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Abstract

Human adenovirus type 7 (HAdV-7) can cause severe pneumonia and complications in children. However, the mecha-
nism of pathogenesis and the genes involved remain largely unknown. We collected HAdV-7-infected and mock-infected
A549 cells at 24, 48, and 72 hours postinfection (hpi) for RNA sequencing (RNA-Seq) and identified potential genes and
functional pathways associated with HAdV-7 infection using weighted gene coexpression network analysis (WGCNA).
Based on bioinformatics analysis, 12 coexpression modules were constructed by WGCNA, with the blue, tan, and brown
modules significantly positively correlated with adenovirus infection at 24, 48, and 72 hpi, respectively. Functional enrich-
ment analysis indicated that the blue module was mainly enriched in DNA replication and viral processes, the tan module
was largely enriched in metabolic pathways and regulation of superoxide radical removal, and the brown module was
predominantly enriched in regulation of cell death. qPCR was used to determine transcript abundance of some identified
hub genes, and the results were consistent with those from RNA-Seq. Comprehensively analyzing hub genes and differ-
entially expressed genes in the GSE68004 dataset, we identified SOCS3, OASL, ISG15, and IFIT] as potential candidate
genes for use as biomarkers or drug targets in HAdV-7 infection. We propose a multi-target inhibition of the interferon
signaling mechanism to explain the association of HAdV-7 infection with the severity of clinical consequences. This
study has allowed us to construct a framework of coexpression gene modules in A549 cells infected with HAdV-7, thus
providing a basis for identifying potential genes and pathways involved in adenovirus infection and for investigating the
pathogenesis of adenovirus-associated diseases.

Keywords Human adenovirus type 7 - Coexpression network - Weighted gene coexpression network analysis
(WGCNA) - Pathogenesis

Introduction

Human adenoviruses (HAdVs) belong to the genus Mast-
adenovirus within the family Adenoviridae and are classi-
Handling Editor Eric J Kremer fied into seven species (A-G). Since the first adenovirus was
characterized [32], over 100 types have been recognized
based on genome sequences (https://hadvwg.gmu.edu/).
Among these, members of species B (HAdV -3, 7, 11, 14,
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adenovirus-associated diseases remain largely unknown,
and the genes and pathways involved in these processes still
need to be identified.

Several studies examining RNA and protein expres-
sion profiles have revealed multiple alterations in gene
expression in infected cells [45]. For example, quantita-
tive proteomic analysis of HAdV-2-infected A549 cells and
transcriptomic analysis of HAdV-2-infected human primary
lung fibroblasts at 24 and 48 hours postinfection (hpi) have
shown that viral infection affects the expression of genes
and proteins involved in various cellular pathways [1, 44].
However, other HAdVs in different host cells using dif-
ferent methodologies also need to be explored to improve
our understanding of adenovirus infection and adenovirus-
associated diseases. RNA sequencing (RNA-Seq) for tran-
scriptome profiling uses deep sequencing technology, with
the resulting reads used to produce genome-scale transcrip-
tion maps composed of both the transcription structure and
expression level of each gene for a specific developmental
stage or physiological condition, thus generating a tremen-
dous amount of data [36].

Many genes are involved in the pathogenesis of ade-
novirus-associated diseases, thus constituting a complex
network. The exploration of gene-network signatures asso-
ciated with complex diseases and biological processes can
be achieved by weighted gene coexpression network analy-
sis (WGCNA) [18]. Using this algorithm, gene expression
data are transformed into coexpression modules, and trait
data are effectively integrated to identify functional path-
ways and key genes implicated in the pathogenesis process
[40].

In this study, we constructed coexpression modules using
expression data obtained from HAdV-7-infected A549
cells and identified modules containing highly coexpressed
genes. Functional enrichment analysis was performed on
the modules of interest, and hub genes were identified in the
corresponding modules. Candidate genes with biomarker
and therapeutic target potential were also identified. This
study provides a foundation for further investigation of the
pathogenesis of adenovirus-associated diseases and poten-
tial therapies.

