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Abstract
Guanarito virus (GTOV) is a member of the family Arenaviridae and has been designated a category A bioterrorism agent 
by the US Centers for Disease Control and Prevention. It is endemic to Venezuela’s western region, and it is the etiologi-
cal agent of “Venezuelan hemorrhagic fever” (VHF). Similar to other arenaviral hemorrhagic fevers, VHF is characterized 
by fever, mild hemorrhagic signs, nonspecific symptoms, thrombocytopenia, and leukopenia. Patients with severe disease 
usually develop signs of internal bleeding. Due to the absence of reference laboratories that can handle GTOV in endemic 
areas, diagnosis is primarily clinical and epidemiological. No antiviral therapies are available; thus, treatment includes only 
supportive analgesia and fluids. GTOV is transmitted by contact with the excreta of its rodent reservoir, Zygodontomys 
brevicauda. The main reasons for the emergence of the disease may be the increase in the human population, migration, and 
changes in land use patterns in rural areas. Social and environmental changes could make VHF an important cause of under-
diagnosed acute febrile illnesses in regions near the endemic areas. Although there is evidence that GTOV circulates among 
rodents in different Venezuelan states, VHF cases have only been reported in the states of Portuguesa and Barinas. However, 
due to the increased frequency of invasions by humans into wildlife habitats, it is probable that VHF could become a public 
health problem in the nearby regions of Colombia and Brazil. The current Venezuelan political crisis is causing an increase 
in the migration of people and livestock, representing a risk for the redistribution and re-emergence of infectious diseases.

Introduction

Guanarito virus (GTOV) is a negative-strand RNA virus of 
the the genus Mammarenavirus, family Arenaviridae, order 
Bunyavirales [1]. This genus includes both Old and New 

World arenaviruses. The New World arenaviruses to which 
GTOV belongs are also known as the Tacaribe complex of 
viruses and are grouped in four clades: A, B, C, and A/Rec 
(clade D) [1]. Human-pathogenic New World arenaviruses 
belong to clade B, which includes Junin virus (JUNV), the 
etiological agent of Argentine hemorrhagic fever; Machupo 
virus (MACV), the agent of Bolivian hemorrhagic fever; 
Sabia virus (SABV), the agent of Brazilian hemorrhagic 
fever; Chapare virus (CHAPV), the agent of Chapare hem-
orrhagic fever; and GTOV, the agent of Venezuelan hemor-
rhagic fever (VHF) [2, 3]. An outbreak of VHF was first 
described in the Venezuelan state of Portuguesa and its adja-
cent areas, and the lethality rate of confirmed cases was 60% 
(9/15) [4]. The first strain of GTOV was isolated from a fatal 
case in September 1989, and subsequent studies indicated 
that this virus was a novel member of the Tacaribe complex 
[4–6]. Pirital virus (PIRV), another arenavirus, discovered 
in 1997, is widely distributed in rural areas in which GTOV 
is also present [7, 8], but human cases due to PIRV have not 
yet been identified. The geographical focality of VHF may 
be due to a restricted distribution of the rodent reservoir host 
Zygodontomys brevicauda in the western area of Venezuela 
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[9]. Although the exact reason for the emergence of VHF 
is not known, it has been suggested that it can be partially 
explained by human migration and changes in land use pat-
terns in uninhabited forest areas in the states of Portuguesa 
and Barinas. When forest areas were replaced by agricultural 
fields and pastures, grassland rodents such as Z. brevicauda 
thrived, which increased the probability of contact between 
susceptible people and GTOV-infected rodents [10]. How-
ever, due to recent social and environmental changes, includ-
ing increasing human population, deforestation, and migra-
tion [11, 12], it is possible that GTOV is an important cause 
of acute undifferentiated febrile illness in nearby regions and 
that the number of cases has been underestimated.

Endemic area

The VHF endemic region includes an area of approxi-
mately 9000 km2 in Venezuela, in the southern and south-
western regions of the state of Portuguesa and adjacent 
regions, mainly in the state of Barinas [13]. The climate in 
these regions is tropical, with a mean annual temperature 
of 28°C, an average precipitation of 1300 mm/year, and a 
seasonal rainfall that is heavier between May and Novem-
ber each year, with a dry period between December and 
April [13]. The endemic area of GTOV is shown in Fig. 1, 
and the regions where human cases of VHF and evidence 
of GTOV in rodents have been reported are indicated [4, 
9, 13–15].

