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Abstract
Soybean mosaic virus (SMV) is the most prevalent viral pathogen in soybean. In China, the SMV strains SC and N are 
used simultaneously in SMV resistance assessments of soybean cultivars, but the pathogenic relationship between them is 
unclear. In this study, SMV strains N1 and N3 were found to be the most closely related to SC18. Moreover, N3 was found to 
be more virulent than N1. A global pathotype classification revealed the highest level of genetic diversity in China. The N3 
type was the most frequent and widespread worldwide, implying that SMV possibly originated in China and spread across 
continents through the dissemination of infected soybean. It also suggests that the enhanced virulence of N3 facilitated its 
spread and adaptability in diverse geographical and ecological regions worldwide. Phylogenetic analysis revealed promi-
nent geographical associations among SMV strains/isolates, and genomic nucleotide diversity analysis and neutrality tests 
demonstrated that the whole SMV genome is under negative selection, with the P1 gene being under the greatest selection 
pressure. The results of this study will facilitate the nationwide use of SMV-resistant soybean germplasm and could provide 
useful insights into the molecular variability, geographical distribution, phylogenetic relationships, and evolutionary history 
of SMV around the world.

Introduction

Recent years have been quite unusual, with the Corona-
virus Disease of 2019 pandemic sweeping the globe and 
endangering human life and health. In the meantime, how-
ever, plant epidemics continue to spread silently, resulting 

in severe human food insecurity, especially in developing 
countries [30, 51]. Plant pathogens are a major threat to agri-
cultural production [14], and viruses comprise nearly half of 
plant-disease-causing pathogens and are responsible for 30 
billion USD in annual economic losses globally [49].

Soybean mosaic virus (SMV), a member of the genus 
Potyvirus within the family Potyviridae, is the most preva-
lent and devastating viral pathogen in all soybean (Glycine 
max (L.) Merr.) production regions worldwide, leading to 
substantial yield losses and deterioration of seed quality [26, 
44, 61, 62]. SMV is seed-borne and aphid-transmitted and 
can also be transmitted via mechanical inoculation. The dis-
eased soybean seedlings that originate from SMV-infected 
seeds are the primary inoculum sources. SMV is subse-
quently transmitted via at least 32 aphid species in a non-
persistent manner, eventually resulting in secondary spread 
within and among soybean fields [26, 31]. SMV infection 
induces mosaic, chlorosis, rugosity, curl, and necrosis on 
soybean leaves and causes plant stunting and seed discolora-
tion (seed coat mottling) [22]. Yield reductions are usually 
reported to range from 8% to 35% under natural field condi-
tions [31]; however, losses of more than 50% and even total 
crop failure have occurred during severe outbreaks [18].
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The SMV genome consists of a monopartite, single-
stranded, positive-sense RNA molecule of ~9.6 kb in length, 
possessing a viral genome-linked protein (VPg) covalently 
bound to the 5′ terminus and a poly(A) tail at the 3′ end [26, 
34]. The viral genome contains a single open reading frame 
(ORF) encoding a large precursor polyprotein, which is ulti-
mately processed to yield at least 10 mature multifunctional 
proteins including protein 1 (P1), helper component-protein-
ase (HC-Pro), protein 3 (P3), 6-kilodalton protein 1 (6K1), 
cylindrical protein (CI), 6-kilodalton protein 2 (6K2), VPg, 
nuclear inclusion a-proteinase (NIa-Pro), nuclear inclusion b 
(NIb), and coat protein (CP) [26, 34]. Additionally, through 
a frameshift, the SMV genome also encodes a small ORF 
yielding an 11th protein, termed "pretty interesting Potyviri-
dae ORF" (P3N-PIPO), which is produced as a consequence 
of transcriptional slippage in the P3 cistron [12, 31].

