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Abstract
The actin cytoskeleton and actin-dependent molecular and cellular events are responsible for the organization of eukaryotic 
cells and their functions. Viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), depend on 
host cell organelles and molecular components for cell entry and propagation. Thus, it is not surprising that they also interact 
at many levels with the actin cytoskeleton of the host. There have been many studies on how different viruses reconfigure 
and manipulate the actin cytoskeleton of the host during successive steps of their life cycle. However, we know relatively 
little about the interactions of SARS-CoV-2 with the actin cytoskeleton. Here, we describe how the actin cytoskeleton is 
involved in the strategies used by different viruses for entry, assembly, and egress from the host cell. We emphasize what is 
known and unknown about SARS-CoV-2 in this regard. This review should encourage further investigation of the interac-
tions of SARS-CoV-2 with cellular components, which will eventually be helpful for developing novel antiviral therapies 
for mitigating the severity of COVID-19.

Introduction

In all eukaryotic cells, the actin cytoskeleton is indispensable 
for the anchoring and organization of the subcellular com-
partments and organelles. It regulates most cell functions, 

including cell–cell adhesion, cell movement, and cell divi-
sion [1–3]. Cortical actin participates in all events related to 
the expression and presentation of membrane/cell surface 
molecules, the formation and movement of endocytic/phago-
cytic vesicles, virus entry, exocytosis, and virus egress. In 
the cell nucleus, actin regulates DNA repair, chromatin 
remodeling and condensation, and gene transcription [4, 5]. 
The two main forms of actin in eukaryotic cells are mono-
meric globular G-actin and polymerized filamentous F-actin. 
Actin polymerization and G/F actin dynamics are regulated 
by the small GTPase RhoA and actin-interacting proteins 
[2, 6–14]. Because of the pleiotropy of actin function, it is 
not surprising that the life cycle of viruses, from the point 
of cell entry to the egress of the progeny, is intimately con-
nected with the actin cytoskeleton of the host cell and that 
viruses hijack various actin functions and modify or redirect 
them to enhance self-propagation. Viruses reconfigure and 
manipulate the actin cytoskeleton of the host to optimize 
the production of progeny. It is known that RNA viruses 
can promote actin polymerization and reorganization [15]. 
For example, the coronaviruses transmissible gastroenteritis 
virus (TGEV) and porcine hemagglutinating encephalomy-
elitis virus (PHEV) use Rac1/Cdc42 small GTPases of the 
RhoA family to induce actin polymerization [15–17]. The 
virus also manipulates cell adhesion complexes and modi-
fies intercellular contacts, allowing directional cell-to-cell 
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spread. The different strategies used by different viruses to 
manipulate the actin cytoskeleton suggest that these strat-
egies evolved independently [18, 19]. Here, we describe 
strategies involving the actin cytoskeleton that are used by 
various viruses during entry, assembly, and egress from the 
host cell and point out what is already known about severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 
this regard. This review should encourage further investiga-
tion of the mechanism used by SARS-Cov-2 and eventually 
help in the development of novel antiviral therapeutic or 
prevention strategies.

SARS‑CoV‑2 structure

SARS-CoV-2 virions are spherical particles with a diam-
eter of ~100 nm that contain a tightly packed positive-sense, 
single-stranded, 29,811-nucleotide-long genomic RNA that 
is “translation-ready”; i.e., it serves as an mRNA that can 
be translated directly (using the synthetic machinery of the 
host) to produce a set of viral proteins that are necessary for 
RNA replication and formation of new copies of the virus 
[20–24]. The RNA genome has 10–14 open reading frames 
(ORFs) and codes for 24–27 proteins [20, 25, 26]. Viral tran-
scription and replication also rely on intricate long-range 
RNA–RNA interactions within the viral genome as well as 
interactions with host RNA molecules [27]. Viral RNA is 
surrounded by a protective coat, called a capsid, consisting 
of 1000 copies of the RNA-binding nucleocapsid (N) pro-
tein (Fig. 1). The N protein is highly phosphorylated, has a 
molecular weight of 46.5 kDa, and through the binding to 
a genomic packaging signal facilitates the packaging of the 
viral genome within the capsid [28, 29]. The capsid is sur-
rounded by a membrane envelope, which is derived from the 
host cell but has viral proteins inserted into it: ~1000 copies 
of the membrane (M) protein, ~20 copies of the envelope 
(E) protein, and ~100 copies of the spike (S) protein (Fig. 1). 
The M protein has a molecular weight of 25–30 kDa, and it 
forms a dimer that shapes the viral membrane and promotes 
its binding to the capsid [29, 30]. The E protein has a molec-
ular weight of 8–12 kDa and has ion channel activity. It is 
crucial for assembly of the virus and its release from the host 
cell [29]. The S proteins form the viral spikes. Each spike 
contains three copies of the S protein and has a length of ~10 
nm [20, 29]. The S protein has a molecular weight of 150 
kDa, is N-glycosylated, and belongs to the class I family of 
fusion proteins, which bind to receptors and mediate mem-
brane fusion [29, 31]. The S protein consists of two subunits: 
S1 and S2. The S1 subunit contains the receptor-binding 
domain, and the S2 subunit mediates membrane fusion [32]. 
The S-protein-containing spikes of SARS-CoV-2 have high 
affinity for angiotensin-converting enzyme 2 (ACE2), which 
serves as a cell-surface receptor for the virus and facilitates 