Fig. 1   Areas where Guanarito virus is endemic. Venezuelan states in 
green are considered endemic for Guanarito virus due to seropositiv-
ity and virus isolation from Zygodontomys brevicauda rodents [9, 14, 

15]. Human VHF cases associated with Guanarito virus have only 
been identified in Portuguesa and Barinas states (in red) [4, 13, 14, 
16]. GTOV, Guanarito virus; VHF, Venezuelan hemorrhagic fever
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Reported cases and outbreaks

During September of 1989, an outbreak of severe hemor-
rhagic febrile illness occurred in the municipality of Gua-
narito, Portuguesa state, Venezuela, which is considered the 
first outbreak of GTOV infection reported in the scientific 
literature [4]. Although local physicians had reported simi-
lar clinical cases before the 1989 outbreak, no reports were 
found about previous cases [16]. Surveillance in the same 
municipality between 1990 and 1991 identified a total of 104 
suspected cases with 26 deaths, which were reported to the 
Venezuelan Health Ministry [4]; 15 of these patients were 
admitted and treated at the Miguel Oraa Hospital in Gua-
nare, where they received a confirmed diagnosis of VHF [4].

During 1991, serum samples from family contacts of 
VHF-confirmed patients were collected to determine their 
exposure to GTOV. The study found that 10.5% had anti-
bodies against GTOV, suggesting a possible mild form of 
VHF [4]. A year later, in 1992, another serological study 
was performed in the community of La Hoyada in the state 
of Portuguesa due to possible VHF cases that were occur-
ring in this and other nearby communities; however, the 
study showed a low seroprevalence of GTOV antibodies 
(3.6%) among residents [16].

Since the discovery of GTOV as the etiological agent 
of VHF, a total of 165 probable cases have been reported 
(1989 to 1997), with only 40% confirmed by virus isolation 
and/or detection of seroconversion [13]. Although VHF 
cases were reported every month, more than half of these 
cases occurred during November, December, and Janu-
ary [13]. A continuous occurrence of cases was reported 
from September 1989 through August 1992; these num-
bers then continued to decrease until August 1996, when 
little disease activity was detected; however, the number 
of VHF cases then increased again until May 1997 [13]. 
The most recent data suggest that from September 1989 
through December 2006, a total of 618 VHF cases were 
reported in the state of Portuguesa, with a case-fatality rate 
of 23.1% [15]. Due to the poor surveillance system and a 
lack of epidemiological studies in Venezuela, there are no 
updated data on the number of cases from 2006 to 2021, 
when a recent report described 36 confirmed cases [17].

Risk factors

Due to the rapid onset and high mortality rates associated 
with infection, the CDC has classified GTOV as a high-
priority category A bioterrorism agent [18] that may only 
be manipulated in maximum-containment laboratories 
(biosafety level 4) [19].

All of the confirmed and probable cases of VHF have 
occurred in people residing in endemic areas, or in peo-
ple who lived elsewhere but had recently travelled to the 
endemic region [13, 14]; thus, exposure to endemic areas 
may be an important risk factor for GTOV infection. Males 
of reproductive age represent the group with the highest risk 
due to occupational exposure to infected rodents such as 
Z. brevicauda (short-tailed cane mice), which inhabit wild 
and rural areas [13]. Records from 165 VHF cases from 
September 1989 to January 1997 show that most of the cases 
occurred between November and January, coinciding with 
the end of the rainy season and the highest level of agricul-
tural activity in the region [13]. It is worth mentioning that, 
in 1998, almost 50% of the population in those rural areas 
was involved in agriculture and/or cattle raising as their 
principal work activity. However, during the planting and 
harvest seasons, many temporary agricultural workers from 
Venezuela and nearby Colombia go into VHF endemic areas 
for work [13], thus risking infection with GTOV. Despite the 
high transmissibility from wild rodents, cases of VHF by 
interhuman transmission may not be common, as only one 
probable secondary case has been reported in the scientific 
literature [13].

