIDS 32(11):1491–1497. https://doi.org/10.1097/QAD.0000000000001849

    Article  CAS  PubMed  Google Scholar 

  213. Lau JSY, McMahon JH, Gubser C, Solomon A, Chiu CYH, Dantanarayana A et al (2021) The impact of immune checkpoint therapy on the latent reservoir in HIV-infected individuals with cancer on antiretroviral therapy. AIDS 35(10):1631–1636. https://doi.org/10.1097/QAD.0000000000002919

    Article  PubMed  Google Scholar 

  214. Rasmussen TA, Rajdev L, Rhodes A, Dantanarayana A, Tennakoon S, Chea S et al (2021) Impact of Anti-PD-1 and Anti-CTLA-4 on the Human Immunodeficiency Virus (HIV) Reservoir in People Living With HIV With Cancer on Antiretroviral Therapy: The AIDS Malignancy Consortium 095 Study. Clin Infect Dis 73(7):e1973–e1981. https://doi.org/10.1093/CID/CIAA1530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  215. Fromentin R, Bakeman W, Lawani MB, Khoury G, Hartogensis W, DaFonseca S et al (2016) CD4 + T Cells Expressing PD-1, TIGIT and LAG-3 Contribute to HIV Persistence during ART. PLOS Pathog 12(7):e1005761. https://doi.org/10.1371/JOURNAL.PPAT.1005761

    Article  PubMed Central  PubMed  Google Scholar 

  216. Rico GT, Chan MM, Loo KF (2020) The safety and efficacy of immune checkpoint inhibitors in patients with advanced cancers and pre-existing chronic viral infections (Hepatitis B/C, HIV): A review of the available evidence. Cancer Treat Rev 86. https://doi.org/10.1016/J.CTRV.2020.102011

  217. Gay CL, Bosch RJ, Ritz J, Hataye JM, Aga E, Tressler RL et al (2017) Clinical Trial of the Anti-PD-L1 Antibody BMS-936559 in HIV-1 Infected Participants on Suppressive Antiretroviral Therapy. J Infect Dis 215(11):1725–1733. https://doi.org/10.1093/INFDIS/JIX191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Funding

This work was supported by Mincencias (project number 111584467553). The funders had no role in study design, data collection, and interpretation or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the article. MCM, CLG, and MTR conceived the design of the study; MCM, CLG, and SGQ performed research for the articles reviewed; FJD, MTR, and NAT decided on the most important articles to include in the review; and MCM, FJD, SGQ, and NAT wrote the article. All authors approved the final draft of this article.

Corresponding author

Correspondence to Natalia A. Taborda.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest. The figures included in this article were created using BioRender.com.

Additional information

Communicated by Carolina Scagnolari

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chvatal-Medina, M., Lopez-Guzman, C., Diaz, F.J. et al. Molecular mechanisms by which the HIV-1 latent reservoir is established and therapeutic strategies for its elimination. Arch Virol 168, 218 (2023). https://doi.org/10.1007/s00705-023-05800-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05800-y

Navigation