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Abstract
Identification of avian infectious bronchitis virus (IBV) genotypes is essential for controlling infectious bronchitis (IB) 
disease, because vaccines that differ from the circulating strains might not provide efficient cross-protection. In Egypt, IBV 
strain typing is a difficult process, due to the widespread distribution of four genotype lineages (GI-13, GI-23, GI-1, and 
GI-16), which may contribute to IBV vaccination failure. In this study, we developed a multiplex real-time quantitative 
reverse transcription polymerase chain reaction (mRT-qPCR) assay that targets highly conserved areas of the S1 gene in order 
to detect classical (G1) and Egyptian variant II (G23) strains in allantoic fluids and clinical samples. The viral genotyping 
technique was assessed using commercially available vaccines as well as local strains, and 16 field isolates were tested to 
investigate its clinical applicability. The assay was found to be specific for the detection of classical and VAR II strains and 
did not detect the VAR I strain or other avian pathogens such as Newcastle disease virus, avian influenza virus (H9N2 and 
H5N8), or infectious bursal disease virus. The results also showed that 28 out of 41 samples tested positive for IBV utilizing 
rt-qRT-PCR targeting the N gene and that 26 out of the 28 positive samples were genotyped by mRT-qPCR targeting the S1 
gene, whereas the remaining two samples that were not genotyped were VAR 1 (4/91) and VAR I (793/B). Interestingly, the 
testing could identify combined infections in one sample, indicating a mixed infection with both genotypes. The real-time 
RT-PCR assay could detect viral RNA at concentrations as low as  102  EID50 /ml for both classical and variant II. This assay 
is rapid, specific, and sensitive. It appears to be a valuable tool for regular disease monitoring that can be used to differenti-
ate as well as identify viruses.

Introduction

Infectious bronchitis (IB) is a highly infectious viral illness 
that affects the poultry industry around the world [1]. It 
causes significant economic damage to the poultry sector, 

even in areas with no velogenic Newcastle disease viruses 
or pathogenic avian influenza viruses [2]. The illness mani-
fests itself clinically in a variety of ways, predominantly 
impacting the respiratory system and causing lesions in the 
reproductive, digestive, and urinary tracts [3]. Although 
chickens of all ages can be infected with IBV, younger birds 
are more susceptible than older ones [4]. The etiological 
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agent of IB is infectious bronchitis virus (IBV), a member 
of the genus Gammacoronavirus, family Coronaviridae [5]. 
IBV has a 27.6-kb positive-sense single-stranded RNA viral 
genome, which encodes four structural proteins: a spike (S) 
glycoprotein, an envelope protein, a phosphorylated nucle-
ocapsid protein, and a membrane glycoprotein [6]. The S 
protein is located on the exterior surface of the envelope of 
the IBV virion and is cleaved into S1 and S2 subunits by a 
cellular protease during viral maturation [7]. Determinants 
of serotype specificity and cell attachment, and epitopes for 
neutralising antibodies are present in the S1 subunit [8]. The 
S2 component mediates membrane fusion and connects the 
S1 protein to the viral membrane.

The S1 subunit exhibits more nucleotide sequence vari-
ability than S2, and most of this variability occurs within 
three distinct hypervariable regions (HVRs) consisting of 
amino acids 38–67, 91–141, and 274–387 (HVR1, HVR2, 
and HVR3, respectively) [9]. According to Valastro et al. 
[10], IBV has been subdivided into six primary genotypes 
(GI to GVI) in addition to 32 subgenotypic lineages as well 
as some possible groupings represented as distinct vari-
ants according to a classification system based on the S1 
sequences.

Four genotype lineages with different genetic and patho-
genic features have been reported on chicken farms in Egypt. 
GI-1 includes the classical wild strains and the vaccine-like 
strains. GI-23 includes both of the Egyptian variant sub-
groups (Egy/Var-2 and Egy/Var-1). GI-16, including QX 
IBV, was first isolated in China and is now found in other 
Asian countries, Africa, the Middle East, and Europe. GI-13, 
including the 4/91-like strains, is hypothesized to have been 
derived from the presently used 4/91 vaccine strain [11].