Natural reservoir

The first information about the natural reservoir host of 
GTOV was obtained in 1991 during a surveillance of rodents 
captured in dwellings of VHF cases in the municipality of 
Guanarito. GTOV was isolated from Sigmodon hispidus, and 
seropositivity was detected in Oryzomys spp. [4]. Almost 
a year later, field surveillance of the communities of La 
Hoyada, Pirital, La Arenosa, and Pirital (Portuguesa state) 
was performed to determine the prevalence of infection in 
wild rodents, and GTOV was isolated from 19 out of 40 
Sigmodon alstoni (Alston’s cotton rats) and 12 out of 106 
Z. brevicauda samples [16]. Interestingly, S. alstoni devel-
oped a persistent seronegative infection and Z. brevicauda 
developed a seropositive infection [16]. These first results 
suggested that S. alstoni might be the principal reservoir host 
of GTOV in the wild environment [16]. During the same sur-
veillance, seropositivity was also observed in 6.3% of Rattus 
rattus samples, indicating that common rats might occasion-
ally be in contact with GTOV. As R. rattus can live closely 
with the human population, these animals might represent an 
important source of infection, depending on their capacity to 
shed virus in their excreta, even for a short time [16]. More 
studies are necessary to test this hypothesis.

In another study, the nucleocapsid protein gene sequences 
from previously isolated viruses were analyzed, and it was 
found that viruses from S. alstoni correspond to the new 
arenavirus called Pirital virus (PIRV), and not to a strain 
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of GTOV [7]. These strains have also been recovered from 
other states besides Portuguesa, including Cojedes, Barinas, 
Guarico, and Lara [9]. The actual reservoir host of GTOV 
was thought to be Z. brevicauda, which is native to the plains 
of western Venezuela, considering that viral isolates were 
also recovered from this rodent species [15]. Z. brevicauda 
can reach high densities and live in areas with tall grass [15].

Another study indicated that no lethality occurs in Z. 
brevicauda when they are infected with GTOV, but they 
develop chronic viremia with persistent and long-term shed-
ding of infectious viral particles in oropharyngeal secretions 
and urine [20]. In addition, while infection occurs particu-
larly in young mice, which can develop chronic infection 
more easily, some adults clear the infection. Vertical trans-
mission might be uncommon due to the lethality of GTOV 
infection in Z. brevicauda fetuses [8, 20]. GTOV has been 
isolated from Z. brevicauda lungs, which suggests that these 
rodents are infected through the respiratory tract [8].

PIRV and GTOV have both been isolated from Z. brevi-
cauda, but GTOV also infects S. alstoni, albeit rarely, due 
to horizontal transmission between these two rodent spe-
cies, which live in intimate contact in the wild [8, 9]. How-
ever, both rodent species have extremely limited mobility, 
and thus, GTOV infection might not be widespread [14]. 
Although both Z. brevicauda and S. alstoni have been found 
to be seropositive for GTOV, the virus has only been isolated 
from Z. brevicauda, suggesting that the immune response in 
Z. brevicauda controls GTOV infection but does not clear it 
[8, 9]. Overall, several factors, such as Z. brevicauda genet-
ics, GTOV genetics, the inoculum dose, and the route of 
exposure, may affect GTOV infection in rodents [8].

Virology

GTOV is a single-stranded RNA virus of the genus Mam-
marenavirus that belongs to clade B of the New World are-
naviruses. Its genome has two segments. The large segment 
(L) encodes the viral polymerase (RNA-dependent RNA 
polymerase) and a zinc finger motif protein (Z protein) or 
viral matrix protein, and the small segment (S) encodes the 
nucleocapsid protein (NP) and a glycoprotein precursor 
(GPC) [6, 21]. GTOV is part of the Tacaribe complex [22] 
and therefore cannot be differentiated from other members 
of this complex by complement fixation or indirect immu-
nofluorescence assay due to cross-reaction [22].

In comparison with other mammarenavirus, phyloge-
netically, GTOV is included within clade B with Amapari, 
Machupo, Junin, Tacaribe, and Sabia viruses [23]. GTOV 
has nine distinct genotypes (Fig. 2) that differ by 4–17% in 
their nucleotide sequences and up to 9% in their amino acid 
sequences when comparing NP gene sequences obtained 
from 29 isolates (21 from rodents and 8 from humans) [14]. 

Most genotypes appear to be restricted to discrete geo-
graphic regions, and only two genotypes have been isolated 
from VHF cases, both of which were found in rodents out-
side the endemic regions. This suggests that human cases 
might occur in areas surrounding the endemic regions in 
which VHF cases have been reported [14]. Apparently, VHF 
is not associated with any specific GTOV genotype, and 
some genotypes have never been isolated from human VHF 
cases [14]. Although all GTOV genotypes circulate among 
rodents in adjacent areas of the states of Cojedes, Barinas, 
and Apure, due to a lack of epidemiological surveillance, it 
is not known if these genotypes regularly cause human dis-
ease [14]. All but genotype 1 GTOV have been isolated from 
Z. brevicauda, and genotype 1 was only isolated from Oligo-
ryzomys fulvescens in Barinas State [14]. It is unlikely that 
exchanges of genetic elements between GTOV-like viruses 
and PIRV by recombination or reassortment contribute to 
VHF emergence, since phylogenetic analysis of S and L 
genome segments of GTOV has shown that its evolution is 
independent of that of PIRV, which forms a separate lineage 
together with Pichindé virus [21].