SMV has undergone changes in its pathogenicity during 
the long-term process of co-evolution with its hosts and the 
environment; hence, numerous SMV isolates with differ-
ent levels of pathogenicity exist in nature [23, 66]. Based 
on their disease reactions on soybean differentials, a large 
number of SMV isolates have been categorized into seven 
strains (G1–G7) in the United States and South Korea [6–8, 
37, 38, 52, 53, 55] and five strains (A–E) in Japan [60]. In 
China, SMV has been grouped into two types, namely 22 
SC strains (SC1–SC22), which are found nationwide, and 
three N strains (N1–N3), which are prevalent in Northeast 
China, on different sets of soybean differentials [41, 46]. In 
the National Soybean Regional (Uniform) Tests (NSRUT) 
in China, new soybean cultivars are required to pass SMV 
resistance assessments before official approval of release; 
however, SMV SC strains are used for evaluating soybean 
cultivars from the Yellow-Huai-Hai River Valleys and 
Southern China, while SMV stains N1 and N3 are used for 
evaluating the cultivars from Northeast China [48]. The 
pathogenic relationship between SMV SC and N strains is 
unclear, and little genomic information about N strains is 
available, which seriously impedes the nationwide appli-
cation of the available SMV-resistant soybean germplasm 
resources.

Since the first determination of full-length nucleotide 
sequences of SMV [34], complete and partial genome 
sequencing of SMV isolates has greatly helped us to under-
stand its genomic structure, to identify determinants of 
virulence, resistance-breaking, and host range, and to study 
mutation, recombination, phylogenetic relationship, and evo-
lutionary processes [4, 5, 9–11, 18, 19, 24, 27–29, 35, 50, 
52–55, 63–68]. In the present study, the pathogenic relation-
ships between SMV N1/N3 and SC strains were clarified 
via virus resistance assessments of N strains using the uni-
form soybean differential system, which was used previously 
for identifying SC strains [41]. Moreover, the virulence of 
SMV strains N1 and N3 was compared through monitoring 

of the pathogenic phenotype and viral accumulation on dif-
ferent susceptible soybean cultivars, and through analysis 
of the available data from SMV resistance assessments. 
Finally, the full-length genomic sequences of SMV strains 
N1 and N3 were determined and compared with other avail-
able complete SMV sequences. The results from this study 
will facilitate the nationwide use of SMV-resistant soybean 
germplasm, accelerate the progress of soybean resistance 
breeding in China, and provide useful insights into the 
molecular variability, geographical distribution, phyloge-
netic relationships, and evolutionary history of SMV around 
the world.

Materials and methods

Soybean materials and SMV strains

Ten soybean differentials, including Nannong 1138-2, 
Youbian 30, 8101, Tiefeng 25, Davis, Buffalo, Zaoshu 18, 
Kwanggyo, Qihuang No. 1, and Kefeng No. 1, which have 
been used for identifying SMV SC strains [41], were used 
for resistance assessments of N strains in this study. The 
soybean seeds were provided by the National Center for Soy-
bean Improvement, Nanjing Agricultural University.

SMV strains N1 and N3, previously identified in North-
east China [46], were obtained from the Jilin Academy of 
Agricultural Sciences (Northeast Agricultural Research 
Center of China). Both strains were maintained separately 
on soybean cv. Nannong 1138-2 (a highly susceptible host) 
for further biological and molecular analysis.

Pathogenicity test

Seeds of 10 soybean differentials were individually sown in 
plastic pots containing moistened nutrition soil mixed with 
vermiculite and grown at 23–25°C with a photoperiod of 16 
h in an insect-proof greenhouse. Seedlings were thinned to 
15–20 healthy and uniform plants per pot and mechanically 
inoculated with SMV strains N1 and N3 as described previ-
ously [21]. The inocula were prepared from the symptomatic 
leaves collected from the corresponding infected Nannong 
1138-2 plants, which were homogenized using a sterilized 
mortar and pestle in 0.01 M phosphate-buffered saline (a 
mixture of sodium hydrogen phosphate and monopotassium 
phosphate, pH 7.4) supplemented with a moderate amount of 
carborundum powder (600-mesh) as an abrasive. Inoculation 
was performed by gently rubbing the fully expanded unifo-
liolate leaves with the viral suspension using a paintbrush. 
Leaves were rinsed with tap water shortly after the inocula-
tion, and plants were sprayed regularly with pesticides to 
prevent cross-infection via aphids. Disease symptoms (i.e., 
symptomless, mosaic, and necrosis) were monitored starting 
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7 days post-inoculation (dpi) and recorded at 1-week inter-
vals until the R1 stage (beginning of flowering) [17].