Genotyping is the most frequently used approach for cat-
egorization of IBV strains [12]. Reverse transcription 
polymerase chain reaction (RT-PCR) is used in molecular 
analysis to identify viral RNA directly in clinical samples 
or viruses obtained in a laboratory host system. When using 
RT-PCR to amplify the IBV S gene, this may be combined 
with nucleic acid sequencing or restriction fragment length 
polymorphism (RFLP) analysis in order to determine the 
virus type [13–17]. Other genotype-specific RT-PCR 

techniques (real-time or classical) for rapid molecular iden-
tification of field variant strains and vaccine strains are also 
available [18–21].

In Egypt, RT-PCR accompanied by complete or partial S1 
gene sequencing has been used to detect and characterise 
IBV strains [22], prompting us to develop an mRT-qPCR 
assay that can be used for rapid detection of particular IBV 
types and can be performed on clinical samples.

Materials and methods

Virus strains and clinical samples

Forty-one samples were used to evaluate the assay's applica-
bility for strain typing. In this work, several panels of refer-
ence materials as well as clinical samples were employed 
for analytical specificity testing and validation of the assay. 
Analytical specificity was assessed using reference strains 
for four other avian pathogens (influenza A virus H9N2 and 
H5N8, Newcastle disease virus [NDV], and infectious bur-
sal disease virus [IBDV]), three IB vaccines (MEVAC IB 
VAR2, AVI IB H-120, and IB 4/91), and nine IBV-negative 
samples.

Kidneys, lungs, and cloacal and tracheal swabs were 
among the nine clinical samples taken from broiler, breeder, 
and layer chicken flocks with clinical signs of IB. In addi-
tion, 16 IBV isolates were used to evaluate the performance 
of the mRT-qPCR assay. The clinical sample collection 
was obtained in 2021 and stored at -20º C for subsequent 
processing. The IBV isolates were supplied by the Refer-
ence Laboratory for Veterinary Quality Control on Poultry 
Production (RLQP) and were also isolated in 2021. Details 
about reference strains of other avian pathogens and vac-
cines used in this study are shown in Table 1.

Extraction of viral nucleic acid

Viral RNA was extracted according to the instruction man-
ual of the EasyPure Viral RNA/DNA Extraction Kit (Trans, 

Table 1  Vaccines and reference 
strains of other avian pathogens 
used for testing analytical 
specificity

AIV, avian influenza virus; NDV, Newcastle disease virus; IBDV, infectious bursal disease

Virus Isolate/vaccine Origin Accession no.

IBV MEVAC VAR II vaccine MEVAC
IBV AVI IB H-120 vaccine Laprovet-France
IBV Var I (4/91) vaccine Nobilis
AIV A/Turkey/Egypt/A2/2021(H5N8) RLQP-AHRI OK160062
AIV A/chicken/Egypt/FAO-S33/2021(H9N2) RLQP-AHRI OK148893
NDV Avian orthoavulavirus 1 fusion protein gene (NDV) RLQP-AHRI MZ409479
IBDV Infectious bursal disease virus segment A VP2 gene (IBDV) RLQP-AHRI MZ409478
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catalog no. ER201-01). The extracted viral RNA was stored 
at -20 °C until examination.

Primer design for multiplex real‑time RT‑PCR

Probes and primers were designed to distinguish between 
classical and variant II strains. In addition, customised 
probes and primers for each genotype were designed based 
on the most conserved region of the S1 gene of each geno-
type. Bioedit software (http:// www. mbio. ncsu. edu/ bioed 
it) was used to extract and align the S1 gene sequences 
of IBV classical and variant II strains. The alignment 
included sequences of five classical genotype field iso-
lates (KC533681, AY135205, KU979009, KJ425497, 
and DQ487085), 13 variant II genotype field isolates 
(KU979010, EU780077, JX027070, KU979007, KU979008, 
KU238171, KU979006, JX173489, KY805846, KC533682, 
and KC533684, KC533683, and MG233398), and the refer-
ence strains Ma5 (KY626045), D274 (MH021175), H-120 
(FJ888351), and Mass 41 (GQ504725). The specificity of 
probes and primers was verified by Basic Local Alignment 
Search Tool (BLAST) search (www. blast. ncbi. nlm. nih. gov) 
of the GenBank database. Secondary structures and primer 
dimers were also predicted using the OligoCalc server 
(http:// bioto ols. nubic. north weste rn. edu/ Oligo Calc. html.) 
The sequences of probes and primers used in this study are 
shown in Table 2. All of the probes and primers were syn-
thesized by Metabion International AG, Germany.