The geographical range of GTOV associated with Z. brev-
icauda includes five states in western Venezuela: Apure, 
Barinas, Cojedes, Guárico, Lara and Portuguesa (Fig. 1) 
[9, 14, 15]. Therefore, GTOV could have been enzootic in 
Portuguesa long before 1989, and the emergence of VHF 
was likely a consequence of demographic and ecological 
changes in rural areas that resulted from increased human 
activities [15]. Cases of VHF in Apure, Cojedes, Guárico 
and Lara may not have been recognized, since few people 
have been exposed to GTOV-infected rodents in these less 
densely populated areas. Thus, hypothetically, VHF will 
become a significant public health problem in these states 
as human population and work activities increase [15].

Pathogenesis

The pathogenesis of New World arenaviruses has not been 
extensively studied, but it is known that they suppress the 
immune response during the earliest stage of infection and 
that they later trigger a severe inflammatory response, which 
correlates with the progress of the disease [3]. Of the known 
pathogenic New World arenaviruses, JUNV and MACV are 
the best studied [24, 25]. However, although many processes 
that occur during the pathogenesis of New World arenavi-
ruses might be similar, specific information on the patho-
genesis of those viruses is beyond the scope of this review.

Different animal models, including rhesus monkeys and 
guinea pigs, have been used to study the pathogenesis of 
VHF. While GTOV failed to produce disease in rhesus 
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monkeys, guinea pigs appear to be better models for study-
ing VHF disease [22].

Alpha-dystroglycan has been identified as the cellular 
receptor of Old World and clade C New World arenaviruses; 
however, clade A and B New World arenaviruses do not 
share the same receptor [26]. New World clade B arenavi-
ruses use transferrin receptor 1 (TfR1), and development 
of human illness depends on the ability of some of these 
viruses to bind to human TfR1 [27, 28]. GTOV-TfR1 bind-
ing might be specific, since it was found that GTOV does not 
use TfR1 of rodent species other than Z. brevicauda [29].

The GPC (glycoprotein precursor complex) is split into 
two proteins during viral assembly: GP1 (peripheral gly-
coprotein) and GP2 (transmembrane glycoprotein). GP1 is 
known to be the viral receptor, and GP2 is structurally simi-
lar to membrane fusion proteins of other enveloped viruses 
[26]. GP1 facilitates host cell attachment by binding to TfR1, 
and GP2 has been postulated to be a fusion protein because 
it facilitates the fusion between the virus and the host cell 
[18]. After GTOV binds to its cellular receptor via GP1, it is 
internalized by clathrin-mediated endocytosis, and the acidic 

environment in the endocytic compartment causes GP1 to 
be released from the virion and GP2 to mediate fusion of the 
viral and host membranes. This pH-dependent membrane 
fusion step releases the contents of the viral particle into the 
cytoplasm [18, 26].

Assembly and release of new enveloped virions is mainly 
mediated by the Z protein and by the viral NP, which 
enhances this process along with the host cell’s endoso-
mal sorting complex, which is required for transport and 
facilitates viral release [30–33]. The cellular proprotein 
convertase site 1 protease (S1P) has been implicated in the 
cleavage of the GTOV GPC, which increases the production 
of viral particles and cell-to-cell propagation [34].

Double-stranded RNA (dsRNA) is synthesized during 
infection by RNA viruses as a byproduct of replication and 
transcription, and this acts as a potent trigger of the innate 
antiviral response of the host. Viral dsRNA is recognized by 
RIG-I (retinoic acid-inducible gene I)-like receptors, leading 
to the production of type I interferon α/β [35]. The Z pro-
tein of pathogenic arenaviruses, including GTOV, inhibits 
RIG-I-like receptors, suppressing the innate response; thus, 