Materials and methods

Cell culture and adenovirus infection

The HAdV-7 strain (CQ45 2019, MT113943) used in this
study was originally isolated from nasal aspirates from
a child infected with HAdV-7 infection and was stored

at —80°C. The strain was cultured in A549 cells obtained
from the American Type Culture Collection (ATCC) and
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subsequently maintained in our lab. The HAdV-7 particles
were purified by standard caesium chloride gradient cen-
trifugation and suspended in Hank’s balanced salt solution
(HBSS) with 0.5% fetal bovine serum (FBS, Gibco) as
described previously [17]. The median tissue culture infec-
tious dose (TCIDsy) of the virus was calculated as described
previously [34]. A549 cells were infected with HAdV-7 at
a multiplicity of infection (MOI) of 1, and three biological
replicates of infected and mock-infected cells were collected
at 24, 48, and 72 hpi for RNA-Seq. All virus experiments
were performed in biosafety level 2 facilities following gov-
ernmental and institutional guidelines.

RNA library construction and sequencing

Total RNA was isolated and purified from six samples of
HAdV-7-infected and mock-infected A549 cells (three
each) using TRIzol Reagent (Invitrogen, Carlsbad, CA,
USA), following the manufacturer’s procedures. Poly(A)
RNA was purified from 1 pg of total RNA using Dynabeads
Oligo (dT)25-61005 (Thermo Fisher, CA, USA) with two
rounds of purification. The poly(A) RNA was then frag-
mented into small pieces using the NEBNext Magnesium
RNA Fragmentation Module (cat. no. E6150, NEB, USA)
at 94°C for 5-7 min. The cleaved RNA fragments were then
reverse transcribed to create cDNA using SuperScript II
Reverse Transcriptase (cat. no. 1896649, Invitrogen, USA)
for the synthesis of U-labeled second-stranded DNA with
E. coli DNA polymerase I (cat. no. m0209, NEB, USA),
RNase H (cat. no. m0297, NEB, USA), and dUTP solution
(cat. no. R0133, Thermo Fisher, USA). An A-base was then
added to the blunt ends of each strand for ligation to the
indexed adapters. Each adapter contained a T-base over-
hang to ligate the adapter to the A-tailed fragmented DNA,
and single- or dual-index adapters were ligated to the frag-
ments. After treatment of the U-labeled second-stranded
DNA with heat-labile UDG enzyme (cat. no. m0280, NEB,
USA), the ligated products were amplified by polymerase
chain reaction (PCR). The average insert size for the final
cDNA library was 300+ 50 bp. Lastly, 2 x 150-bp paired-
end sequencing (PE150) was performed using an Illumina
NovaSeq 6000 instrument (LC-Bio-Technology Co., Ltd.,
Hangzhou, China) following the vendor’s recommended
protocols.
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Bioinformatic analysis

Correlation analysis of replicas and principal
component analysis (PCA)

When examining gene expression in the samples, we per-
formed R correlation analysis of two parallel experiments
to evaluate repeatability. PCA was performed using the R
package “model” (http://www.r-project.org/) to detect pos-
sible clusters or outliers among samples.

Differentially expressed gene (DEG) screening

Genes that were differentially expressed between uninfected
and adenoviral-infected cells were identified using the R
package “DESeq2” [27]. Genes with a fold-change>2 or
<0.5 and a P-value <0.05 were considered DEGs.

Construction of a coexpression network

A coexpression network based on HAdV-7-infected and
mock-infected cells was constructed using the R package
“WGCNA” [18]. The gradient method was applied to test
the independence and average degree of connectivity of dif-
ferent modules with different power values (ranging from
1 to 30). We selected a soft-thresholding power of 4 when
the degree of independence was 0.9. The minimum number
of genes was set to 40 to ensure high reliability of results.
To merge possibly similar modules, we defined 0.1 as the
threshold for cut height. Coexpression modules were iden-
tified using the WGCNA algorithm, and similar modules
(module eigengenes) were merged into a single module and
then used for further interpretation.

