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Abstract
Using viruses to our advantage has been a huge leap for humanity. Their ability to mediate horizontal gene transfer has made 
them useful tools for gene therapy, vaccine development, and cancer treatment. Adenoviruses, adeno-associated viruses, 
retroviruses, lentiviruses, alphaviruses, and herpesviruses are a few of the most common candidates for use as therapeutic 
agents or efficient gene delivery systems. Efforts are being made to improve and perfect viral-vector-based therapies to 
overcome potential or reported drawbacks. Some preclinical trials of viral vector vaccines have yielded positive results, 
indicating their potential as prophylactic or therapeutic vaccine candidates. Utilization of the oncolytic activity of viruses 
is the future of cancer therapy, as patients will then be free from the harmful effects of chemo- or radiotherapy. This review 
discusses in vitro and in vivo studies showing the brilliant therapeutic potential of viruses.

Introduction

Viruses are the most abundant biological entities, with 
remarkable genetic diversity, substantial resilience to envi-
ronmental changes, and significant ability to mutate and 
survive [68]. As effective agents of horizontal gene trans-
fer, viruses have played an important role in influencing 

the immune system and genetic makeup of every cellular 
organism and have thus driven biological evolution [13]. 
The genetic and morphological diversity of viruses provides 
a large manipulable viral library that can be utilized for tai-
lored applications in research and medicine [30].

Viruses are currently being employed in gene therapy, 
oncolysis, and vaccine development. Since viruses utilize 
the host’s cellular machinery for their replication, they have 
evolved to overcome or evade the host’s immune response 
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and effectively deliver their nucleic acid to the infected cells. 
These features can be manipulated to allow them be used 
as gene delivery agents in gene therapy. Novel viral vectors 
that are human-friendly, non-immunogenic, and non-patho-
genic and can transport large genes for stable and long-term 
expression are being developed to transfer therapeutic genes 
efficiently [41]. Self-amplifying RNA viral vectors have 
been shown to elicit strong humoral and cellular immunity 
in animal models as well [85].

In October 2015, the FDA approved the first oncolytic 
virus therapy, T-VEC, for the treatment of melanoma. It is 
a modified herpes simplex virus that acts on cancer cells 
and promotes their lysis [130]. Oncolytic viruses target den-
dritic cells, make the tumor immunogenic, and stimulate the 
immune response against cancerous cells [84]. They regulate 
the microenvironment of cancerous cells such that T cell 
therapies can be used to treat solid tumors [45].

With the increasing world population and constant evo-
lution of infectious agents, there is a dire need to develop 
more-efficient and novel immunization methods for which 
vaccines can be produced on a large scale. Viral-vector-
based vaccines eliminate the need for additional adjuvants 
and induce a strong immune response [157].

In this review, we present an account of the major classes 
of viruses, both DNA viruses, including adenoviruses, 
adeno-associated viruses (AAVs), poxviruses, and herpesvi-
ruses, and RNA viruses, including lentiviruses, retroviruses, 
alphaviruses, measles virus, and Newcastle disease virus, 
that have shown great promise for current and future medical 
treatments and related applications (Table 1).

DNA viruses

Adenoviruses

Adenoviruses (Ads), are the largest non-enveloped viruses 
(90–100 nm) and are efficient vehicles for gene delivery. 
They contain a linear, non-segmented, double-stranded DNA 
genome of 26 to 45 kbp in their icosahedral capsid [126]. 
Adenoviruses can deliver transgenes of more than 8 kbp, 
and the viral genome resides in the nucleus episomally when 
injected by an adenovector, as it cannot integrate into the 
host genome. The genome of the adenovirus is divided into 
early units (E1 to E4), whose genes are responsible for the 
expression of non-structural proteins, and late units (L1 to 
L5), whose genes encode the structural components of the 
virion [112]. The first-generation adenovirus vector gener-
ates a strong immune response and has a capacity of around 
8.2 kb for the insertion of a transgene because it lacks the E1 
and E3 regions. Second-generation adenovectors are made 
by eliminating all of the early genes. Third-generation ade-
novectors, which are also known as "gutless" adenovectors, 

high-capacity adenoviruses (HC-Ad), or helper-dependent 
adenoviruses (HD-Ad), retain only the ITRs and the pack-
aging signal (Ψ), which is essential for the final assembly 
of the virus [74, 83]. Adenoviral vectors have been exten-
sively studied for their ability to carry transgenes for gene 
therapy. An adenovector encoding hypoxia-inducible factor 
1 alpha (AdHIF-1α) has been shown to have an antiapoptotic 
and neuroprotective effect on ischemia and reperfusion in 
rats and is thought to inhibit apoptosis in nerve cells [175]. 
A helper-dependent HDAd5/35++ adenovector expressing 
CRISPR/Cas9 was generated for potential hematopoietic 
stem cell (HSC) gene therapy of sickle cell disease and 
β-thalassemia via re-activation of fetal γ-globin expression 
(HDAd-globin-CRISPR). This construct caused an increase 
in γ-globin expression in HSCs isolated from transplanted 
mice after genome editing [76]. An adenovirus vector Ad-
E4-122aT was used in neonatal mice with hemophilia B and 
found to be a promising gene delivery vector for treating this 
disease [52].