Fig. 2   Phylogenetic analysis based on 619-nt partial sequences (nt 
938–1556) of the nucleocapsid genes of GTOV isolates of differ-
ent genotypes. The tree was generated by the maximum-likelihood 
method using 10,000 replicates, with the Tamura 3-parameter plus 
invariant substitution model, which was selected according to the 
Akaike (AIC) and Bayesian (BIC) criteria. The tree was rooted using 
Pirital virus (PIRV) strain VAV-488, and Pichinde virus (PICHV) 
strain AN3739. Bootstrap values are shown at the nodes, and the 
GenBank accession number, species, strain, and genotype are shown 
at the branches. The source and region of origin of sequences for 
Guanarito virus (GOTV) genotypes are reported in reference 14, 

and the sequencing of GTOV INH-95551, PIRV, PICHV reference 
strains (bold) were reported by the ICTV (genus: Mammarenavirus 
- Arenaviridae - Negative-sense RNA Viruses - ICTV (ictvonline.
org)). All of the strains belonging to genotype 9 were identified in 
the state of Portuguesa, except for VHF-4016, identified in Cojedes, 
and VHF-2040, identified in Barinas. Genotype 8 was identified in 
Cojedes, genotype 7 in Barinas, genotype 6 in Portuguesa, genotype 
5 in Apure, genotype 4 in Guarico, genotype 3 in Guarico, genotype 
2 Apure, and genotype 1 in Marinas. * Indicates a strain detected in 
human samples
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the Z protein might be a potential novel target for the devel-
opment of antiviral therapies [36]. However, the Z protein 
is not the only arenaviral protein with immunomodulatory 
activity, since GTOV also encodes other suppressors that 
interfere with the immune response. For example, the 3′–5′ 
exoribonuclease activity of NP results in interference with 
type I interferon production [35, 37].

Studies carried on in Guinea pigs as animal models of 
human disease have shown that the clinical course of GTOV 
is characterized by gastrointestinal cellular necrosis, inter-
stitial pneumonia, lymphoid and hematopoietic cell necro-
sis, and the presence of platelet thrombi in blood vessels 
associated with hemorrhage [19]. In these animal models, 
VHF develops as a multi-organ disease, and viral antigen 
inclusions are found in multiple tissues and organs. Dif-
fuse pulmonary edema and congestion, liver congestion 
with necrosis, cardiomegaly, splenic enlargement and con-
gestion, adrenal hemorrhage, bone marrow depletion, and 
renal edema are some of the types of damage that have been 
observed in some individuals; however, liver necrosis caused 
by GTOV may be minimal compared with that caused by 
other arenaviruses (e.g., Lassa virus), which cause extensive 
damage [19]. Peripheral ganglia neurons can be reservoirs 
of the virus, creating an obstacle for GTOV treatment, since 
ribavirin, one of the major antivirals, cannot penetrate to 
neural sites [19].

Clinical manifestations

After an incubation period of 3 to 12 days, the most com-
mon initial symptoms include fever, prostration, headache, 
arthralgia, cough, sore throat, nausea, vomiting, diarrhea, 
epistaxis, bleeding gums, menorrhagia, and melena. Most 
patients present with thrombocytopenia and leukopenia. The 
platelet count has no relationship to the clinical outcome, 
and measurement of other laboratory parameters is unhelpful 
[4, 13]. Patients are usually acutely ill and often dehydrated 
and somnolent after the onset of severe symptoms. Those 
who die usually do so due to diffuse pulmonary edema and 
hemorrhagic congestion, and those who survive usually 
recover without sequelae. However, convalescence is pro-
longed and requires a long hospitalization [4].

Clinically, VHF cases are not different from other are-
naviral hemorrhagic fevers. VHF usually begins as a mild 
nonspecific febrile illness that progresses in severity over 
around six days, when most patients report fever and pro-
gressive onset of symptoms. Patients with severe disease 
develop melena, hematemesis, petechiae, epistaxis, and rec-
tal bleeding as the main hemorrhagic signs [13]. Specific 
clinical signs and symptoms from diagnosed VHF cases are 
listed in Table 1. Accurate etiological diagnosis is made in 
roughly 10.7% of cases, since physicians usually confuse 

the diagnosis with classical dengue or severe dengue [13]. 
Overall, the case fatality rate is 33.3% or higher, depending 
on the early measures and treatment adopted, but active or 
recent history of convulsions worsens the prognosis [13].

Diagnosis

GTOV, a BSL-4 pathogen, is included in group I of the 
priority classification by the World Health Organization 
because of its severity and often fatal outcome due to the 
lack of effective treatment and preventive measures. Thus, 
rapid laboratory diagnosis is very important and urgent for 
administering adequate treatment [38].