Functional enrichment analysis
The constructed modules were arranged by number of
genes. To gain insight into the function of the genes in

the modules most affected by HAdV-7 infection, we used
the Database for Annotation, Visualization, and Integrated

Table 1 Sequences of primers used in the study

Gene  Forward primer sequence (5’—3’) Reverse primer
sequence (5’—3’)
KIF5C ATCCCACGAATTGCCCATGAT CCCTTTACATAC-
GGGACTCTGT
SFRP5 CTGAGATGCTGCACTGCCA-  GTCAGCACTGT-
CAA GCTCCATCTCA
TP73  CACCTCAGCTCTCCATCT- GCATGGGTCT-
TATTG TAGCCTTTCT
0ASL  CCATTGTGCCTGCCTACAGAG CTTCAGCT-
TAGTTGGCCGATG
SOCS3 CATCTCTGTCGGAAGACC- GCATCGTACTG-
GTCA GTCCAGGAACT

Discovery (DAVID) (https://david.ncifcrf.gov/home.jsp/) to
perform Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analy-
ses. A P-value of <0.05 was set as the cutoff threshold, and,
if there were more than 10 records, the top 10 records were
extracted. The R package “ggplot” was used to show the
results graphically.

Hub gene identification and validation

Genes in each module of interest with module membership
(MM) > 0.8 and gene significance (GS)>0.2 were identified
as important intramodular genes, indicating a significant
correlation with HAdV-7 infection. Subsequently, the DEGs
obtained by RNA-Seq were overlapped with the correspond-
ing important intramodular genes to identify hub genes,
the results of which are presented as a table and Venn dia-
grams (http://bioinformatics.psb.ugent.be/webtools/Venn/).
To further validate the confidence of the high-throughput
transcriptome sequencing, five hub genes were randomly
selected for analysis via quantitative PCR (qPCR).

Total RNA was extracted from HAdV-7-infected and
mock-infected A549 cells using Direct-zol RNA Miniprep
(R2050, Zymo Research) and TRIzol Reagent (Takara,
Kusatsu, Japan) according to the manufacturer’s instruc-
tions. Purified RNA was reverse transcribed into cDNA
using a Transcriptor cDNA Synthesis Kit 2 (Roche). Newly
synthesized ¢cDNA was analyzed by qPCR using SYBR
Green PCR master mix (Vazyme) on a CFX96 Touch Real-
Time PCR Detection System in 20-ul reactions. Relative
mRNA expression was quantified using the comparative
threshold (2722¢T) method, with GAPDH as a calibrator.
The sequences of the primers that were used are shown in
Table 1.

Identification of potential candidate genes

To identify the hub genes that play important roles in
adenovirus infection, we selected an appropriate dataset,
GSE68004, from the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) by entering the
keyword ‘HAdV’. This dataset contains blood RNA data
from 76 pediatric patients with complete Kawasaki disease
(KD), 13 with incomplete KD, 19 with HAdV, 17 with group
A streptococcal (GAS) disease, and 37 healthy controls
(HC). The GEO2R tool in the GEO database was employed
to analyze samples from patients with HAdV and HC. Cri-
teria for identifying DEGs via GEO2R analysis were set to
P<0.05,logFC> 1, or logFC < -1. The DEGs and hub genes
in the key modules were assessed through reciprocal over-
lap  (http://bioinformatics.psb.ugent.be/webtools/Venn/),
and overlapping genes were regarded as candidate genes.
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An interaction network was constructed using GeneMANIA
(http://genemania.org/, accessed on 5 January 2021).

Statistical analysis

Statistical analysis of candidate gene expression was per-
formed using GraphPad Prism 8.0 (GraphPad Software
Inc.). Results are expressed as the mean * standard error of
the mean (SEM). Data were analyzed using two-way analy-
sis of variance (ANOVA) for multiple comparisons. Differ-
ences with P <0.05 were considered statistically significant.

Fig. 1 Transcriptomic analy-
sis of HAdV-7-infected and

Results

Transcriptomic analysis of HAdV-7-infected and
mock-infected A549 cells

To better understand the underlying mechanisms of HAdV-7
infection, we conducted comparative transcriptomic analy-
sis of HAdV-7-infected and mock-infected A549 cells.
Pearson correlation analysis based on sample expres-
sion was used to evaluate differences between groups. As
shown in Fig. 1A, samples were closely correlated, with a
minimum coefficient of 0.971 between groups, indicating
good parallelism between biological replicates and reliable
sequencing results. As a powerful tool for reducing dimen-
sionality of complex datasets, PCA shows high performance
in excluding outliers and artifacts [35]. Figure 1B shows a
PCA plot of the 18 specimens in the two-dimensional plane.
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The first and second principal components (PC1 and PC2)
explained 93.86% and 5.42% of sample variance, respec-
tively. At each time point, samples from infected and unin-
fected (control) cells were separated, while the closeness of
samples within groups showed good repeatability. Based
on differential expression analysis, 834 DEGs (598 up- and
236 downregulated) at 24 hpi, 945 DEGs (638 up- and 307
downregulated) at 48 hpi, and 1399 DEGs (1066 up- and
273 downregulated) at 72 hpi were identified when com-
paring mock-infected and HAdV-7-infected cells (Fig. 1C).
The distribution of the DEGs is shown in a volcano plot in
Fig. 1D-F.