The current emphasis in research is to utilize adenoviral 
vectors for development of novel vaccines. A single intra-
nasal dose of chimpanzee adenovirus (simian Ad36)-based 
SARS-CoV-2 vaccine encoding the S protein (ChAd-SARS-
CoV-2-S) was shown to induce the production of neutral-
izing antibodies and T cell responses and to limit infection 
in the respiratory tract after challenge with SARS-CoV-2 
[44]. Another COVID-19 vaccine made using a recombinant 
adenovirus type 5 (Ad5) vector expressing the S protein of 
SARS-CoV-2 was shown to be safe and immunogenic 28 
days post-vaccination in a phase 1 trial [178] A single shot 
of a replication-defective human Ad5 encoding the S pro-
tein of SARS-CoV-2 (Ad5-nCoV) protected mice and ferrets 
completely against SARS-CoV-2 infection, suggesting that 
mucosal vaccination may provide sufficient protection, and 
this can be investigated further in human clinical trials [168]. 
A single dose of replication-competent, highly attenuated 
Ad26 vector expressing mosaic HIV-1 Env (rcAd26.MOS1.
HIV-Env, “rcAd26”) was found to be poorly immunogenic, 
suggesting that less-attenuated adenoviral vector HIV-1 vac-
cines should be used for oral administration [136]. The reac-
togenicity and immune response of a replication-defective 
recombinant chimpanzee Ad3-vectored Ebola virus vaccine 
(cAd3-EBO) was found to be dose-dependent in a phase 1 
clinical trial [73]. A monovalent, recombinant, chimpanzee 
Ad3-vectored Zaire Ebola glycoprotein vaccine (ChAd3-
EBO-Z) was found to be immunogenic and well tolerated in 
children aged 1 to 17 years in a phase 2 clinical trial [147]. 
Induction of humoral immunity by a replication-deficient 
human Ad5 vector expressing an empty foot-and-mouth 
disease virus (FMDV) capsid (AdtFMD) was studied, and 
the data revealed the short span of anti-FMDV- antibody-
secreting cells (ASCs) and important performance char-
acteristics of needle-free vaccination for FMDV [133]. 
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Compared to the humoral responses induced by an inacti-
vated influenza vaccine, the humoral responses induced by 
an adenovirus-vectored vaccine against the conserved stalk 
domain mediated cross-protection against heterosubtypic 
influenza viruses [63]. The efficacy of ChAdOx1, a replica-
tion-deficient simian adenovirus vaccine vector, for Middle 
East respiratory syndrome coronavirus (MERS-CoV), was 
shown to be highly immunogenic and to confer protection 
against lethal viral challenge [102].

Virotherapy using oncolytic adenoviruses is an effective 
anticancer strategy. Adenoviruses are excellent vectors in 
terms of manipulability and tolerance of transgenes. The 
potency and duration of anti-tumor activity of chimeric anti-
gen receptor (CAR) T cells was increased using an adeno-
virus producing a cytokine, a checkpoint blockade, and a 
bispecific tumor-targeted T cell engager (BiTE) molecule, 
and this also ensured the dual targeting of two tumor anti-
gens and significantly improved tumor control and survival 
[115]. Tumor growth was significantly inhibited by infec-
tion with a photoactivatable oncolytic adenovirus (paOAd), 
followed by blue light irradiation in vitro and in vivo. In 
addition, paOAd also showed a therapeutic effect on cancer 
stem cells [42]. Expression of p14 FAST from adenovirus 
can induce widespread syncytium formation, reduce the 
tumor growth rate, and improve vector efficacy for cancer 
treatment [28]. An oncolytic adenovirus, Delta-24-RGDOX, 
expressing the immune co-stimulator OX40 ligand (OX40L) 
showed tumor-specific activation of lymphocytes and prolif-
eration of CD8+ T cells specific for tumor-associated anti-
gens, resulting in immunity [57].

Adeno‑associated virus

Adeno-associated virus, a member of the family Parvoviri-
dae is a non-enveloped ssDNA virus. The small size and 
nonpathogenic nature of AAV make it an ideal candidate 
for gene transfer, with an insert capacity of ∼4.8 kilobases 
[129]. In primates, twelve different serotypes of AAV have 
been identified based on their capsid components. Most of 
them are being used in gene therapy [105, 129]. The use 
of adeno-associated viruses as vectors is not limited only 
to research. They are also being successfully employed as 
gene transfer systems for clinical purposes. To be used as 
a gene expression vector, the viral genome is engineered in 
a way that the viral DNA between the two ITRs is excised 
and the gene of interest is inserted in that region [129]. In 
one study, a novel variant of AAV called AAV-inner ear 
(AAV-ie) was designed and shown to be highly efficient for 
transduction of cochlear supporting cells and has been suc-
cessfully employed for gene therapy of cochlea in a mouse 
model [145]. Another study showed that AAV-ANF, a vari-
ant of the AAV9 vector that contains the atrial natriuretic 
factor (ANF) promoter, is an efficient gene transfer vehicle 

for atrial-specific gene therapy [107]. Gene therapy using 
a recombinant AAV vector containing human rhodopsin 
replacement complementary DNA along with shRNA to 
silence mutated rhodopsin was used to treat retinitis pigmen-
tosa in a canine model [23]. In another study, an engineered 
variant of AAV with better uncoating ability was shown to 
be effective as a carrier system for gene therapy of dendritic 
cells because it stimulated a stronger humoral response and 
induced a better adaptive response by producing anti-capsid 
CD8+ T cells [123]. Moreover, a study in which the AAV2/4 
RPE65.RPE65 vector was used for gene therapy of Leber 
congenital amaurosis showed good tolerance of this vector in 
all nine patients tested, but the efficacy level differed among 
them (https://​doi.​org/​10.​1016/j.​ymthe.​2017.​09.​014). The 
AAV vector plays a therapeutic role in treatment of some 
neuromuscular disorders as well. It has been reported that 
a single dose of AAV9 vector containing cDNA encoding 
the survival motor neuron 1 (SMN1) protein provided an 
efficient gene replacement therapy for the treatment of spi-
nal muscular atrophy (https://​doi.​org/​10.​1056/​NEJMo​a1706​
198). In another study, two AAV vectors were used simul-
taneously to deliver the CRISPR/Cas9 system for the treat-
ment of Duchenne muscular dystrophy in a mouse model. 
Guide RNAs of CRISPR were inserted into scAAV, while 
Cas9 was inserted into ssAAV. This delivery system har-
nessing two AAV vectors was able to restore the expression 
of dystrophin and also decreased the severity of the disease 
(https://​doi.​org/​10.​1126/​sciadv.​aay68​12). In hamsters that 
show deficiency in apolipoprotein C2, gene therapy using a 
recombinant AAV8 vector carrying human apolipoprotein 
C2 gene has been shown to significantly reduce the levels 
of triglycerides in the blood (https://​doi.​org/​10.​1016/j.​omtm.​
2020.​07.​011).