During the first outbreaks of VHF, cases were diag-
nosed by isolation of GTOV, which still remains as  the 
gold standard method for the laboratory diagnosis of many 
viral diseases [39]. However, viral culture is not a practical 
method for GTOV diagnosis because it is time-consuming 
and requires considerable technical expertise and a BSL-4 
security level laboratory, which is rarely available [4, 39], 
particularly in low- and middle-income countries. Therefore, 
other nonculture methods for rapid viral diagnosis, such as 
detection of viral antigens or nucleic acids, have replaced 
the use of viral culture.

Serological methods can also be employed and are helpful 
when a paired sample is obtained to detect seroconversion. 
Although IgM can be detected rapidly, cross-reactions can 
occur between GTOV and other arenaviruses. Neutralizing 
antibodies, which are much more selective and would be 
ideal for early diagnosis, usually appear too late after infec-
tion [38]. Since GTOV and other arenaviruses are classi-
fied as BSL-4 pathogens, their diagnosis in laboratories 
without BSL-4 facilities is difficult, and thus, in order to 
overcome these difficulties, antibody detection by enzyme-
linked-immunosorbent assay (ELISA) and indirect immuno-
fluorescence assay (IFA) using recombinant viral NPs may 
be an option, not as much for etiological diagnosis, but for 
seroepidemiological surveillance, because these tests can be 
performed in BSL-2 laboratories, which are more accessible 
[40, 41].

Other important diagnostic methods include detection 
of neutralizing antibodies and molecular methods. The 
viral genome can be detected by PCR before neutralizing 
antibodies appear in the patient’s serum. However, due to 
the short duration of viremia, the usefulness of PCR can be 
limited. Furthermore, detection of neutralizing antibodies 
is difficult, as it also requires a BSL-4 laboratory, which is 
usually unavailable in endemic areas [38]. Multiplex real-
time qRT-PCR and TaqMan qRT-PCR assays for the rapid 
detection of viruses causing hemorrhagic fever, including 
GTOV, have proved to be specific and sensitive [42–44]. 
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In the last decade, the use of analytical microarrays has 
become a promising diagnostic method that significantly 
reduces the time needed for analysis by allowing paral-
lel diagnosis, testing one sample with multiple probes 
that discriminate among different infectious agents. For 
example, in one study, a prototypic microarray was devel-
oped to distinguish members of the families Filoviridae 
and Arenaviridae, including GTOV, and this represents an 
important tool for the diagnosis of VHF [38]. Nonetheless, 
its cost and technical requirements limit its applicability 
in GTOV-endemic areas.

Treatment

Even if vigorous treatment is administered, a case fatality 
rate of 60% among hospitalized patients can occur. Some 
of the therapies and supportive measures for VHF treat-
ment include fresh convalescent plasma, platelet concen-
trates, fibrinogen, vitamin K, intravenous fluids, antivirals, 
and oxygen therapy [4].

Convalescent-phase plasma containing neutralizing 
antibodies has been used for mitigating the severity of 
VHF, and in vitro studies have found that it may be ben-
eficial in the treatment of VHF. Nonetheless, concerns 

Table 1   Clinical features of 
Venezuelan hemorrhagic fever 
(adapted from Salas et al. 1990 
and de Manzione et al. 1998)

* Female patients
♠  Nausea, 13.4%; vomiting 34.5%

Clinical manifestations Frequency (n = 14) [4] Frequency (n = 55) [13]

Fever 100% (14/14) 92.7% (51/55)
Hemorrhagic signs 92.9% (13/14) ND
 Bleeding gums 61.5% (8/13) 52.7% (29/55)
 Melena 30.8% (4/13) 20% (11/55)
 Petechiae 30.8% (4/13) 16.4% (9/55)
 Epistaxis 23.1% (3/13) 12.7% (7/55)
 Hematemesis 23.1% (3/13) 16.4% (9/55)
 Hematuria 23.1% (3/13) -
 Menorrhagia* 57.1% (4/7)* -

Prostration 78.6% (11/14) -
Dehydration 71.4% (10/14) 29.1% (16/55)
Pharyngitis 71.4% (10/14) 12.7% (7/55)
Arthralgia 64.3% (9/14) 52.7% (29/55)
Headache 64.3% (9/14) 58.2% (32/55)
Somnolence/stupor 64.3% (9/14) 10.9% (6/55)
Conjunctivitis 50% (7/14) 14.5% (8/55)
Diarrhea 50% (7/14) 27.3% (15/55)
Cough 42.9% (6/14) 20% (11/55)
Nausea/vomiting 35.7% (5/14) 13.4% (7/55); 34.5% (19/55) ♠