its entry into the cell [33–35]. The binding of the virus to 
the host cells involves two steps: the first is docking of the 
virus to ACE2, and the second is activation of the spike 
protein by proteolytic cleavage at two sites by host-encoded 
proteases [36, 37]. Proteolytic cleavage itself is also a two-
step process: the first cleavage occurs at the boundary of 
the S1 and S2 subunits in the spike protein precursor, and 
the second exposes the S2 subunit. The first cleavage step 
can occur either before or after binding to the receptor. The 
second cleavage can occur before endocytosis, through the 
activity of the serine protease TMPRSS2, or after endocyto-
sis, mediated by endosomal proteases. The second cleavage 
primes the S2 subunit to induce fusion of the viral mem-
brane with the cell membrane. In SARS-CoV-2 and Middle 
East respiratory syndrome coronavirus (MERS-CoV), but 
not SARS-CoV-1 (called SARS-CoV before the emergence 
of SARS-CoV-2), the boundary between S1 and S2 subunits 
contains a stretch of amino acids that can be recognized 
and cleaved by another serine protease called furin [32, 36, 
37]. The S protein also has a sialic-acid-binding domain 
that interacts with sialic-acid-containing molecules on the 
surface of the host cell and facilitates virus entry [34]. This 
dual feature of the S protein might be one of the reasons for 
the high transmissibility of SARS-CoV-2 [33, 38]. Recent 
studies have suggested that the recruitment of SARS-CoV-2 
to the cell surface is also facilitated by heparan sulfate (HS) 

Fig. 1  SARS-CoV-2 structure. The SARS-CoV-2 virion consists of 
a nucleocapsid and an envelope. The nucleocapsid contains ss(+)
RNA surrounded by RNA-binding nucleocapsid (N) proteins. The 
nucleocapsid is surrounded by a lipid bilayer membrane that is 
derived from the cell membrane of the host cell but has viral proteins 
inserted: the membrane (M), envelope (E), and spike (S) proteins
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proteoglycan surface molecules. HS interacts with the spike 
protein, increasing the virus concentration and promoting 
engagement with the ACE2 receptor [39]. Interestingly, 
the human coronaviruses HCoV-OC43 and HCoV-HKU1, 
which, like SARS-CoV-2, belong to the genus Betacoronavi-
rus [40], have an additional gene encoding a hemagglutinin-
esterase (HE) dimer protein [29]. In these viruses, the S-pro-
tein-containing spikes are interspersed among shorter ~8-nm 
stubby projections composed of the HE protein. The HE pro-
tein has a dual function [41]: it has a receptor-binding lectin 
domain that is specific for O-acetylated sialic acid (O-Ac-
Sia) and promotes attachment of the virus to sialic-acid-con-
taining molecules on the surface of the host cell, and it has a 
receptor-destroying sialate-O-acetyl esterase that promotes 
virus release [33]. It seems that the S and HE proteins are 
functionally interdependent and co-evolved to optimize the 
balance between virus attachment and release [42]. Stud-
ies with SARS-CoV-1 have shown that the stage of binding 
to the receptor and virus entry requires ~10 min [20]. The 
process of making new virus particles within the cell lasts 
around 10 hours and ends with the release of ~ 1000 newly 
formed viruses [20]. Below, we summarize what happens 

inside the infected cell, from the moment of virus attachment 
to the receptor until the release of viral progeny, and how the 
actin cytoskeleton of the host is involved in these processes.

Actin‑driven “surfing” of the virus

Some viruses, such as murine leukemia virus, human immu-
nodeficiency virus, vesicular stomatitis virus, and human 
papillomavirus, slide (surf) on the surface of host cell pro-
trusions called filopodia, which contain actin filaments, 
toward regions of the cell membrane with the highest endo-
cytic activity [43] (Fig. 2A). Although viruses can also enter 
cells at other regions of the membrane, filopodium-depend-
ent entry, due to the inherent ability of filopodia to bind and 
engulf various molecules, including viruses, is much more 
efficient [43]. Confocal time-lapse microscopy of murine 
leukemia virus (MLV) infecting human embryonic kidney 
HEK 293 cells showed that the virus, after attaching to the 
tip of a filopodium, moved downward toward the body of the 
cell [43]. The mechanism that initiates the surfing process 
is largely unknown, but it involves contact of the virus with 