Gene coexpression modules correspond to HAdV-7
infection

Module-trait associations were analyzed by correlating
module eigengenes with clinical traits (i.e., HAdV-7 infec-
tion). As shown in Fig. 2A, multiple modules were related
to Ad-24 hpi, Ad-48 hpi, and Ad-72 hpi. Among them, the
blue module (containing 2934 genes) was significantly
associated with Ad-24 hpi (r=0.73; P<0.001), the tan mod-
ule (containing 167 genes) was significantly associated with
Ad-48 hpi (r=0.63; P=0.005), and the brown module (con-
taining 1259 genes) was highly positively correlated with
Ad-72 hpi (r=0.95; P<0.001). Therefore, these three mod-
ules were identified as key modules for HAdV-7 infection.
We constructed a scatterplot of GS vs. MM in the key mod-
ules (Fig. 2B-D). Genes in the blue, tan, and brown mod-
ules that were most significantly associated with HAdV-7
infection characteristics (GS) were also the most important

Fig.4 (A-B) GO and KEGG A
enrichment analysis of genes

GO Enrichment of Tan Module

elements of the modules (MM), as demonstrated by the
upper right-hand genes in the plot.

Functional enrichment analysis of genes in modules
of interest

To better understand the function of genes in key modules,
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formed, with the top terms of each category presented in
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significantly associated with cell metabolism, such as gly-
colipid metabolic process, polypeptide N-acetylgalactos-
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(Fig. 4A-B). Genes in the brown module were enriched in
oxidative phosphorylation, the ErbB signaling pathway, and
metabolic pathways. Furthermore, GO analysis indicated
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with mitochondrial respiratory chain functions, protein
translation, and apoptosis, as well as cellular structure of
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the mitochondrial respiratory chain and protein synthesis
(Fig. 5A-B).

Screening and validation of hub genes

Important intramodular genes in the three main modules
are shown in the upper right section of Fig. 2B-D, sug-
gesting that they are not only functionally associated with
HAdV-7 infection but also significantly associated with its
characteristic traits. Furthermore, genes in the blue, tan,
and brown modules overlapped with DEGs based on the
RNA-Seq results, with the intersecting genes defined as hub
genes (Fig. 3-5C). These genes had high intra-module con-
nectivity and exhibited significant differences in expression
(Supplementary Table S1). Of the genes in the blue mod-
ule, two are involved in the positive regulation of the ERK/
and ERK?2 cascade, including TNFAIPSL3, which belongs
to the tumor necrosis factor-alpha (TNF-a)-induced protein
8 (TNFAIPS8/TIPE) family and participates in the regulation
of inflammatory responses, immune homeostasis, and the
proliferation/apoptosis axis by regulating PI3K and down-
stream mediators, including nuclear factor-xB (NF-«xB),
mitogen-activated protein kinases (MAPKs; e.g., ERK-I
and ERK-2, JNK, and p38), and interferon-regulatory factors
(IRFs; e.g., IRF3 and IRF7) [6, 11, 12]. Among the 26 hub
genes in the tan module, PIK3API and ARID5A are related
to the inflammatory response and innate immune system,
and KIF5C and PID1 are associated with energy and metab-
olism, indicating that energy production and metabolism
may play an important role in HAdV-7 infection. Moreover,
the presence of SFRP5 and TCF'7 in the tan module suggests

Fig.5 (A-B) GO and KEGG A
enrichment analysis of genes

in the brown module. (C) Venn
diagram of DEGs identified by
RNA-Seq, genes in the brown

module, and DEGs from the
GSE68004 dataset.
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transcriptome data with qPCR results, we found that the pat-
terns of gene transcript abundance were consistent (Fig. 6A-
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key genes in HAdV-7 infection.
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Possible interactions between adenovirus and host
cells