IBV detection by real‑time RT‑PCR targeting the N 
gene

We used real-time RT-PCR targeting the N gene because it 
has been shown to be a sensitive and accurate method for 
direct detection of IBV in tracheal or cloacal swabs, as well 
as in allantoic fluid from infected embryonated eggs [23]. 
The sequences of the primers and probes targeting the N 
gene are listed in Table 3.

Uniplex and multiplex real‑time RT‑PCR targeting 
the S1 gene

Real-time RT-PCR was performed using the primers and 
probes shown in Table 2. Following the instructions of the 
kit manufacturer, the qRT-PCR mixes were made as follows: 
12.5 µl of 2x one-step qPCR mix, 1.25 µl of RT enhancer, 
0.25 µl of Verso enzyme mix, 0.5 µl of each of the forward 
and reverse primers (50 pmol per primer), 0.125 µl of each 
probe (30 pmol per probe), and 3 µl of RNA, and the total 
volume of each reaction was adjusted to 25 µl using PCR-
grade water. The following thermal profile was used: 15 min 
at 50°C for cDNA synthesis and 15 min at 95°C for thermo 
start activation, followed by 40 cycles of denaturation for 
15 s at 95°C, extension, and annealing for 1 min at 60°C for 
standard uniplex IBV detection and 54°C for our multiplex 
system.

Analytical specificity of uniplex and multiplex 
real‑time RT‑PCR assays

Two sets of primers and probes were designed  specifi-
cally for distinguishing the strains under investigation and 
tested and optimized separately on the respective IBV types 
and then cross-tested for their specificity.

Table 2  Sequences of primers and probes used in the multiplex system

Set Primer ID Sequence (5´-3') Position in 
the spike 
gene

Variant II IBV-VAR II-F+ 5´-CAA TGG TCC CCG TTT GTG-3´ 1128-1145
IBV-VAR II-R- 5´-GTC TAG GAT GGC TAA ACC AC-3´ 1385-1404
IBV-VAR II-pro+ (HEX) 5´-CCA GGA ATG AAC CAC TTG TGT TAA CTC-3´ (TAMRA) 1235-1261

Classical IBV-Class-F+ 5´-CAT GGT GGT CGT GTT GTT AAT GC-3´ 211-232
IBV-Class-R- 5´- ACA CGT ATA GAA TGC TGT TGA AGC-3´ 375-398
IBV-Class-pro+ (FAM) 5´-CAG GTA TGG CTT GGT CTA GCA GTCAG- 3´ (TAMRA) 263-288

Table 3  Sequences of primers and probes used in real-time RT-PCR 
targeting the N gene

ID Sequence Position in 
the N gene

AIBV-fr 5´-ATG CTC AAC CTT GTC CCT 
AGCA-3´

811–832

AIBV-as 5´-TCA AAC TGC GGA TCA TCA 
CGT-3´

921–941

TaqMan® 
probe 
AIBV-TM

FAM TTG GAA GTA GAG TGA CGC 
CCA AAC TTCA- BHQ1

848–875

http://www.mbio.ncsu.edu/bioedit
http://www.mbio.ncsu.edu/bioedit
http://www.blast.ncbi.nlm.nih.gov
http://biotools.nubic.northwestern.edu/OligoCalc.html
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Analytical sensitivity of real‑time RT‑PCR

The detection limit of the rt qRT-PCR was determined 
by testing in duplicate serial tenfold dilutions of the 
classical IBV vaccine (H120) and variant II IBV strain 
(F211), which were adjusted to  107 50% egg infective dose 
 (EID50)/ml for both, and standard curves were generated. 
The detection limit was compared with that of real-time 
RT-PCR targeting the N gene for both strains. The detec-
tion limit was defined as the final dilution at which all 
tested duplicates could be detected.