Fig. 2  Hypothetical SARS-CoV-2 surfing and actin comets. A Filo-
podia contain bundles of actin filaments. The virus bound to its 
receptor surfs on the surface of the cell membrane, from the tip to the 
bottom of a filopodium, and to the membrane region with the high-
est endocytic activity for a subsequent internalization. Motor proteins 
located at the bottom of the filopodium cause actin filament contrac-
tion and retrograde movement, which propels the receptor-bound 
virus. B Viruses can also induce actin polymerization and the forma-

tion of actin filament comets (tails), which propel the virus within the 
cell toward the cell surface or expel it from the cell. Viral proteins 
induce actin nucleation via the activity of the Arp2/3 complex, and 
myosin- and kinesin-motor-dependent actin polymerization/depolym-
erization cycles propel the virus. Although these types of movement 
are used by many different viruses, so far, we do not know if SARS-
CoV-2 can surf or use actin comets for movement
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its receptor(s) [43]. The surfing itself is powered by con-
traction (retrograde F-actin flow) of the filopodium’s actin 
filaments by myosin II motors located within the cortical 
actin at the base of the filopodium. This creates a dragging 
force that moves virus-receptor complexes to the base of the 
filopodium. Cytochalasin D, which blocks the barbed ends 
of actin filaments, inhibits surfing [18, 43]. Although there 
has been no description of SARS-CoV-2 surfing, high-res-
olution scanning microscopy has shown that SARS-CoV-2 
adheres to the surface of filopodium-like projections of Afri-
can green monkey kidney Vero cells, which would suggest 
that surfing might occur [44]. Recently, Seyran et al. [34] 
reported that, prior to binding to the ACE2 receptor, the 
SARS-CoV-2 S protein interacts (through the flat sialic-acid-
binding domain in the N-terminal domain of the S1 subunit) 
with the sialic acid layer of the epithelium, allowing the 
virus to move along the epithelial surface until it encounters 
and interacts with the ACE2 receptor. It remains to be inves-
tigated whether this movement of the virus has anything to 
do with the above-described surfing mediated by retrograde 
F-actin flow.

Virus entry into the cell

Coronaviruses can enter cells using various routes, includ-
ing phagocytosis, micropinocytosis, and membrane fusion 
[19]. However, recent studies have shown that the preferred 
mode of entry of SARS-CoV-2 is through binding to the 
ACE2 receptor and clathrin-mediated endocytosis [45], 
which depends on the proper arrangement of cortical actin 
(Fig. 3). Owczarek et al. [46] showed that both stabilization 
and depolymerization of actin interfere with endocytosis 
and entry of the common-cold-causing human coronavi-
rus OC43. During virus entry, the virus-receptor complex 
recruits clathrin, which coats the invaginating membrane pit. 
The initiation of membrane invagination is controlled by a 
multiprotein complex containing the membrane-associated 
protein intersectin-1, which directs interactions between 
endocytic vesicles and the actin cytoskeleton, the epider-
mal growth factor receptor substrate 15 (Eps15), which is 
a scaffolding adaptor protein, and the membrane-sculpting 
F-BAR-domain-containing Fer/Cip4 homology-domain-only 
proteins 1 and 2 (FCHo1/2) [46]. FCHo1/2 recruits inter-
sectin-1 and Eps15 and induces membrane invagination [46, 
47]. Eps15 [48] recruits adaptor protein 2 (AP2) [49], which 
recruits clathrin to form a lattice coating the membrane pit. 
The “neck” of the pit attracts the protein amphiphysin [50], 
which in turn recruits dynamin, which, via binding and 
hydrolysis of GTP, severs the “neck” of the pit from the cell 
membrane [51]. The scission results in the formation of a 
clathrin-coated endosomal vesicle containing the receptor 
and the virus (Fig. 3A) [46, 52].

The endosomal phase of the virus

The next step after the formation of the endosome contain-
ing the SARS-CoV-2-receptor complex is the acidifica-
tion of the endosome through the proton-pump-dependent 
release of  Ca2+ from the endosome via the intracellular 
messenger nicotinic acid adenine dinucleotide phosphate 
(NAADP)-sensitive two-pore channel (TPC2) [53]. The 
acidification of the endosome occurs during its maturation 
from an early endosome to the late endosome. In the late 
endosome, the complex of the S protein and ACE2 recep-
tor is cleaved by cathepsin L, which promotes the fusion of 
the viral and endosome membranes and the release of the 
viral RNA into the cytoplasm (Fig. 3A) [54]. Endosomal 
acidification inhibitors, such as chloroquine or bafilomycin 
A1, have been shown to drastically reduce RNA release 
and replication of SARS-CoV-2 [55]. The spatial arrange-
ment of endosomes, their trafficking within the cell, and 
the recycling of endosomal membranes back to the cell 
surface are supported by actin filaments and microtubules 
and are powered by various motor proteins [56].