The AAV vector is also playing a role in combating infec-
tious diseases. Recently, it has been employed in the devel-
opment of an efficient antiviral therapy against orthopoxvi-
ruses in vitro for successful and safe delivery of the CRISPR/
Cas 9 system [131]. Interestingly, a single dose of vaccine 
that was developed against SARS-CoV-2 using engineered 
AAV with the AAVrh32.33 capsid was shown to induce a 
strong immune response in mice and non-human primates, 
producing a high titer of neutralizing antibodies along with 
the production of memory T cells [177]. AAV-vector-based 
gene transfer of monoclonal antibodies has been shown to 
provide complete protection against Ebola virus in a mouse 
model [155]. This vector has also shown efficacy by induc-
ing a strong immune response including broadly neutralizing 
antibodies and non-neutralizing antibodies against the enve-
lope protein of HIV-1 [116],van den [154]. Additionally, a 
single dose of AAV vector encoding an anti-SIV antibody 
has been shown to provide strong and long-lasting protec-
tion against simian immunodeficiency virus (SIV) in mon-
keys [93]. With regard to cancer treatment, AAV2‑shE6E7, 

https://doi.org/10.1016/j.ymthe.2017.09.014
https://doi.org/10.1056/NEJMoa1706198
https://doi.org/10.1056/NEJMoa1706198
https://doi.org/10.1126/sciadv.aay6812
https://doi.org/10.1016/j.omtm.2020.07.011
https://doi.org/10.1016/j.omtm.2020.07.011
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which encodes an shRNA targeting the E6 and E7 proteins 
of the human papillomavirus (HPV), has demonstrated the 
potential to eliminate cervical cancer both in vivo and in 
vitro [127]. The use of AAVP particles, which are a hybrid 
of AAV and phage, for target-specific delivery of transgenes 
into tumor cells has also been reported [119, 143].

Recently, AAV-based gene therapy of X-linked myotubu-
lar myopathy has resulted in the death of two patients [149]. 
The safety of AAV vectors is still being debated, and fur-
ther research is required to address their efficacy and safety 
concerns.

Herpesviruses

Herpes simplex virus is a double-stranded DNA virus with 
icosahedral symmetry [78]. It is being used for gene therapy 
because it has a large genome that comprises almost 152 kbp 
and has 50 genes. By deletion in the immediate early (IE) 
genes, the virus can accommodate almost 30 kb of exog-
enous DNA and transfer it to host cells [35]. Transduction 
of the HSV-1 vector H24B-FXNlac carrying a reduced ver-
sion of the human genomic loci FXN into fetal rat dorsal 
root ganglia neurons resulted in long-term expression of the 
human FXN transgene, allowing treatment of Friedreich's 
ataxia neuropathy [158]. Injection of the HSV-based vector 
JΔN16 into the hippocampus of a mouse resulted in robust 
transgene expression, and injection of JΔN16 into differ-
ent parts of the brain of a mouse also resulted in transgene 
expression and helped in the treatment of various neuro-
logical diseases, such as Parkinson’s disease [159]. Nasal 
application of an HSV-based vector expressing the human 
proenkephalin gene (SHPE) targeted the trigeminal ganglia 
and gave positive results in treating post-TBI (traumatic 
brain injury) craniofacial neuropathic pain in a rat model 
[96]. A recent suicide gene therapy with HSV-TK, which 
activates ganciclovir (GCV) by phosphorylation and targets 
tumor cells, gave promising results when treating mice with 
non-small-cell lung cancer xenografts [56].

Intramuscular administration of a single dose of 
HSV1716, an oncolytic virus, showed promising results 
in children with relapsed/refractory non-CNS solid tumors 
[138]. The use of rRp450, an attenuated HSV-1 vector that 
is used in the treatment of medulloblastoma and atypical 
teratoid/rhabdoid tumors (AT/RT), was associated with 
improved results in orthotopic xenograft pediatric brain 
tumor models, and 40% and 25% of mice with the BT-12 and 
BT-16 cell line, respectively, of AT/RT showed an increase 
in survival, whereas 41.6% and 27.3% with the D283med 
cell line and the D425med cell line, respectively, showed 
a decline in tumor cells [140]. The oHSV vector KNTc-
gD:GDNFΔ38 infects breast cancer cells through high 
expression of GFRα1 in the MCF7 flank tumor model of 
nude mice and showed a decrease in tumor cells [43]. Three 

mouse models were used to study the anti-tumor effect of 
G47Δ, which is a third-generation oncolytic HSV. The three 
models with MNK-45, MNK-74, and 44As3 tumors injected 
intratumorally with G47Δ showed a significant decrease in 
the growth of the cancer cells, and various human gastric 
cancers were inhibited [141].