Virulence comparison

Virus accumulation was detected by quantitative real-time 
polymerase chain reaction (qRT-PCR) analysis in soybean 
cvs. Nannong 1138-2 and 8101 that had been challenged 
with SMV strains N1 and N3. Gene-specific forward (5′-
CAG​ATG​GGC​GTG​GTT​ATG​A-3′) and reverse primers (5′-
ACA​ATG​GGT​TTC​AGC​GGA​TA-3′) were designed target-
ing the conserved region of SMV CP using Primer Premier 
5.0. GmTubulin (accession no. AY907703), amplified with 
the forward (5′-GGA​GTT​CAC​AGA​GGC​AGA​G-3′) and 
reverse primers (5′-CAC​TTA​CGC​ATC​ACA​TAG​CA-3′), 
was used as the internal reference control. Samples were col-
lected independently from the corresponding infected young 
leaves at 7, 14, 21, and 28 dpi, and total RNA extractions 
followed by first-strand cDNA syntheses were conducted 
using an RNA Simple Total RNA Kit (Tiangen, China) and 
PrimeScript® RT Master Mix (Takara, Japan), respectively. 
Subsequently, qRT-PCR was carried out in a reaction mix-
ture with a 20-μL final volume, containing 2 μL of template 
cDNA (approximately 50 ng), 0.4 μL of each primer (10 
μM), 10 μL of 2× SYBR® Premix Ex Taq™ (Takara, Japan), 
and 7.2 μL of sterilized ddH2O. Thermal conditions were 
set to 95 °C for 30 s, followed by 40 cycles at 95 °C for 5 s, 
55 °C for 30 s, and 72 °C for 30 s. Samples were analyzed 
in triplicate on a LightCycler® 480 II instrument (Roche, 
Germany) according to the manufacturer’s manual. Tran-
script levels were quantified using the relative quantification 
(2-ΔΔCt) method, and data were compared with the internal 
controls.

Statistical data from SMV resistance assessments depos-
ited in the NSRUT (https://​www.​natesc.​org.​cn/) over a 
four-year period (2015-2018) were analyzed. The disease 
index (DI) of each evaluated soybean cultivar challenged 
with SMV strains N1 and N3 was calculated as described 
previously [23]. On the basis of the DI values, the response 
types of soybean cultivars in terms of virus resistance were 
classified as HR (highly resistant, DI = 0), R (resistant, 0 
< DI ≤ 20), MR (moderately resistant, 20 < DI ≤ 35), MS 
(moderately susceptible, 35 < DI ≤ 50), S (susceptible, 50 < 
DI ≤ 70), and HS (highly susceptible, 70 <DI ≤ 100) [23]. 
The six classifications were further grouped as resistant (HR, 
R, and MR) or susceptible (MS, S, and HS).

Whole‑genome sequencing

RNA was isolated from soybean leaves infected with SMV 
strain N1 or N3 and then converted into cDNA, using the 
methodology described above. Three gene fragments of each 
strain, overlapping by at least 250 nt in the adjacent regions, 