Virus replication and translation

The released viral RNA (genomic RNA, gRNA) undergoes 
replication, transcription, and translation to produce viral 
proteins and progeny RNAs [22, 57] (Fig. 3B). First, the 
two large open reading frames, ORF1a and ORF1b, of the 
viral RNA are translated into the polyproteins pp1a and 
pp1ab, which, after co-translational and post-translational 
modification, are converted into non-structural proteins 
(nsps), which participate in viral replication and transcrip-
tion [22, 57, 58]. In the next step, viral gRNA, with the 
help of the nsps, generates negative-sense RNA interme-
diates, which are the templates for synthesis of gRNAs 
of the next generation and subgenomic RNAs (sgRNAs). 
The sgRNAs are translated to produce the viral structural 
proteins (N, E, M, and S), while the gRNAs are incorpo-
rated with the structural proteins into virus particles to 
produce new viral progeny (Fig. 3B). A recent analysis of 
the SARS-CoV-2 transcriptome showed that the viral RNA 
also has several ORFs of unknown function [22].

The replication of the viral RNA of positive-strand (+) 
RNA viruses and its transcription occurs within virus-
induced replication organelles situated in the vicinity of 
the host cell nucleus (Fig. 3B). This replication compart-
ment, which was identified recently in cells infected with 
SARS-CoV-1 [59], creates a protective niche for viral 
replication and transcription. It is derived from the ER or 
other membranous structures of the host cell and consists 



741Interactions of SARS-CoV-2 with the actin cytoskeleton

1 3

of double-membrane vesicles (DMVs), double-membrane 
cups, called double-membrane spherules (DMSs), convo-
luted membranes (CMs), or/and tubules [57, 60–62]. We 
do not know if actin participates in the establishment and 
maintenance of the replication organelle. However, the 
involvement of the actin cytoskeleton in the formation 
and structure of other membranous organelles in eukary-
otic cells [2] would imply that it does. It is known that 
actin regulates various transcription factors in eukary-
otic cells and that binding to actin is necessary for the 
activity of RNA polymerases [5]. This implies that the 

transcription of viral RNA should also be actin-dependent. 
This assumption is supported by older studies showing that 
the actin cytoskeleton is involved in the replication and 
transcription of human parainfluenza virus type 3 [63]. 
Moreover, mutational analysis of respiratory syncytial 
virus (RSV) has shown that actin and profilin are neces-
sary for viral transcription and that the divalent-cation-
binding domain of actin is necessary for activation of viral 
RNA synthesis [64, 65]. Another study has shown that 
viruses that replicate in the nucleus interact with nuclear 
actin for replication, assembly, and export of mRNA or 

Fig. 3  SARS-CoV-2 life cycle. A Diagram summarizing virus endo-
cytosis. The preferred mode of SARS-CoV-2 entry to the host cell 
is clathrin-mediated endocytosis. The binding of the virus to the 
ACE2 receptor, through the action of the membrane-sculpting com-
plex (FCHo1/2, intersectin-1, and Eps15), induces a rearrangement 
of cortical actin, membrane bending, and recruitment of clathrin to 
the surface of the membrane pit. Subsequently, the “neck” of the pit 
recruits dynamin, which severs the “neck” of the pit from the cell 
membrane. The resulting clathrin-coated early endosome contains the 
virus and the receptor. The early endosome matures through acidifica-
tion into a late endosome. In the late endosome, the virus is cleaved 
from the receptor by cathepsin-L, which also promotes viral and 
endosomal membrane fusion. The receptor recycles back to the cell 
membrane, and the viral genomic RNA (gRNA) is released into the 
cytoplasm. The movement of endocytic vesicles and their spatial dis-
tribution within the cell cytoplasm are dependent on actin/motor pro-
teins. B Summary of the post-endocytic phase of the virus life cycle. 
Released viral RNA (gRNA) is translated into non-structural proteins 
(nsps), which are used for subsequent viral replication and transcrip-
tion. First, viral gRNA (with the help of the nsps and RNA poly-
merases and with the involvement of the globular [G] actin) makes 
negative-sense RNA intermediates (not shown here) for the synthesis 