Recombinant rhCMV with antigens from SIV induces 
immunity against SIV with good efficacy. This rhCMV 
induces a wide range of T cells that are able to recognize 
MHC 1 and 2 epitopes and provide protection against this 
particular disease [7]. The HSV-d106 recombinant vector 
is being used as a vaccine vector against SARS-CoV-1. 
The S proteins expressed by d106-SARS-CoV1S localize 
to the surface of infected cells and promote the fusion of 
293T cells expressing ACE2, the receptor for SARS. CoV-1 
cells infected with d106-SARS-CoV-1S showed production 
of binding and neutralizing antibodies [70]. A replication-
defective HSV recombinant vector has been used for vac-
cine development against West Nile virus. The recombinant 
d106-WNV expresses the prM and E proteins, leading to the 
formation of extracellular VLPs. This recombinant vector 
also induces the production of neutralizing anti-WNV IgG 
antibodies in immunized mice [148]. Cells of BALB/c mice 
vaccinated with HSV [VP6C] amplicon vector showed the 
presence of the VP6 protein and specific anti-RVC antibod-
ies against group 6 rotavirus [125].

Poxviruses

Poxviruses are large enveloped DNA viruses that replicate 
in the cytoplasm. The oncolytic properties of these viruses 
make them promising candidates for treating cancer [118]. 
Removing the FIL gene from the poxvirus vaccinia virus 
greatly enhances its oncolytic activity and safety, as has 
been observed in a glioblastoma cell line [113]. Its ability 
to spread in a systemic manner in the bloodstream helps 
in treating metastasis, as shown in preclinical models [71]. 
Myxoma virus can also kill cancer cells in humans as well 
as in mice [118]. A myxoma virus that expresses tumor 
necrosis factor, called murine LIGHT, which is preloaded 
in mesenchymal stem cells derived from adipose tissue, is 
effective for treating murine pancreatic adenocarcinoma 
[55]. Five antiviral and three pro-viral RNA helicases have 
been identified that strongly affect the efficiency of myx-
oma virus replication in several types of human cancer cells 
[117]. Poxviruses are also being used as viral vectors for 
melanoma-based gene therapy applications in the treatment 
of pancreatic, prostate, and colon cancer [49]. In cats with 
vaccine-associated sarcomas, poxviruses have been injected 
postoperatively, and a lower rate of tumor reappearance was 
observed [87].

Poxviruses have importance as vaccines candidates, as 
they encode an essential element, i.e., nuclear factor kappa 
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light chain enhancer. By inducing certain modifications, they 
can be optimized to be used as vaccines [139]. Synthetically 
modified vaccinia vectors co-expressing the spike and nucle-
ocapsid proteins of SARS-CoV-2 induced a strong antigen-
specific immune response in mice and were therefore used as 
a candidate for a multi-antigenic SARS-CoV-2 vaccine [20]. 
In laboratory experiments, oronasal or tropical exposure of 
bats and mice with a recombinant raccoon poxvirus vac-
cine protected them against rabies [135]. In phase 2 clinical 
trials, intramuscular injection with a recombinant attenu-
ated poxvirus expressing cytomegalovirus antigens is being 
used to prevent CMV in patients who received transplants 
[3]. A modified vaccinia virus Ankara expressing the viral 
glycoprotein and the VP40 protein to form VLPs showed 
immunogenicity against Ebola virus [72].

Recombinant poxviruses to be used as vectors were devel-
oped by targeted insertion inactivation of the viral thymidine 
kinase gene and insertion of a heterologous gene in the thy-
midine kinase locus of the genome [62]. Modified vaccinia 
viruses have been shown to be immunogenic against cancer 
and several infectious diseases and are thus potentially effec-
tive vector systems. In clinical trials, promising results have 
been obtained against Ebola virus and influenza virus infec-
tions [86]. Modified vaccinia virus Ankara has been applied 
to the mucosal surface of the respiratory tract to provide 
defensive immunity in the lungs to combat SARS-CoV-2 
[37]. The safety, immunogenicity, and tolerability of a modi-
fied vaccinia virus glycoprotein expressing the MERS-CoV 
spike were assessed for Middle East respiratory syndrome 
by using it as a vaccine candidate that in healthy adults [64]. 
In a phase 1 clinical study, a replication-deficient modified 
vaccinia virus Ankara and a chimpanzee adenovirus express-
ing conserved antigens of influenza virus were administered 
to patients. The results showed these modified viruses to be 
safe, and in response to influenza antigens, they also boosted 
T cell levels [24]. In a phase 2 clinical study, a multivalent 
respiratory syncytial virus vaccine was developed in which 
a poxvirus with RSV antigens and surface proteins induced 
a broad immune response with no adverse effects, with anti-
bodies remaining above baseline levels for 6 months [61].

RNA viruses

Lentiviruses

Lentiviruses (LVs) are one of the three families of retro-
viruses. They are associated with diseases of the human 
immune system which can become chronic and affect the 
nervous system [146]. Due to their ability to tolerate large 
inserts and their efficient transduction ability, lentiviruses 
have been employed to transfer the complete dystrophin 
gene in Duchenne muscular dystrophy cells, resulting in 