Transcriptome sequencing showed that the expression
levels of SOCS3, OASL, ISG15, and IFITI increased sig-
nificantly over time, especially at 48 hpi (except SOCS3)
and 72 hpi (Fig. 7A), suggesting that these genes might
play an important role in adenovirus infection. Further-
more, there were expression correlations among the four
genes (p<0.05) (excluding SOCS3 vs. ISG15 and SOCS3
vs. IFITI) (Fig. 7B), demonstrating a specific interaction
between candidate genes. We used the online software Gen-
eMANIA (http://genemania.org/, accessed on 5 January
2021) to construct a gene—gene interaction network. Besides
the four candidate genes, the network included another 20
potentially frequently interacting genes and 1122 links
(interactions), and most of them were associated with regu-
lation of viral process and response to interferon (Fig. 7C).
The innate immune system provides a robust first line of
defense against viral infection, and IFN-I is considered a
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key component of antiviral innate immunity. Upon invasion
of the host, a complex and intense battle occurs between
host cells and viruses. The virus may evade the host’s
immune response by inducing the synthesis of molecules
that inhibit interferon signaling [33], with the involvement
of SOCS3, OASL, ISG15, and IFIT1. Based on previous
literature and our analysis, we propose the following model.
Adenovirus binds to its receptor and enters the target cell.
Toll-like receptor 9 (TLRY), the only known endosomal
localized DNA sensor that can detect unmethylated viral
DNA containing cytosine-phosphate-guanosine (CpG)
motifs, recruits myeloid differentiation primary response
gene 88 (MyD88), leading to activation of IRF7 and NF-«B,
which induce IFN-I and various chemokines and cytokines
[39]. The viral genome can be sensed by RNA polymerase
III, IFN gamma-inducible protein 16 (IF116), DEAD-box
helicase 41 (DDX41), cyclic GMP-AMP (cGAMP) syn-
thase (cGAS), and several other DNA sensors, of which
RNA pol I transcribes dsDNA into 5’-triphosphate dou-
ble-stranded RNA (5’-ppp-dsRNA). Once dsRNA binds
to retinoic-acid-inducible gene I (RIG-1) and melanoma
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Fig. 7 (A) Gene expression level A

shown by RNA-Seq graphs

at three time points. Data are

representative of two independent 15+
experiments performed on three
samples per group. &, P<0.05,
&&, P<0.01, &&&, P<0.001,
&&&&, P<0.0001, HAdV-
7-infected vs. control cells for
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according to gene expression.
Correlation coefficients (r,
Spearman rank correlation) are
shown at the lower left, and
significance is shown at the upper
right (*, p<0.05, **, p<0.01, @
*** p<0.001). (C) Gene-to-gene

interaction network of the four
candidate genes in the GeneMA-
NIA dataset, wherein the size of
each node indicates the strength
of interaction, the color of lines
represents the types of interac-
tions between genes (color code
in “Networks” legend), and
colored node circle sections show
the functions of the respective
genes (color code in “Functions”
legend).
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differentiation-associated gene 5 (MDAS), the antiviral
RIG-I-mitochondrial antiviral-signaling protein (MAVS)
and MDAS5-MAVS signaling pathways are activated [46].
cGAS, IF116, and other DNA sensors then activate the adap-
tor protein stimulator of IFN genes (STING), which further
recruit and phosphorylate TANK-binding kinase 1 (TBK1)
to relay signals to IRF3 to induce the production of IFN-I
[39, 46]. IFN-I interacts with its universally expressed
receptors (IFNARs) and successively phosphorylates signal
transducer and transcription activator (STAT) family pro-
teins through Janus protein kinase (JAK) family members.
The phosphorylated STAT1/STAT2 heterodimer associates

Functions

W response to type Tinterferon
regulation of viral process
regulation of viral life cycle
response to virns