of gRNAs of the next generation and subgenomic RNAs (sgRNAs). 
The sgRNAs are translated into the viral structural proteins (N, E, M, 
E, and S), while the gRNAs are combined with structural proteins to 
form new virus particles. Viral replication and transcription occur 
within a specialized virus-induced, ER-derived vesicular/membrane 
compartment called the replication organelle. The newly synthesized 
viral proteins and RNAs move to the Golgi, where SARS-CoV-2 
RNA coated with N proteins is enclosed by the host-cell membrane 
containing viral M, E, and S proteins. The maintenance and position-
ing of the ER and Golgi complex depend on actin filaments. Also, 
the ER/replication organelle and Golgi area are surrounded by a 
ring of actin filaments, which probably helps to concentrate the fac-
tors involved in the synthesis of the new virus within the ER/Golgi 
complex. Finally, the newly formed viruses are released from the 
cell through exocytosis. C Summary of virus exocytosis and egress. 
SARS-CoV-2-containing vesicles translocate through multivesicular 
bodies, which probably mature into lysosomes that have been deacidi-
fied, deactivating their lytic enzymes. The virus-containing lysosomes 
move to and fuse with the cell membrane. Virus-induced rearrange-
ments of cortical actin and membrane bending expel the virus from 
the cell
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capsids [66]. The fact that interactions with actin are nec-
essary for many viral functions suggests that transcrip-
tion of SARS-CoV-2 RNA might also be actin-dependent. 
However, despite that, to our knowledge, there is no direct 
information available on this subject.

Virus assembly and egress

The newly synthesized viral proteins and RNAs are trans-
ported to the ER/Golgi intermediate compartment (ERGIC, 
also referred to as the vesicular-tubular cluster [VTC]) [67], 
where the SARS-CoV-2 RNA coated with N proteins is 
enveloped by a host-cell membrane containing viral M, E, 
and S proteins (Fig. 3C). From the ERGIC, the virus enters 
the trans-Golgi network (TGN)/Golgi complex, where the 
proteins undergo posttranslational modification [68]. Some 
time ago, a peculiar structure called “the juxtanuclear actin 
ring” was described in coronavirus-infected cells (Fig. 3B). 
The ring, composed of actin filament layers surrounding the 
cell nucleus and the adjacent ER and Golgi compartments, 
facilitates viral genome replication and protein synthesis [19, 
69]. The sequestration of the molecules needed for virus 
replication, transcription, and translation by the actin ring 
may concentrate them in the vicinity of ER and Golgi for 
further processing. Another function of the perinuclear actin 
ring was described in human adenovirus infection. In this 
case, the adenovirus early region 4 ORF4 protein (E4orf4) 
induces, via the myosin II motor/Src kinase/Cdc42/N-
Wasp/RhoA kinase and Rac1 pathways, actin polymeriza-
tion around the nucleus. Subsequently, the actin ring, by 
recruiting endosomes and disrupting vesicular trafficking 
and membrane dynamics, activates an endo-lysosomal-based 
cell death pathway [70].

The egress of newly assembled virus particles from the 
cell occurs via exocytosis [54, 71–73] (Fig. 3C). Recent 
studies have shown that SARS-CoV-2 and other betacoro-
naviruses use a unique exit strategy. Instead of using the 
conventional secretory pathway used by other viruses, they 
use deacidified lysosomes to egress from the cell [68]. The 
exact mechanism of deacidification of the lysosomes, which 
also deactivates their lytic enzymes, is still unknown. Ghosh 
et al. [68] have suggested that the deacidification of lys-
osomes is either a direct consequence of too much cargo 
(viruses) and/or a dysfunctional proton pump or that some 
viral proteins have a viroporin function, which, by form-
ing hydrophilic pores, modifies membrane permeability and 
 Ca2+ homeostasis, leading to lysosome deacidification. It 
is also still unknown how the viruses are translocated from 
the TGN/Golgi to lysosomes. Ghosh et al. [68] propose two 
possible routes: One route is a transfer from the Golgi to 
multivesicular bodies (MVBs), which mature into lysosomes 
via the activity of the Rab7 GTPase pathway (Fig. 3C). The 

fact that the inhibition of Rab7 causes a reduction in both the 
formation of lysosomes and the egress of the virus supports 
this hypothesis [68]. Another, more complicated option is 
the retrograde transport of the virus from the Golgi back 
to the ER/ERGIC and then to lysosomes. A modification 
of the second option is the possible involvement of micro-
phagy, with fragments of the ER containing the virus being 
engulfed directly by lysosomes [68]. Studies on the corona-
virus avian infectious bronchitis virus have shown that bud-
ding of the virus from the cell membrane and its egress are 
actin-filament-dependent and involve interaction between 
actin and amino acids A159 and K160 of the viral membrane 
protein M [19, 74]. Using scanning electron microscopy and 
atomic force microscopy, it was shown that, just before its 
egress, SARS-CoV-1 induces the formation of pseudopodia 
and thickening of the cortical actin, which, by bending the 
membrane, expels the virus progeny from the host cell [75].