the successful restoration of dystrophin production ex vivo 
[25]. Moreover, at the clinical stage, the lentivirus equine 
infectious anemia virus has been shown to be a safe and 
effective vector for long-term expression of angiostatin and 
endostatin for gene therapy of neovascular age-related macu-
lar degeneration-based vision loss [17]. Autologous hemat-
opoietic stem cells modified by γ-globin LV and reduced-
intensity conditioning transplant results showed it to be a 
promising method for the treatment of sickle cell anemia 
[89]. Clinical trials on humans who received hematopoietic 
stem cells as well as lentiviral-based gene therapy against 
chronic granulomatous disease showed that they had no new 
disease-related infections, and some patients were able to 
discontinue antibiotic prophylaxis [65]. In vitro and in vivo 
lentivirus-based RNA silencing of PD-L1 signaling in a pan-
creatic cancer cell line and in SCID-hu mice with pancreatic 
cancer showed improved results after dendritic cell (DC) 
immunization. An in vitro investigation showed a cytotoxic 
T-cell-based antitumor response, while in vivo, lung metas-
tasis and tumor growth in mice were inhibited and survival 
rates increased [164]. In one study, an integrase-defective 
lentiviral vector (IDLV) was engineered to express genes for 
the influenza virus nucleoprotein (NP) and hemagglutinin 
(HA), and this was used to inoculate CB6F1 mice. A single 
dose of multi-antigen IDLV efficiently induced production 
of antiviral antibodies after 24 weeks. An H1N1 subunit vac-
cine was used as a positive control [39]. Receptor-targeted 
LVs have higher gene transfer rates than VSV LVs, and it 
was reported by Jamali et al. that vectofusin-1 gene delivery 
was considerably enhanced by CD4 and CD8 LVs [54]. A 
lentiviral vector-based vaccine eliciting neutralizing anti-
bodies against the spike glycoprotein of SARS-CoV-2 was 
developed, and marked prophylactic effects of LV-based 
vaccination against SARS-CoV-2 were seen in preclinical 
trials. The study also showed intranasal immunization to be 
effective against COVID-19 [69]. In another study, an HIV 
vaccine using lentiviral-vector-based dendritic cells express-
ing CD40 ligand (CD40L), soluble programmed cell death 
(PD-1) dimer, and the HIV-1 SL9 epitope induced antigen-
specific T cell proliferation and memory differentiation in 
humanized mice, and upon challenge with HIV-1, the viral 
load was suppressed by 2 logs for 6 weeks [108]. Phagocyto-
sis-shielded LVs with a large amount of CD47 on the virion 
surface showed enhanced transduction efficacy, increased 
hepatocyte gene transfer, and selective targeting to spleen 
and liver without symptoms of toxicity [97]. Gene delivery 
to human T cells via CD4- and CD8-targeted lentiviral vec-
tors was enhanced with vectofusin-1 transduction enhancer. 
Vectofusin-1 improved gene delivery of CD4 and CD8-
LV without affecting the killing potential of CAR T cells, 
and the selectivity of the target cell was also maintained 
[53]. Using a cancer immunotherapy vaccine based on an 
integrase-defective lentiviral vector with IDLVs delivering 
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ovalbumin (OVA) as a non-self antigen, tumor growth was 
eliminated after a single immunisation, indicating that non-
self tumor-associated antigens delivered by IDLVs have a 
robust potential for countering the growth of various tumors 
[99]. A recent study also showed a 46% ??restoration of the 
chloride response?? after the cystic fibrosis transmembrane 
conductance regulator (CFTR)-knockout rats were treated 
with airway delivery of a lentiviral vector with the CFTR 
gene [120].

Other Retroviruses

Retroviruses are enveloped viruses containing two copies of 
the non-segmented ssRNA genome [84]. Retrovirus-based 
vectors have been shown to be a reliable vector system 
to deliver transgenes and are suitable for long-term gene 
therapy applications. [82]. A codon-optimized UNC-13D 
expression cassette delivered by a retrovirus into a T-cell 
culture derived from familial hemophagocytic lympho-
histiocytosis-3 (FHL-3) in a patient restored expression 
of the functional Munc13-4 protein and lessened disease 
severity [29]. The A2UCOE.EFS and CBX3.EFS vectors 
of RV exhibited the highest levels of transgene expression 
in patient-specific pluripotent stem cell gene therapy and 
are therefore suitable for treatment for monogenetic disor-
ders [47]. Toca511, a tumor-selective replicating retroviral 
vector that encodes cytokine deaminase, has been used in 
prodrug gene therapy in high-grade glioma patients and has 
shown promising results [46]. Severe combined immuno-
deficiency (SCID) caused by adenosine deaminase (ADA) 
deficiency due to a defect in the ADA gene has been treated 
with the help of gamma retrovirus gene therapy by trans-
ducing CD34+ cells with a gamma retrovirus encoding the 
human ADA cDNA sequence [36]. Retroviruses are also 
highly effective for killing glioma and other cancer cells 
[19]. Replication of the MoMLV-VSV-G vector was shown 
to be cytotoxic to human rhabdomyosarcoma cells and dif-
ferent prostate cancer cells due to syncytium formation 
[58]. The retroviral vector MoMLV-10A1, which encodes 
an R-peptide-truncated 10A1 envelope glycoprotein, has also 
been shown to be effective against human rhabdomyosar-
coma cells [75]. Oncolytic foamy virus (oFV), which is a 
non-pathogenic, complex retrovirus, has shown promising 
results for slowing tumor growth in intraperitoneal ovarian 
cancer xenografts [14]. Toca511 and Toca 5C clinical tri-
als showed effective results in patients with recurrent high-
grade glioma, especially in metastatic colorectal cancer 
[174]. A non-replicating baculovirus expressing a human 
endogenous retrovirus envelope gene has been used in the 
development of vaccines against MERS-CoV and SARS-
CoV-2 and has been shown to provide complete protection 
against both viruses [21]. HIV pseudotyped ncRNA VLPs 
have been shown to induce strong cellular and humoral 

immune responses [114]. Moreover, the introduction of 
the host proteins into retrovirus-derived VLPs induced the 
production of antibodies against hepatitis C virus (HCV) in 
mice [134]. Intramuscular immunization of mice and pigs 
with Ac mPERV-C5/C6 induced strong humoral and cel-
lular responses against porcine reproductive and respiratory 
syndrome virus [22].