Amplification of the S1 gene of IBV

The genotypes of the viruses in mRT-qPCR-positive sam-
ples were determined based on partial sequences of the 
spike (S1) gene. Briefly, RNA was amplified by conven-
tional RT-PCR, using specific primers for partial identi-
fication of the S1 gene [24] (Table 4). RT-PCR was per-
formed using an Easyscript one-step RT-PCR kit (Trans, 
catalog no. AE411-02) following the kit instructions. Each 
reaction contained 10 µl of 2x master mix, 1 µl of each 
primer at a concentration of 20 pmol, 0.4 µl of RT enzyme, 
5 µl of each RNA, and PCR-grade water to a final volume 
of 20 µl. The reaction mixtures were then incubated in a 
thermocycler with the following thermal profile: 45°C for 
30 minutes for the reverse transcription step and 94°C for 
15 minutes for RT inactivation, followed by 40 cycles of 
denaturation at 94°C for 45 seconds, annealing for 45 sec-
onds at 50°C, and amplification for one min at 72°C, and 
then an extension step for one cycle at 72°C for 10 min.

Partial sequence of spike gene of IBV

A portion of the S1 gene was sequenced by the Sanger 
method [25]. BioEdit version 7.0 was used for reading 
the output sequences and for creating a multiple sequence 
alignment (accessed in October 2021) [26]. The alignment 
was then used for constructing neighbor-joining phylo-
genetic trees using the distance-based method in MEGA 
version 11 [27].

Results

A real‑time RT‑PCR assay targeting the conserved N 
gene

A real-time RT-PCR that targets the highly conserved N gene 
was applied to 41 samples to detect IBV, and 28 (nine clini-
cal samples, 16 isolates, and three commercial vaccines) were 
found to be IBV positive, with  Ct values between 13 and 31.78.

Analytical specificity of the uniplex real‑time RT‑PCR

The specificity of each probe and primer set was initially exam-
ined in silico using a BLAST search on the NCBI website. A 
uniplex RT-qPCR was performed to ensure the workability of 
each set. Variant II RT-qPCR was able to detect VAR II isolate 
F211 (GenBank accession no. OK181112), isolate F348, and 
MEVAC VAR II vaccine, showing no specific amplification 
of H5N8, H9N2, ND, IBD, VAR I vaccine, H120 vaccine, or 
the negative control samples, while classical RT-qPCR showed 
positivity for the H120 vaccine, but it could not detect VAR 
II isolates (F211 and F348), H5N8, H9N2, ND, IBD, VAR I , 
MEVAC VAR II vaccine, or the negative control sample. The 
findings showed that the assay was highly specific with no 
cross-reactivity (Fig. 1).

Analytical specificity of the multiplex assay

mRT-qPCR detects several targets in one assay. The assay was 
able to detect two vaccines (MEVAC VAR II and AVI H120 
classical vaccines) but gave negative results for the VAR I 
(4/91) vaccine and other avian pathogens (H5N8, H9N2, NDV, 
and IBDV). In addition, nine IBV-negative field samples also 
showed no specific amplification.

Analytical sensitivity of the uniplex RT‑qPCR

The average  Ct values obtained with duplicates of each dilution 
revealed that the lowest viral load detected by classical RT-
qPCR and variant II RT-qPCR for their particular strains was 
 102  EID50 per ml. The two assays showed the same sensitivity 
as the real-time RT-PCR assay targeting the N gene to detect 
IBV (Table 5). The standard curves for determining the aver-
age copy numbers of the serial dilutions of both classical and 
variant II reference strains had high  R2 values (0.98 and 0.94, 
respectively), as shown in Figure 2, indicating that the use of 
these primers yielded accurate results.