Actin comets

Many viruses, including vaccinia virus, Ebola virus, Mar-
burg virus, and insect baculoviruses, use actin “tails” or so-
called “actin comets” to be propelled within the cytoplasm 
to the cell periphery and/or to the outside of the infected 
cell (Fig. 2B). Viral proteins induce actin nucleation via the 
activity of the Arp2/3 complex. This is followed by interac-
tions with the myosin and kinesin motors and actin polym-
erization/depolymerization cycles, which propel the virus. 
Because the comet-associated viruses were observed not 
only inside the cytoplasm but also in the vicinity of cell–cell 
junctions, it has been proposed that the propelling force of 
the actin comet allows the virus to pass through the actin-
reinforced cellular junction and be delivered to an adjacent 
cell [76–78]. So far, there is no information about whether 
any coronaviruses, including SARS-CoV-2, use actin comets 
for movement inside and outside of the cell.

Actin and direct cell‑to‑cell transmission 
of the virus

Direct cell-to-cell transmission, which is faster and much 
more efficient than cell-free spread and allows the immune 
response, especially antibody-mediated immunity, to be 
circumvented, is used efficiently by many viruses, includ-
ing SARS-CoV-2 [70, 78–80]. Below, we describe several 
possible routes of direct transmission of the virus between 
cells. All of these routes of transmission involve the actin 
cytoskeleton of the host cell.

a. Tunneling nanotubes (TNTs)
Tunneling nanotubes (TNTs) are long, thin (50–1500 

nm in diameter), F-actin-based open-ended channels used 
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by neighboring cells to exchange large cargo, such as pro-
tein complexes, lipids, nucleic acids, vesicles, pathogens, 
and organelles (Golgi, ER, lysosomes, endosomes, and 
mitochondria) at the distance of hundreds of microm-
eters [78, 79, 81–85] (Fig. 4). Thicker TNTs, which are 
used for the transport of very large cargo, in addition to 
F-actin, also contain microtubules. The traveling speed of 
the cargo through the TNTs is very fast, reaching ~7 nm/s 
[85]. Viruses can also “surf”, docking to heparan sulfate 
(HS) receptors on the surface of TNTs for long distances 
(Fig. 4). The same receptors can also induce the fusion 
of the virus with the TNT membrane and induce endo-
cytic internalization of the virus into the TNT lumen [85] 
(Fig. 4). Actin polymerization required for the formation 
of TNTs is regulated by Rho GTPase signaling, includ-
ing the Rac1/Cdc42/ Pak1 pathways [86]. Many viruses, 
such as HIV-1, influenza virus, and coronaviruses, induce 
the formation of TNTs to spread between cells [85, 86]. 
Interestingly, TNTs formed by Mycobacterium tuberculo-
sis (which is known to enhance HIV-1 pathology) are used 
by the coinfecting HIV for cell-to-cell transfer [86]. We 
do not know if SARS-CoV-2 uses TNTs to spread between 
cells. However, the observations that the coronaviruses 
murine hepatitis virus (MHV) and SARS-CoV-1 promote 
the formation of filopodia and membrane ruffling using 
the Rac1/Cdc42/Pak1pathways and that SARS-CoV-2 is 
able to bind to the surface HS suggest that it can also 
induce the formation of TNTs. This should certainly be 

studied further in the context of SARS-CoV-2, as it may 
offer novel therapeutic targets for preventing or treating 
COVID-19.

b. Virological synapses
Many viruses, including the retroviruses human T cell 

leukemia virus type 1 (HTLV-1), human immunodeficiency 
virus type 1 (HIV-l), and simian immunodeficiency virus 
(SIV), spread from cell to cell through a virus-induced struc-
ture called the virological synapse (VS) or the infectious 
synapse, which shares similarities with neurological, immu-
nological, and plant synapses [87–90]. During synapse for-
mation, pre-synaptic and post-synaptic cells adhere to each 
other, but their membranes do not fuse. The virological syn-
apse (VS) transmits viruses directly from the infected (pre-
synaptic) to the uninfected (post-synaptic) cell [87]. Also, 
HIV-1, after being captured and internalized by dendritic 
cells, is transferred through the immunological synapse to 
interacting T cells. However, studies have indicated that not 
only internalized virus is transmitted but also virus particles 
attached to the surface of dendritic cells. This type of viral 
transmission is called transinfection [91].