Alphaviruses

Alphaviruses, with their positive-sense single-stranded self-
amplifying RNA, a broad spectrum of hosts, and significant 
transgene expression levels, are attractive candidates for 
exploitation in gene therapy and vaccine-based applications 
[81, 85, 137]. The high potency of alphavirus-vector-based 
vaccines makes them very desirable [153]. A Venezuelan 
equine encephalitis virus (VEEV)-based vaccine against 
Zika virus (ZIKV) proved effective, and viremia was not 
detected in mice after challenge with ZIKV [33]. In another 
study, the VEE TC-83 vaccine was used as construct multi-
valent virus-like particle vectors (VLPVs) in which the gly-
coprotein genes of Lassa virus (LASV) were replaced with 
VEEV structural genes. The VLVP vaccine stimulated den-
dritic and T cells and was shown to be protective [165]. Sim-
ilarly, VEEV VLVPs were used to develop vaccines against 
two mammalian arenaviruses, Machupo virus and Junin 
virus, and guinea pigs were shown to be protected against 
these viruses [60]. A novel vaccine, V4020, which was pre-
pared from VEEV, made mice resistant to WT-VEEV, with 
a high titer of antibodies. Macaques vaccinated with V4020 
also showed resistance to VEEV infection after aerosol chal-
lenge [150, 151]. VEEV TC83 was used to produce RNA 
replicons for a SARS-CoV-2 vaccine, and a strong antibody 
response was observed, with antibodies being present for at 
least 70 days [32]. VEEV was used as a vector in a study 
to make ??self-amplifying RNA?? (saRNA) as a vaccine 
strategy for SARS-CoV-2. Animals immunized with lipid-
nanoparticle-encapsulated saRNA expressing the spike pro-
tein of SARS-CoV-2 showed high antibody titers, and on re-
stimulation with the viral peptides, strong cellular responses 
were observed [95].

In another study, Indian HIV-1C env/gag/polRT genes 
expressed in virus-like replicon particles based on Semliki 
Forest virus showed significant immunogenic potential [2]. 
SFV-based DNA-launched self-replicating RNA replicon 
(DREP) Ebola vaccines elicited a cellular and humoral 
immune response that was specific for Ebola virus [110]. 
Sindbis virus was employed to develop a vaccine against 
influenza A virus, and the E2S1-M2e vaccine, when given 
via the intranasal route, induced glycoprotein-M2e-specific 
antibodies, and the mice were protected from lethal chal-
lenge with the virus [67].
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In 2017, the SVF-VA7 strain was observed to destroy 
various human prostate cancer cell lines. The infectivity 
and killing ability of this oncolytic alphavirus were inde-
pendent of the hormone response status of the cell lines, 
and a nonmalignant cell line showed resistance to the virus 
[92]. An SFV-based DREP, developed to target cancers 
induced by papillomaviruses with the HPV oncogenes E6 
and E7 showed anti-tumor activity, and after 108 days, 
85% of the mice tested were free of tumors [153]. The M1 
alphavirus showed the selective killing of muscle-invasive 
bladder cancer cells by inducing apoptosis without affect-
ing normal cells [50]. SFV-AM6-124T, which is resistant 
to IFN-1, along with anti-PD1, increased CD8+ cell counts 
and infiltration of immune cells in GL261 gliomas was also 
enhanced [91].

The HPV16-derived antigens E6 and E7, encoded by 
replicon particles of Semliki Forest virus that were replica-
tion-incompetent, were used in the Vvax001 vaccine, whose 
phase I clinical trials took place in 2020. It was observed to 
be safe and well-tolerated, eliciting a response with CD4+ 
and CD8+ T cells against E7 and E6. The vaccine showed a 
positive immune response in all 12 participants in the trial 
[66].

Newcastle disease virus

Newcastle disease virus (NDV), also called avian avulavi-
rus 1, is a spherical-shaped and enveloped zoonotic virus 
that belongs to the family Paramyxoviridae. Below the viral 
envelope, the nucleocapsid encloses the helical, non-seg-
mented, negative-sense, single-stranded RNA genome of the 
virus [40]. NDV is an ideal vector for therapeutic use due to 
its ability to replicate in the host cytoplasm, thereby elimi-
nating the risk of foreign gene incorporation into the host 
genome [9]. This virus has been used as a therapeutic agent 
in oncolysate vaccines, oncolytic and immunogenic vectors, 
signaling vectors, and gene delivery agents [128, 172].

Various studies have been conducted to improve or 
enhance the existing oncolytic properties of the virus [128]. 
An engineered vesicular stomatitis virus-NDV chimera 
(rVSV-NDV) efficiently and selectively initiated immu-
nogenic apoptosis in hepatocellular carcinoma (HCC) [1]. 
Another study showed effective suppression of HCC upon 
exposure to a recombinant oncolytic NDV vector contain-
ing tumor necrosis factor-related apoptosis-inducing ligand 
(TRIAL) [169]. Expression of NDV-vectored p53 protein 
(rNDV-p53) in malignant glioma cells resulted in inhibi-
tion of growth, induction of apoptosis, and stimulation of a 
tumor-specific cytotoxic T-cell response against the glioma 
[34].

When NDV infects tumor cells, it attracts both innate 
and adaptive immune cells to the site, thus initiating 
immune responses against the cancer cell [16]. Various 

studies have used genetically engineered NDV to express 
immunostimulatory agents such as cytokines to combat 
and treat cancer [128]. An in vivo study of a recombinant 
NDV tumor vaccine (rNDV-TV) revealed the ability of 
the vaccine, mediated by natural killer cells, to induce 
degradation of WEHI164 fibrosarcoma [144]. In another 
study, macrophage inflammatory protein 3α (MIP-3α) 
incorporated in rNDV (rNDV-MIP-3α) significantly sup-
pressed B16 and CT26 tumors by oncolysis and a tumor-
specific immune response [51]. Immunization with an 
autologous recombinant NDV vaccine expressing IL-12 
(rNDV-IL12) demonstrated the strong biological anti-
tumor activity of IL-12 against murine melanoma in vitro 
and in vivo [172]. The rNDV-IL12 vaccine also showed 
selective cytotoxicity against human breast cancer cells in 
a BALB/c mouse model [98]. When tested in HT29 colon 
cancer cells, rNDV-IL12 induced apoptosis as well as an 
immune response [104]. Likewise, IL-24 incorporated into 
the rNDV induced apoptosis and T-cell-mediated immu-
nity against murine melanoma [173]. In a novel approach, 
a combined therapeutic and preventive anti-cancer vaccine 
was designed to coexpress IL-7 and IL-15. Exposure of the 
recombinant vaccine to B16 murine melanoma degraded 
the tumor and stimulated the production of memory cells 
for prolonged protection against cancer [171].