Sore throat 35.7% (5/14) 36.4% (20/55)
Lymphadenopathy 21.4% (3/14) 23.6% (13/55)
Facial edema 14.3% (2/14) -
Tonsillar exudate 14.3% (2/14) 12.7% (7/55)
Abdominal pain 7.1% (1/14) 30.9% (17/55)
Chest pain 7.1% (1/14) -
Vertigo 7.1% (1/14) -
Convulsions 7.1% (1/14) 18.2% (10/55)
Hepatomegaly 7.1% (1/14) 5.6% (3/55)
Rash 7.1% (1/14) -
Malaise - 74.5% (41/55)
Myalgia - 30.9% (17/55)
Rectal bleeding - 9.1% (5/55)
Splenomegaly - 1.8% (1/55)
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about neutralizing activity of convalescent plasma against 
specific circulating strains in determined regions (as has 
been reported previously for other arenaviral diseases 
such as JUNV infection) has raised doubts about this 
option [15, 45]. The use of plasmid-DNA-based vaccine 
technology to express the glycoproteins of pathogenic 
arenaviruses in rabbits can be used to generate neutral-
izing antibodies, which can be included in an antibody 
cocktail that targets multiple arenaviruses. These neu-
tralizing antibodies have been shown to be effective for 
immunotherapy of infections with GTOV and other are-
naviruses in guinea pigs [45].

Ribavirin is the only licensed antiviral that has proven 
to be effective against arenaviral infections (e.g., Lassa 
virus, JUNV, MACV). Its effectivity depends on very 
early treatment, and its use in the late stages of the dis-
ease has only minor positive effects [46, 47]. Other anti-
virals, such as favipiravir, which inhibits viral replication/
transcription, possibly targeting the viral RNA-dependent 
RNA polymerase, have also demonstrated a broad spec-
trum of in vitro activity against a great number of RNA 
viruses, including GTOV [46]. Its efficacy for the treat-
ment of arenaviral hemorrhagic fever agents has shown 
successful results in the treatment of non-human primates 
infected with Lassa virus [48], but favipiravir has also 
been used in the treatment of other South American hem-
orrhagic fevers such as human cases of Argentine hemor-
rhagic fever [49].

Processing of GPC by S1P, also known as subtilisin-
kexin-isozyme 1 (SKI-1), is a crucial step for cell-to-cell 
propagation of the virus; thus, inhibition of SKI-1/S1P is 
expected to inhibit intercellular dissemination and accel-
erate viral clearance [47]. In vitro studies have shown that 
SKI-1/S1P inhibitors, combined with antivirals such as 
ribavirin, potentiate the antiviral effect and viral clear-
ance during chronic infection [47].

Other drugs such as amiodarone, an antiarrhythmic 
medicine, have proven to be potent inhibitors of cell 
entry by some viruses, including GTOV, at least in in 
vitro assays [50]. New technologies are now available for 
the identification of small molecules and other therapeu-
tics that could be used as potential antivirals. Strategies 
are being developed to identify novel cell-entry inhibi-
tors, which have become important tools for the discov-
ery of potential treatments of VHF, including arenaviral 
diseases [51]. Anti-TfR1 antibodies and small molecules 
that inhibit viral binding to TfR1 can efficiently inhibit 
GTOV and other South American arenaviruses that use 
TfR1 as an entry receptor [52, 53]. The viral GP1 or GP2 
proteins have been shown to be potential primary targets 
for the design of antiviral drugs [18].

Prevention measures

GTOV is classified as a high-priority category A bioter-
rorism agent according to the CDC [18]. Thus it can only 
be handled in maximum-containment laboratories (BLS-
4) with all of the necessary protocols related to protec-
tive personal equipment (e.g., the use of full-body, air-
supplied, positive-pressure protective suits) and facility 
features (e.g., strictly controlled airflow into the labora-
tory, airlocks within the entrances and exits, and exten-
sive decontamination of waste materials before leaving 
the laboratory), in order to avoid possible contamination 
of workers and minimize the risk of widespread infection 
[19, 54].

All arenaviruses are on the priority A list of pathogens 
of the National Institute of Allergy and Infectious Disease 
(NIAID) for which vaccine development is a priority [55]. 
Currently, there is no FDA-approved vaccine for any path-
ogenic arenavirus. In Argentina, the live attenuated Can-
did#1 vaccine of JUNV has been shown to be effective in 
preventing Argentine hemorrhagic fever, and monoclonal 
antibodies produced from Candid#1-immunized humans 
neutralize MACV [56, 57]. However, the effectiveness of 
Candid#1 immunity for prevention of MACV infection is 
still not clear, as it failed to prevent lethal MACV infec-
tion in a mouse model [58]. Furthermore, the effectivity of 
Candid#1 as a preventive measure against other arenavi-
ruses, including GTOV, has not yet been investigated [56].