The formation of any synapse, including the VS, involves 
the polarization of F-actin filaments and Rho GTPase sign-
aling [92–95]. The actin network at the synapse not only 
plays a structural role but is a scaffold for signaling mol-
ecules and the clustering of virus particles [92, 93]. It seems 
that, at least in the case of HIV-1, the synapse contains a 
local, F-actin-depleted zone that facilitates virus entry by 

Fig. 4  Hypothetical TNT-dependent transfer of SARS-CoV-2. Bind-
ing of the S protein of SARS-CoV-2 to a heparan sulfate (HS) pro-
teoglycan molecule (which acts as a co-receptor for ACE2 binding) 
present on the cell surface, induces the formation of a tunneling 
nanotube (TNT) between the infected cell and a neighboring unin-
fected cell. The virus is transferred within the lumen of the TNT, 
which contains actin filaments. Rho GTPase signaling including the 
Rac1/Cdc42/Pak1 pathways regulates actin polymerization, which is 

required for the formation of the TNT. The virus can also, after bind-
ing to HS, surf on the surface of the TNT. The virus on the surface 
of the TNT can also be internalized into the TNT interior. Although 
there are no data showing that SARS-CoV-2 spreads through TNTs, 
the fact that its S protein binds to HS and that the closely related 
SARS-CoV-1 can induce various types of cytoplasmic extensions, 
suggests that it does
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removing the physical cortical actin barrier [96]. Like retro-
viruses, coronaviruses also use the VS for direct cell-to-cell 
transmission. Yang et al. [97] have described VS transmis-
sion of SARS-CoV-1 between dendritic cells (DC) and target 
cells. Recently, additional studies have suggested that the 
ability of the SARS-CoV-2 to invade the nervous system 
involves the transmission of the virus through neurological 
synapses [98–100].

c. Virus interaction with the cellular 
junctions

A direct transfer of viruses between cells can also occur 
through intercellular junctions. Many viruses have evolved 
various strategies to alter different types of cell junctions 
to allow viral penetration. There are three main categories 
of cell junctions: Tight (occluding) junctions support the 
exchange of small hydrophilic molecules. Anchoring junc-
tions (adherens junctions, desmosomes, focal adhesions, and 
hemidesmosomes) attach cells to each other or the extra-
cellular matrix. Adherens junctions and focal adhesions are 
connected to bundles of actin filaments, while desmosomes 
and hemidesmosomes are connected to intermediate fila-
ments. Gap (communicating) junctions transfer small (below 
1000 Da) proteins, amino acids, nucleotides, small metabo-
lites, ions, regulatory molecules, and secondary messengers 
[82, 101, 102]. Studies have shown that hepatitis C virus 
and retroviruses may enter through tight junctions, human 
papilloma virus (HPV) may enter through the adherens junc-
tions, and HIV may modify gap junctions for entry [103]. 
Retroviruses modify the distribution of the tight-junction 
proteins occludin and claudin-1 and destroy tight junctions 
via the RhoA/ROCK /MLC signaling pathways [103–105]. 
Hepatitis C virus also affects occludin and claudin-1, and 
these proteins may also promote endocytosis of the virus 
[103, 106, 107]. HPV enters through adherens junctions. It 
modifies the distribution of adherens junction proteins such 
as β-catenin, disrupting their association with E-cadherin 
and the actin cytoskeleton [103, 108]. HIV hijacks gap 
junctions to spread apoptosis-inducing factors to uninfected 
cells and destroys, via the mitogen-activated protein kinase 
(MAPK) pathway, adherens and tight junctions [103, 109]. 
Studies have shown that the intermediate filament protein 
vimentin, connected to adherence junctions, is essential for 
several phases of the viral life cycle, including entry, trans-
port, replication, assembly, and egress [110]. Intermediate 
filaments, actin, and microtubules are also crucial for the 
entry and propagation of dengue virus, Zika virus, and West 
Nile virus [111]. Recent studies have shown that alterations 
in cell junctions induced by SARS-CoV-2 are highly damag-
ing for patients [112, 113]. Humans have over 100 proteins 
containing PDZ (post-synaptic density protein) domains, 

some of which are components of cell junctions. The enve-
lope (E) proteins of SARS-CoV-2 and SARS-CoV-1 have a 
PDZ-binding motif (PBM). The binding of the viral PBM 
to PALS1 (protein associated with Lin seven 1) present in 
human cell junctions relocates PALS1 from the junctions 
to the ERGIC compartment, where the virus is assembled. 
The envelope protein also binds and dislocates other PDZ-
containing junctional proteins, including the adherens junc-
tion protein syntenin and the tight junction ZO-113 (zonula 
occludens-113) protein, which regulates the actin-relevant 
RhoA/ROCK pathway [114]. Disruption of the junctional 
proteins in the inter-epithelial junctions of the lungs causes 
vascular leakage, damages the alveoli, and induces acute res-
piratory distress syndrome (ARDS) in COVID-19 patients 
[112, 115].