Recombinant-NDV-vectored antibody-mediated inhibi-
tion of immunity regulators has shown great potential for 
treating cancer [16]. One study showed that an rNDV-vec-
tored anti-CTLA4 single-chain variable fragment (scFv) 
enhanced radiotherapy-mediated myeloma oncolysis in a 
mouse model [161]. In another study, six different rNDV 
vaccines containing checkpoint inhibitor antibodies (anti-
PD1 and anti-PDL1), super-antagonists (anti-CD28), and 
antibody-fused cytokines (anti-CD24-murine IL-12, 
antiPD1-mIL-12, and antiPDL1-mIL12) caused a reduc-
tion in murine myeloma, with reduced cytotoxic effects 
[160].

An rNDV strain expressing the immunogenic gp160 
envelope protein of simian immunodeficiency virus (SIV) 
induced specific humoral and mucosal responses to SIV 
when tested in a guinea pig model [90]. Another study 
demonstrated the stimulation of host immunity against 
poliomyelitis virus by injection with rNDV expressing 
the poliovirus precursor capsid protein and the associated 
protease [162]. Similarly, induction of immunity against 
Ebola virus (EBOV) was also reported when an rNDV 
vaccine expressing EBOV glycoprotein was administered 
to guinea pigs [176]. Two rNDV strains expressing Japa-
nese encephalitis virus (JEV) envelope protein and non-
structural protein 1 were found to stimulate host immunity 
against JEV [106]. A modified NDV vector for expression 
of the full-length spike (S) glycoprotein of SARS-CoV-2 
conferred an immune response [122]. Another group 
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expressed wild-type and membrane-anchored S glyco-
protein using an NDV vector and reported an immune 
response in the mice [142].

Picornavirus

The picornaviruses are a large and important family of small, 
non-enveloped viruses with a single-stranded, positive-sense 
RNA genome. The family Picornaviridae has 47 genera and 
110 species [12, 167]. Their small size, lack of a genotoxic 
effect, lack of oncogenes, and easy manipulation as cDNA 
makes them suitable as vaccines and vectors in cancer gene 
therapy [94].

Inactivated and oral live-attenuated vaccines (IPV and 
OPV) against poliovirus have been used successfully 
worldwide, but they carry a finite risk of causing a danger-
ous infection. Therefore, recombinant virus-like particles 
(VLPs) have been developed and have been found to be a 
safe and sustainable alternative [6]. Formalin-inactivated 
coxsackievirus A5 used as a vaccine showed good efficacy 
against multivalent hand, foot, and mouth disease HFMD 
in a mouse model [59]. In another study, the A6, A10, and 
A16 strains of coxsackieviruses (CA6, CA10, and CA16) 
were also found to be effective vaccines against HFMD after 
inactivation with formalin or β-propiolactone (BPL), with 
BPL-treated vaccines yielding better results [77]. Another 
novel vaccine candidate was developed recently by introduc-
ing codon-deoptimized viral protein 1 (CD-VP1) together 
with high-fidelity 3D polymerase (3D-HF) into enterovirus 
A71 (EV-A71). This vaccine induced an efficient immune 
response against neurological as well as HFDM-causing 
pathogens [152].

The most commonly used immunotherapeutic and onco-
lytic virus of the family Picornaviridae is coxsackievirus. 
The use of strain CAVATAK (CVA21) together with ipili-
mumab has shown promising results against advanced mela-
noma in patients receiving anti-PD1 blockade therapy in 
phase I clinical trials [27]. In phase II, the combination of 
CVA21 and ipilimumab was given to melanoma patients 
without any previous therapy, and again it provided suc-
cessful treatment without any serious side effects [26]. 
CAVATAK with a subtherapeutic dose of mitomycin C has 
been shown to be effective against non-muscle-invasive 
bladder cancer (NMIBC), and after treatment with pem-
brolizumab, CAVATAK showed effective oncolytic activity 
against advanced melanoma [4, 132]. Recently, an infec-
tious synthetic RNA (iRNA) based on coxsackievirus A21 
(R-CVA21) exhibited an efficient oncolytic effect in an ani-
mal model [31]. A novel picornavirus plasmid was designed 
in which the P2A site was modified to express interleukin-12 
(IL-12p70) to improve its therapeutic efficacy against tumor 
cells [15].

A chimera of poliovirus and rhinovirus (PVSRIPO) has 
been developed that was found to mediate the anti-tumor 
effect of CD8T cells and activated dendritic cells and 
thereby increase the survival rate in rodent tumor models 
[100]. Another picornavirus, Seneca Valley virus (SVV) 
001, has the ability to target tumor cells in various cancers 
with minimal toxicity. In phase I clinical trials, SVV-001 in 
an attenuated form was given intravenously to 36 patients 
with small-cell lung carcinoma (SCLC), neuroendocrine 
tumors, or carcinoid tumors, and the results were positive at 
a dose of 107 to 1011 virus particles per kilogram (VP/kg). 
In phase II, 40 patients with ED-SCLC (extensive disease) 
were given 1011 VP/kg, and the results were the same, i.e. 
antiviral antibodies were produced after 14 days without any 
significant symptoms [88].