Applying mRT‑qPCR to isolates and clinical samples

The mRT-qPCR assay was carried out on 25 clinical samples 
and isolates, and the results demonstrated that 22 samples 

Table 4  Sequences of primers used for conventional RT-PCR for 
identification of the S1 gene

IBV-F20826 GTT TTA TAA CTT AAC AGT T (RLQP)
IBV-R21298 ATT ATA ATA ACC ACT CTG AG (RLQP)



2733Real-time RT-PCR assay for avian infectious bronchitis virus

1 3

were positive for the variant II genotype (15/16 IBV isolates, 
7/9 clinical samples), with  Ct values ranging from 12.87 to 
31. One sample (1/9) was positive for the classical genotype 
(sample code: 19), with a  Ct value of 28.24. The assay also 
detected a mixed infection by both genotypes in one sample 
(1/16) (sample code: 49), which was positive for classical 
and variant II genotypes, with  Ct values of 21.10 and 18.98, 
respectively (Fig. 3). A field sample previously known as 
Var I (793/B) (1/9) was tested by mRT-qPCR, and the result 
was negative (Table 6).

Partial sequence of the spike gene of IBV

The amplified RT-PCR products of 13 typed samples 
(four clinical samples and nine isolates) were purified and 
sequenced. Sequences produced in this investigation were 
submitted to the GenBank database, and their accession 
numbers are listed in Table 7. Phylogenetic analysis dem-
onstrated that the 13 IBV-positive samples clustered with 
Egyptian variant II sequences (Fig. 4).

Fig. 1  Amplification curves for classical RT-qPCR, showing detec-
tion of H120  (Ct 20.49) (A), and variant II RT-qPCR, showing ampli-
fication of VAR II with sample code F211  (Ct 17.29) (B). Neither 

showed amplification of RNA of H5N8, H9N2, NDV, IBDV, VAR I, 
or RNA from a negative sample.
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Discussion

IBV causes a severe, highly contagious infectious illness 
in chickens. IBV is distributed worldwide and causes sub-
stantial economic losses in the poultry sector. Genotyping 
of IBV depends on polymorphisms in the S gene, which 
codes for the spike protein, particularly in the S1 fragment 
[3, 10, 28]. S1 gene sequences are highly variable, and muta-
tions in this region may lead to changes in antigenicity [29]. 
Typing of circulating strains in the field is crucial for select-
ing appropriate vaccine(s) for controlling the disease [20]. 
In Egypt, IBV has been spreading among chickens for the 
past two decades, inflicting massive economic losses to the 
poultry sector. Numerous IBV genotypes, including GI-23, 
GI-16, GI-13, and GI-1, have been identified in Egypt, each 
with unique pathogenic and genetic characteristics [11]. 
This study presents the development of a multiplex assay 
for the specific identification of classical (G1) and variant II 
(G23) IBV genotypes circulating in Egyptian poultry flocks, 
along with its validation using field samples. The assay was 
designed based on highly conserved portions of the S1 gene 
that can be used to distinguish genotypes [20, 21, 30, 31]. 
This newly designed system was validated using 41 samples 
(clinical samples, isolates, vaccines, and reference strains 
of other avian pathogens). A real-time RT-PCR that targets 
the highly conserved N gene [23] was used as a reference 
method to evaluate the newly developed real-time RT-PCR 
assay. All isolates supplied by RLQP, clinical samples col-
lected from birds with clinical signs of IB, and vaccines 
were positive for IBV, while those collected from birds with 
no clinical signs of IB and those with other avian viruses 
were negative.