Virus‑induced syncytia

Pathological examination of the lungs of the patients with 
severe cases of COVID-19 infection shows the presence of 
SARS-CoV-2-infected, multinucleated syncytia of pneu-
mocytes [116, 117]. These patients are also often severely 
lymphopenic; i.e., they have a deficit of lymphocytes, which 
decreases their ability to fight the infection [118, 119]. It is 
known that many viruses, including poxviruses, paramyxo-
viruses, herpesviruses, and retroviruses, induce the fusion 
of infected cells into multinuclear syncytia, which eventu-
ally die [120]. Recent studies have shown that SARS-CoV-2 
infection causes the formation of giant syncytia and the 
destruction of tight junctions in the lung airway epithelium 
[113]. There are two main types of syncytia: (1) homotypic 
syncytia consisting of cells of the same type and (2) hetero-
typic syncytia, which result from the fusion of cells of differ-
ent types. Recently, Zhang et al. [119] described another type 
of syncytia in the lungs of COVID-19 patients. These syncy-
tia consist of lung cells containing internalized lymphocytes 
(Fig. 5). The cell fusion leading to the formation of syncytia 
requires the rupture of the membranes of the fusing partners, 
followed by membrane rejoining. The whole process is facil-
itated by fusogenic proteins and involves the restructuring of 
the supportive platform of the actin cytoskeleton underlying 
the cell membranes. The spike protein of SARS-CoV-2 is a 
fusogen with homology to mammalian syncytin-1, which is 
involved in the formation of the syncytial layers of the pla-
centa [31]. The model and the details of the fusion process 
are described in references [31, 119]. Virus-induced syncytia 
not only enhance virus spread but may also serve as a tool 
for the elimination of immune cells that fight the virus. Stud-
ies of COVID-19 patients showed that SARS-CoV-2 induces 
both homotypic syncytia of pneumocytes, and heterotypic 
cell structures containing fused lung cells with the engulfed 
lymphocytes inside [36, 119]. These studies suggest that 
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SARS-CoV-2-infected cells express the viral S (spike) pro-
tein on their surface. The interaction of the spike protein 
with the ACE2 receptor of the neighboring cell activates the 
calcium-activated lipid scramblase TMEM16F (anoctamin 
6), which that exposes phosphatidylserine on the cell sur-
face and triggers the formation of a syncytium, which subse-
quently engulfs the immune cells [116, 122]. These studies 
suggest that syncytium-mediated lymphocyte internalization 
and elimination may be one of the causes of lymphopenia in 
COVID-19 patients [119–121]. Recent studies indicate the 
antihelminthic drug niclosamide suppresses the activity of 
TMEM16F and inhibits spike-induced syncytium formation 
by SARS-CoV-2 [123].

Conclusions

The information presented here indicates that interac-
tions of viruses, including SARS-CoV-2, with the actin 
cytoskeleton and actin-related cell functions and signal-
ing pathways, are of crucial importance for viral func-
tions, infectivity, and pathogenicity. It is also clear that 
our knowledge about the interactions of SARS-CoV-2 with 
actin and other components of the cytoskeleton is still very 

limited and requires further studies. A better understand-
ing of these interactions and processes and the participat-
ing viral and cellular components involved can help in 
the design of novel antiviral therapies and/or strategies 
to mitigate the severity of COVID-19 and its damaging, 
long-term effects. The conventional approaches to fight-
ing viral infections include vaccinations, antiviral drugs, 
and preventing overactivation of the immune response, 
the last of which is especially important in COVID-19, 
in which the overproduction of inflammatory factors can 
cause a cytokine storm in the patient’s lungs [36]. A recent 
analysis of gene expression profiles in the SARS-CoV-1/
SARS-CoV-2 infections using Gene Ontology (GO) and 
MetaCore showed that the upregulation of actin/cytoskel-
eton remodeling via the RhoA pathway is crucial for 
infection [124]. Thus, we propose that interference with 
actin-dependent functions of the virus and/or host immune 
cells using RhoA pathway inhibitors, such as the multi-
ple sclerosis drugs fingolimod and siponimod, might be a 
novel therapeutic approach to fighting viral diseases [125].
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Fig. 5  SARS-CoV-2-induced syncytia. After infection of the cell and 
release of viral RNA, the infected cell synthesizes the viral spike (S) 
protein. The S protein expressed on the surface of the infected cell 
interacts with an ACE2 receptor on an uninfected cell. Because the 
viral S protein is fusogenic, this interaction initiates a cascade of 
events that eventually lead to the apposition of neighboring cell mem-
branes, membrane scission, and cell fusion. The interaction of the 
spike protein with the ACE2 receptor of the neighboring cell acti-

vates the calcium-activated lipid scramblase TMEM16F (anoctamin 
6), which exposes phosphatidylserine on the cell surface and triggers 
the formation of a syncytium. SARS-CoV-2 induces not only the for-
mation of pneumocyte syncytia but also the formation of heterotypic 
syncytia when pneumocyte-derived syncytia engulf the lymphocytes. 
The internalized lymphocytes undergo apoptosis and die. SARS-
CoV-2 uses this mechanism to eliminate virus-fighting lymphocytes 
from the lungs
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