Measles virus

Measles virus is an enveloped, non-segmented single-
stranded negative-sense RNA virus [8]. A vaccine based on 
a modified measles virus strain, MeV-Stealth, has been used 
to treat ovarian cancer in mice by causing lysis of cancer 
cells expressing CD46 [101]. Measles vaccines encoding 
interleukin 12 and interleukin 15 agonists were tested in 
tumor models in vitro. A construct expressing IL12 showed 
robust viral gene expression and activation of immune cells, 
resulting in stronger anti-tumor activity [5]. For treatment 
of colon cancer in a rat model, MeVac FmIL-12, a measles 
virus encoding IL12 fusion proteins, was found to enhance 
anti-tumor immunity both in vitro and in vivo [163]. PEI-
GOS-PEG-FA was used for coating of measles virus to form 
a viral GOS complex, and in mice, this resulted in increased 
viral replication in the tumor mass and an enhanced antitu-
mor response [170]. An engineered measles virus Edmon-
ston strain expressing human sodium iodide symporter or 
carcinoembryonic antigen was used as oncolytic viral ther-
apy, as it provoked oncolytic effects in human hepatocellular 
carcinoma cell lines [10]. A recombinant measles virus, i.e., 
SLAM-blind measles virus, showed antitumor activity, and 
it is also a promising candidate for the treatment of meta-
static and nectin-4-positive triple negative breast cancer, 
as was demonstrated in xenografted mouse model [38]. In 
patients with multiple myeloma, an enhanced tumor-antigen-
specific T-cell response was observed after oncolytic mea-
sles virus therapy [111].

A measles-virus-based recombinant vaccine express-
ing the spike protein of SARS-CoV-2 was developed and 
shown to induce high levels of neutralizing antibodies in 
animals, and it was found to be protective against SARS-
CoV-2 in hamsters [79]. Mice were immunized with a 
measles virus vaccine containing the spike glycoprotein 
gene of SARS-CoV-2 at two different positions in the MeV 
genome. It was observed that the variant with lower protein 
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expression induced an increased Th1-biased antibody and 
T-cell response [48]. A measles virus encoding a soluble 
form of the E protein and the prM protein of Zika virus 
(ZIKV) conferred protection against ZIKV infection in an 
allogenic mouse pregnancy model [109]. A recombinant 
measles virus expressing the HPV capsid protein was used 
as a vaccine candidate for prevention of cervical cancer, and 
transgenic mice immunized with this virus exhibited a strong 
humoral immune response [18]. In a mouse model, a robust 
and multifunctional T-cell response was generated by immu-
nization with a live attenuated bivalent vaccine derived from 
measles virus targeting Middle East respiratory syndrome 
coronavirus [11].

A one-cycle measles virus vector was developed by sub-
stituting the gene for the viral attachment protein with genes 
encoding four reprogramming factors (OCT4, SOX2, KLF4 
and c-Myc), and this induced pluripotent stem cell repro-
gramming and was used as a platform for delivery of multi-
ple genes [166]. A measles-virus-vectored vaccine has been 
used to prevent chikungunya fever in cynomolgus macaques. 
This vaccine was shown to induce neutralizing antibodies 
and to be well tolerated [124].

Conclusion

All of the aforementioned viruses have the potential to be 
applied in clinical settings for vaccine, gene therapy, and 
oncolytic strategies after appropriate safety testing. Despite 
their potential benefits, some of the viral vectors have draw-
backs that have to be overcome. A large amount of research 
has been done to make adenoviral vectors more efficient for 
therapeutic use, although concerns such as a lack of specific-
ity, the immunodominance of adenoviral antigens over the 
vaccine transgene antigen, and immune modulation by viral 
antigens still exist. Nevertheless, some approaches based on 
adenoviral vectors have been approved for gene therapy and 
oncotherapy. Similarly AAV, due to its very low immuno-
genicity and low risk of proliferation, is a promising viral 
vector that has been shown to be useful for long-term expres-
sion of genes. However, recent studies have raised safety 
concerns regarding AAV that need to be addressed. Herpes 
simplex virus, with its latent infection cycle, ability to be 
attenuated and capacity to carry large genes, has consider-
able potential as a vector, but it is a human pathogen, and 
when its genes are “turned off”, shutdown of the transgene 
can also occur. Clinical and pre-clinical investigations on 
oncolytic poxviruses have indicated that they are extremely 
safe and can potentially be used to treat a variety of can-
cers that are currently incurable. In clinical trials, vaccines 
against Ebola virus and influenza virus have yielded prom-
ising results. When using poxviruses as a vector, difficulty 
in making recombinant constructs, the transient nature of 

transgene expression, and possible cytotoxicity are some 
of the concerns that arise. Compared to other mRNAs, the 
immune response produced by the self-amplifying RNA 
of alphaviruses is more robust. saRNA vaccines based on 
alphaviruses have the potential to protect against diseases 
such as SARS-CoV-2, and are being tested in clinical trials. 
The main concern regarding picornavirus-based vectors, i.e., 
genetic instability, has been resolved by developing geneti-
cally stable expression vectors. The use of a combination of 
two or more picornaviral vectors such as PVSRIPO is being 
considered for building engineered vectors with increased 
stability and anti-tumor and immunogenic properties. Mea-
sles virus is a potential oncolytic platform because of its 
selectivity towards tumor cells and its capacity to retain its 
oncolytic characteristics even when it is modified. Further-
more, because it is naturally lymphotropic, it has potential 
for use in the development of HIV vaccines. Similarly, New-
castle disease virus is potentially useful for cancer therapy.

Although studies have suggested that the benefits of using 
these viruses for vaccine development, gene therapy, and 
oncolysis outweigh the associated risks, more research is 
needed to rule out potential threats before human trials can 
be initiated.
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