Two independent real-time RT-PCR assays were con-
ducted to identify classical and variant II genotypes dis-
covered in chickens, and the results showed that the assays 
were precise with no cross-reactivity. Both assays gave nega-
tive results for the VAR I vaccine (4/91) and other avian 
pathogens, including (H5N8, H9N2, NDV, and IBDV), indi-
cating the specificity of each system. These assays could 
directly identify and distinguish those genotypes in allan-
toic fluids and clinical samples. These findings demonstrate 
the added value of genotype-specific real-time RT-PCR for 
molecular typing of IBV in Egypt, as was shown in a Bra-
zilian study in which worked Mass RT-qPCR and BR RT-
qPCR were developed and validated [31]. Both assays could 
identify the BR and Mass genotypes in clinical samples and 
allantoic fluids, allowing easy and rapid molecular typing of 
IBV. Compared to the uniplex RT-qPCR system, the mRT-
qPCR assay reduces both cost and time, since it detects sev-
eral targets in a single reaction [32, 33]. The analytical speci-
ficity of the assay was evaluated by assessing its capacity to 
identify and distinguish both VAR II and classical genotypes 
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Fig. 2  Detection limit and standard curves of the IBV real-time RT-
PCR assays for the classical (A, B) and variant II (C, D) genotypes. 
Each point represents the average  Ct values for duplicates of each 

dilution. The coefficient of determination  (R2) and the amplification 
efficiency (E) of each assay are indicated.
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simultaneously. The designed mRT-qPCR was specific for 
classical and variant II strains, but it could not detect VAR 
I (4/91) or VAR I (793/B) strains. In addition, there was no 

cross-reactivity with IBV-negative samples or with samples 
containing viruses other than IBV. These results indicate 
that the multiplex assay is specific, as target strains were 

Fig. 2  (continued)
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identified without indication of cross-reactivity between 
probes and primers, as confirmed by the rRT-PCR assay to 
distinguish Mass and non-Mass serotypes simultaneously. 
The assay identified all the strains of IBV among the IBV 
Mass and non-Mass strains [20].

The detection limit was determined using  107  EID50/ml 
of both classical and VAR II strains as a starting concentra-
tion. The assay could identify viral RNA to a dilution of  10-5 
for both classical and VAR II strains, while the Mass BR 
RT-qPCR and RT-qPCR, designed to differentiate between 
BR and Mass genotypes in Brazil, were able to detect viral 
RNA up to a dilution 2.4 ×  10−6 [31]. In comparison with 
the real-time RT-PCR targeting the conserved N gene, clas-
sical RT-qPCR and variant II RT-qPCR exhibited almost 
the same sensitivity. The differences in  Ct values in the real-
time RT-PCR targeting the N gene at the same dilution in 
two experiments were not significant. The difference did 
not exceed 0.5, which is an acceptable limit that does not 
adversely affect the accuracy of the results. This difference 
might have been due to the handling of the sample during 
the assay. Meanwhile, the differences in  Ct values in the Var 
II vs. classical primer and probes at the same dilution in the 
sensitivity testing may have been related to the size of the 
amplicon in each system and its CG content [34]. It has been 
found that the size of the amplicon in real-time TaqMan 
probe PCR affects the efficiency of detection. Increasing the 

amplicon size reduces the sensitivity of detection, thereby 
increasing the  Ct value [35].

The newly designed assay could directly identify and 
distinguish these genotypes in clinical samples. Among the 
IBV-positive samples, 92% (24/28) were categorized as VAR 
II strains, demonstrating that the assay is useful for rapid 
diagnosis of disease. In general, one of the most significant 
advantages of mRT-qPCR is its potential to identify coinfec-
tions. The newly developed assay identified a mixed infection 
in sample 49 (Fig. 3), which was positive for both genotypes, 
suggesting a combined infection with the VAR II and clas-
sical genotypes. In a previous study [31], a sample with a 
mixed infection of the Mass and BR genotypes was reported.

Partial S1 gene analysis has been used in previous stud-
ies for confirmation of genotype-specific RT-PCR results 
[19]. In this study, 13 samples were tested by partial S1 
gene sequencing, and the results obtained by mRT-qPCR 
were consistent with those obtained by sequencing and 
phylogenetic analysis. The isolates from this study are 
phylogenetically and genetically closely related to Egyp-
tian variant II (13/13, 100%), which indicates the speci-
ficity and accuracy of the developed system and agrees 
with the study of Chen and Wang, who showed that 11 
isolates were accurately genotyped by the mRT-PCR assay, 
in agreement with viral genome sequencing (11/11,100%) 
[19].