Some epitopes on viral proteins have shown a lack of 
cross-reactivity with different arenaviruses, but there are 
some small antigenic sites that have been shown to be very 
conserved among many arenaviruses, making them pos-
sible molecular targets for vaccines [6]. Recently, a study 
based on genome and immune informatics showed that the 
viral NP can be a potential target for designing a cross-
reactive vaccine against pathogenic arenaviruses, since 
NP can stimulate a humoral and cell-mediated immune 
response [56].

Attenuated strains can potentially be employed as vac-
cines. A study found that a mutation in the JUNV Z pro-
tein, which is highly conserved among mammalian are-
naviruses, resulted in attenuation of the virus, raising the 
possibility that similar results can be achieved with closely 
related arenaviruses such as MACV, GTOV, and SABV 
[59]. In another study, an attenuated variant of MACV 
showed 88% protection of guinea pigs infected with GTOV 
[60]. Both studies suggest that a live-attenuated arenavirus 
vaccine can be highly effective against these pathogens.

CD4+ T cells are needed for optimal CD8+ T- and 
B-cell responses, playing an important role in cellular 
and humoral immunity in arenaviral infections. The iden-
tification of epitopes recognized by CD4+ T cells may be 
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critical for the development of a T-cell-based vaccine with 
the potential to target a broad range of pathogenic arena-
viruses, including GTOV [61, 62].

Z. brevicauda, the reservoir host of GTOV, is commonly 
associated with grassy habitats in rural areas; thus, elimina-
tion of tall grass in close proximity to rural human dwellings 
and working areas can prevent contact with this rodent and 
possible GTOV infection [9].

Current challenges

Since the first discovery of GTOV in 1989, many clinical 
and field epidemiological studies indicated that VHF cases 
were being reported continuously, but a lack of interest in 
the disease has resulted in a lack of epidemiological studies 
for almost fifteen years. Clinical studies, or even field epi-
demiological studies involving GTOV and VHF, have not 
been reported since 2006. However, a recent report, using 
data from the Ministry of Health of Venezuela, described 
118 suspected VHF cases, only 30.5% (36/118) of which had 
been confirmed up to epidemiological week 42 in 2021 [17].

Although confirmed cases of VHF have only been 
reported in the endemic region of the states of Portuguesa, 
Barinas and adjacent regions in Venezuela, GTOV might 
not be restricted to these regions. In a study performed in 
Colombia using GTOV antigens, antibodies were detected 
in Z. brevicauda captured from rural areas on the Caribbean 
coast of the department of Córdoba [63]. Although the sero-
prevalence in Z. brevicauda was much lower in Colombia 
than in the VHF-endemic area in Venezuela, this finding 
should alert local public health entities that GTOV cases 
might be occurring in Colombia. The geographic closeness 
of the Colombian and Venezuelan eastern plains, which 
share some common features such as climate, the presence 
of small mammals, social and economic conditions, and land 
use, suggests that it would be worthwhile to study epide-
miological risk factors in Colombia that could explain the 
occurrence of unidentified febrile illnesses within these bor-
der regions. Although circumstantial evidence of circulation 
of arenaviruses in Colombia has already been documented 
(e.g., Pichindé virus, LCMV), the great biodiversity in this 
country suggests the need for field-surveillance studies that 
could help to determine the likely roles played by rodents in 
other parts of Colombia [64].

One of the most complex humanitarian crises in the west-
ern hemisphere is occurring in Venezuela, and due to this 
situation, the flow of Venezuelan migrants and refugees 
has been increasing for more than five years, principally 
in the nearby countries of Colombia and Brazil, represent-
ing a risk for the increase, transmission, and emergence of 
a great variety of infectious diseases [65]. Human mobil-
ity is an important determinant in the spread of infectious 

diseases, particularly vector-borne diseases and zoonoses 
[12], and thus future studies should focus particularly on 
regions that border on the Venezuelan endemic area (the 
Colombian-Venezuelan border and Brazilian-Venezuelan 
border). Surveillance of wild rodents, particularly Z. brevi-
cauda should be conducted, and cases of human febrile ill-
ness that might be attributed to arenaviral hemorrhagic fever 
should be investigated.
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