B modulation by virus of host process

with IRF9 to form the transcriptional factor complex IFN-
stimulated gene factor 3 (ISGF3), which translocates to the
nucleus and binds the IFN-response elements (IRSE) in ISG
promoters to induce the expression of ISG products, includ-
ing OASL, ISG15, and IFIT1 [31]. The ISGs exert complex
functions in adenovirus infection. For instance, IFIT1 can
disrupt viral DNA replication [7] and translation [42] and
dampen virus-induced innate immune signaling by bind-
ing to STING [7]. ISG15 downregulates RIG-I-mediated
signaling to reduce IFN promoter activity but also inhib-
its viral replication by sustaining IRF3 activation [26]. IFN
induction and signaling induce OASL, which then binds to
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and inactivates cGAS to negatively regulate IFN produc-
tion [19]. SOCS3 binds to JAKSs to inhibit their activity and
ubiquitinates and degrades JAKs via the SOCS box, thereby
inhibiting JAK/STAT signaling (Fig. 8) [13, 24].

Discussion

HAdVs are a frequent cause of severe pediatric pneumo-
nia, with HAdV-7 in particular causing more-severe clini-
cal consequences, which appear to be associated with the
high replication competence of HAdV-7 in human lung [3]
and prolonged virus shedding and persistence in infected
cells. Some possible mechanisms have been discussed
previously. For example, adenovirus proteins such as E1A
may suppress type I interferon signaling, but the patho-
physiological mechanisms involved in HAdV-7 infection
are complex and remain unclear. Viral infection usually
results in changes in the expression of host genes follow-
ing replication. Thus, host cell transcriptomes can reflect
the changes in expression of specific genes and pathways

that occur during infection [15, 22]. WGCNA is an effec-
tive method of mining data to analyze complex genetic
networks in HAdV-7 infection. One of the advantages of
WGCNA is its high reliability and biological significance,
because the analysis focuses on the association between
coexpression modules and infection traits [4]. In this study,
using the gene expression data obtained by RNA-Seq from
HAdV-7-infected and mock-infected A549 cells, a total of
12 coexpression modules were constructed using WGCNA.
Of these, the blue, tan, and brown modules were positively
correlated with traits of HAdV-7-infected cells at 24, 48,
and 72 hpi, respectively. Genes in the same module are
considered functionally related to each other. Functional
enrichment analysis indicated that genes in the blue module
were primarily enriched in cell cycle regulation and DNA
replication, consistent with previous studies showing that
adenovirus infection has also proceeded far into the early
phase at 24 h and expression changes favor its DNA replica-
tion, with about 50% of those genes with known functions
involved in cell cycle control [43]. Genes in the tan module
were significantly associated with cell metabolism. At this
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Fig. 8 Antiviral innate immune signaling pathways in adenovirus
infection and interaction between adenovirus and host cells. (cGAMP,
cyclic GMP-AMP; cGAS, cyclic GMP-AMP synthase; DDX41,
DEADV-box polypeptide 41; HAdV, human adenovirus; IF116, inter-
feron gamma-inducible protein 16; IFIT1, IFN-induced protein with
tetratricopeptide repeats 1; IFN-I, type I interferon; IFNARs, type |
interferon receptors; IRF3, interferon regulatory factor 3; IRF7, inter-
feron regulatory factor 7; IRF9, interferon regulatory factor 9; IRSE,
IFN-response elements; ISG15, IFN-stimulated gene product 15;
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ISGF3, interferon-stimulated gene factor 3; ISGs, interferon-stimu-
lated genes; JAK1, Janus kinase-1; MAVS, mitochondrial antiviral-
signaling protein; MDAS, melanoma differentiation-associated gene
5; MyD88, myeloid differentiation primary response gene 88; OASL,
oligoadenylate synthetases-like; RIG-I, retinoic acid-inducible gene
I; STAT1, signal transducer and activator of transcription 1; STAT2,
signal transducer and activator of transcription 2; STING, stimulator
of interferon genes; TBK1, TANK-binding kinase 1; TLR9, Toll-like
receptor 9; TYK2, tyrosine kinase 2). Created with BioRender.com
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time point, the virus has gained control of the cellular meta-
bolic machinery to create conditions under which the viral
genome can replicate efficiently [44]. Genes in the brown
module were mainly enriched in mitochondrial respiratory
chain functions, protein translation, and apoptosis. During
this period, considerable energy and proteins are needed to
complete virus assembly. Moreover, cell death is thought
to be imminent, facilitating efficient release and spread of
the viral progeny. DEGs with high intramodular connec-
tivity were identified as hub genes for HAdV-7 infection.
Furthermore, concordant genes among hub genes from the
blue, tan, and brown modules and DEGs in the GSE68004
dataset were identified using a Venn diagram (Figs. 3-5C).
Of these, SOCS3, OASL, ISG15, and IFITI were found to
be involved in the process of adenovirus infection and were
thus regarded as candidate genes. During viral invasion,
the host rapidly establishes several defensive mechanisms
by initiating the innate immune response. Conventionally,
IFN-I is the major component of the innate immune system
against viral infection via induction of various ISGs [20,
26]. OASL, ISG15, and IFITI are ISGs that are involved
in interactions between adenoviruses and host cells (Fig. 8).
OASL codes for an important ISG and plays different roles
in DNA and RNA viruses by inhibiting cGAS-mediated IFN
production and enhancing RIG-I-mediated IFN induction,
respectively [5, 19]. Several studies have shown that OASL
inhibits the replication of some RNA viruses, such as vesic-
ular stomatitis virus (VSV), Sendai virus (SeV), and respi-
ratory syncytial virus (RSV) [5, 48, 49]. Compared to RNA
viruses, however, much less is known about the effects of
OASL in the context of DNA virus infection. Human OASL
and mouse Oasl2 have been reported to promote the rep-
lication of certain DNA viruses, including herpes simplex
virus (HSV), mouse cytomegalovirus (MCMYV), and adeno-
virus [10]. Therefore, OASL may serve as a biomarker for
discrimination between DNA and RNA virus infection. As
one of the most highly upregulated genes during viral infec-
tions, ISG15 acts as both an effector and a signaling mol-
ecule in various phases of the innate immune response [8].
ISG15 is involved in many antiviral signaling pathways,
both intracellular and extracellular, and activates various
immune cells and promotes the production of many anti-
viral cytokines to facilitate viral clearance [8, 26]. Through
the study of ISGI5-deficient patients, it was revealed that
human ISG15 is redundant for antiviral immunity and nega-
tively regulates IFN-I immunity [42]. Although the multiple
biological functions of ISG15, including as a biomarker of
antiviral treatment [14], offer promise for intervention in
disease progression, several important questions remain to
be answered in future research. The expression of IFIT1 is
strongly induced by IFN-I, double-stranded RNAs, and viral
infection [28], and increasing evidence has demonstrated