Fig. 3  Multiplex RT-qPCR amplification curve for simultaneous detection of classical and Var II in the same sample
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Table 6  Comparative  Ct values 
of the mRT-qPCR targeting the 
S1 gene and real-time RT-PCR 
targeting the conserved N gene 
in clinical samples and isolates 
for this study

Sample code Ct (dRn) of the N 
gene system

Ct (dRn) of the 
VAR II system

Ct (dRn) of the 
classical system

IBV-13 Organs 24 24.12 Negative
IBV-19 Organs 27 Negative 28.24
Egy/IBV-23 Swabs 17.94 20.44 Negative
Egy/IBV-24 Swabs 20.13 22.52 Negative
Egy/IBV-25 Swabs 20.37 23.07 Negative
Egy/IBV-26 Organs 21.68 22.89 Negative
IBV-27 Organs 25.85 24.46 Negative
IBV-28 Organs 22.83 24.15 Negative
IBV-35 Isolate 29.56 28.2 Negative
Egy/IBV-36 Isolate 22.1 21.18 Negative
IBV-37 Isolate 31.14 29.94 Negative
Egy/IBV-38 Isolate 17.48 17.78 Negative
Egy/IBV-39 Isolate 21.47 18.05 Negative
IBV-40 Isolate 31.78 30.58 Negative
IBV-41 Isolate 30.88 31 Negative
Egy/IBV-43 Isolate 23.02 18.68 Negative
IBV-44 Isolate 27.68 26.18 Negative
Egy/IBV-46 Isolate 21.73 18.68 Negative
Egy/IBV-47 Isolate 21.38 20.32 Negative
Egy/IBV-48 Isolate 23.01 21.84 Negative
IBV-49 Isolate 19.92 18.98 21.10
Egy/IBV-50 Isolate 25.72 23.87 Negative
F211 Isolate 13 19.20 Negative
F348 Isolate 14 12.87 Negative
Var I (793/B) Organs 19 Negative Negative
MEVAC VAR II Vaccine 21 21.19 Negative
H120 Vaccine 19 Negative 19.38
Var I (4/91) Vaccine 19.3 Negative Negative
H5N8 Reference strain Negative Negative Negative
H9N2 Reference strain Negative Negative Negative
ND Reference strain Negative Negative Negative
IBD Reference strain Negative Negative Negative

Table 7  Sequenced IBV isolates 
and clinical samples and their 
GenBank accession numbers

Sample code Sample type Ct (dRn) of the 
N gene system

Ct (dRn) of the 
VAR II system

Ct (dRn) of the 
classical system

Genotype GenBank
accession no.

Egy/IBV-23 Swabs 17.94 20.44 Negative VAR II OL691928
Egy/IBV-24 Swabs 20.13 22.52 Negative VAR II OL691929
Egy/IBV-25 Swabs 20.37 23.07 Negative VAR II OL691930
Egy/IBV-26 Organ 21.68 22.89 Negative VAR II OL691931
Egy/IBV-36 Isolate 22.1 21.18 Negative VAR II OL691932
Egy/IBV-38 Isolate 17.48 17.78 Negative VAR II OL691933
Egy/IBV-39 Isolate 21.47 18.05 Negative VAR II OL691934
Egy/IBV-43 Isolate 23.02 18.68 Negative VAR II OL691935
Egy/IBV-46 Isolate 21.73 18.68 Negative VAR II OL691936
Egy/IBV-47 Isolate 21.38 20.32 Negative VAR II OL691926
Egy/IBV-48 Isolate 23.01 21.84 Negative VAR II OL691927
Egy/IBV-50 Isolate 25.72 23.87 Negative VAR II OL691937
F211 Isolate 13 19.20 Negative VAR II OK181112
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Conclusion

The mRT-qPCR assay targeting the S1 gene is a promising 
assay for obtaining rapid, sensitive, and precise results for 
discriminating between classical and variant II genotypes 
of IBV.
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