that IFIT1 has antiviral activity during both DNA and RNA
virus infection, mainly by intervening in translation by dif-
ferentially recognizing the 5’ terminus of target RNA [30],
and it also inhibits the interferon signaling pathway [7].
As one of the best-studied members of the SOCS family,
SOCS3 can be stimulated by JAK/STAT signaling to regu-
late the proinflammatory response via negatively regulat-
ing cytokine receptors [21]. There is considerable evidence
that multiple viruses can upregulate SOCS3 expression and
dampen the host antiviral responses to promote viral repli-
cation through various immune evasion strategies [13]. For
example, influenza A virus [25], HSV [38], and RSV [47]
can suppresses IFN-I production and response by stimulat-
ing SOCS3 expression [2], consistent with our data show-
ing that SOCS3 was upregulated after adenovirus infection.
SOCS3, a viral virulence factor, may also have therapeutic
potential. For example, SOCS3 expression could be manip-
ulated to restore antiviral immune responses. In addition,
SOCS3 antagonists have shown antiviral effects on a broad
range of viruses in cell and animal models [13, 16, 24].

The data show not only that SOCS3, OASL, ISG15, and
IFIT1 are involved in interactions between adenovirus and
host cells, together with other molecules that disrupt type I
interferon signaling, but also that this activity correlates with
their expression levels. We therefore speculate that HAdV-7
inhibits interferon production through multiple targets after
infecting host cells, which could partly explain why this
virus is associated with especially severe disease and sig-
nificant morbidity. The present study is the first to investi-
gate coexpression gene networks associated with HAdV-7
infection using WGCNA, but it has several limitations. For
instance, we only used a single cell line rather than human
specimens, and thus, we selected data obtained from whole
blood of children from a public database for validation of
hub genes. We also did not study the exact mechanism of the
identified key genes in HAdV-7 infection. Further studies
are required to evaluate and confirm the involvement of the
candidate genes in different races and samples.
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