were amplified by reverse transcription PCR using high-
fidelity polymerase KOD FX (Toyobo, Japan) as described 
previously [68]. The 5′ fragment (∼3.3 kb) was amplified 
using the forward primer 5′-AAA​TTA​AAACTMSTYA​TAA​
AGA-3′ and the reverse primer 5′-CCY​TGC​ARY​ACA​CTA​
GTC​ATTTG-3′, the middle fragment (∼3.6 kb) was ampli-
fied using the forward primer 5′-CTC​CAC​ATA​CGG​ARA​
AAT​G-3′ and the reverse primer 5′-CCA​ACC​ATR​CAA​
ACMCGTTC-3′, and the 3′ fragment (∼3.2 kb) was ampli-
fied using the forward primer 5′-ATG​TTT​GGG​GTY​GGC​
TAT​GG-3′ and the reverse primer 5′-AGG​ACA​ACA​AAC​
ATT​GCC​GYA​CCT​-3′ [68]. The amplicons were separated 
by electrophoresis in a 0.8% agarose gel and visualized using 
a gel imaging system (Bio-Rad, USA). The bands with the 
expected sizes were excised and purified using an AxyPrep 
DNA Gel Extraction Kit (Axygen, USA) and cloned into 
the pMD19-T vector (Takara, Japan). To ensure accuracy, 
at least three clones of each fragment were sequenced bi-
directionally by TSINGKE Biological Technology Co. 
Ltd., Beijing, China. The resulting contigs were trimmed 
and assembled using BioXM 2.6, and the overall pairwise 
sequence identity between N1 and N3 was calculated using 
DNAMAN 9.0 at both the nucleotide and amino acid levels.

Geographical distribution

A total of 104 complete SMV sequences retrieved from the 
National Center for Biotechnology Information database 
(http://​www.​ncbi.​nlm.​nih.​gov/) were analyzed. Based on the 
nucleotide and amino acid sequence differences between N1 
and N3, the analyzed SMV strains/isolates were divided into 
six pathotypes, including the N1 type, intermediate type I, 
intermediate type II, intermediate type III, intermediate type 
IV, and the N3 type. The locations where these pathotypes 
were isolated were marked on a world map to visualize their 
worldwide geographical distribution.

Genome‑wide analysis

The newly obtained N1 and N3 sequences were compared 
with other available complete SMV genome sequences. Mul-
tiple sequences of SMV nucleotide and deduced amino acids 
were aligned using BioEdit 7.0 and used for phylogenetic 
analysis. A phylogenetic tree was built by the neighbor-join-
ing (NJ) method with 1000 bootstrap replicates in MEGA 
5.0. To estimate the variations in evolutionary constraints 
on different regions of the genome, genomic diversity was 
calculated using DnaSP 5.0 with a sliding window of 100 
bp and a step size of 25 bp. To explore the demographic 
history of SMV populations, Tajima’s D, Fu and Li’s D∗, 
and F∗ neutrality tests were applied to each SMV-encoded 
gene in DnaSP 5.0.

https://www.natesc.org.cn/
http://www.ncbi.nlm.nih.gov/
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Results

SMV strains N1 and N3 are most closely related 
to strain SC18

To compare the pathogenic relationship between SMV 
N1/N3 and SC strains, 10 soybean differentials previously 
used for identifying SC strains were inoculated with N 
strains. Surprisingly, the disease reactions of N1 and N3 
were the same, namely cvs. Nannong 1138-2 and 8101 
both showed mosaic symptoms and were susceptible, 
whereas the other eight cultivars were all symptomless 
and resistant to these two strains (Table 1 and Supplemen-
tary Fig. S1). Furthermore, strains N1 and N3 were found 
to exhibit symptoms and pathogenicity identical to those 
of strain SC18 on the tested soybean cultivars (Table 1). 
Therefore, we concluded that strains N1 and N3 were most 
closely related to SC18 based on their performance on the 
10 soybean differentials.

N3 is more virulent than N1

Although N1 and N3 could systemically infect Nannong 
1138-2 and 8101 (Table 1 and Supplementary Fig. S1), 
the virulence of N1 and N3 differed on these two soybean 
cultivars. At first, similar mosaic symptoms appeared on 
Nannong 1138-2 and 8101 inoculated with N1 and N3 
at 7 and 14 dpi (Fig. 1); however, symptoms induced by 
N3 (severe curl) became more prominent and severe than 
those induced by N1 (moderate crinkling), both on Nan-
nong 1138-2 and 8101 at 21 and 28 dpi (Fig. 1). Subse-
quently, virus accumulation in Nannong 1138-2 and 8101 
infected with N1 and N3 was measured by qRT-PCR at 
different time points. For Nannong 1138-2, the amount of 
virus present at 7, 14, and 21 dpi was similar for N1 and 
N3, whereas at 28 dpi, the amount of N3 was considerably 
higher than that of N1 (Fig. 1). For 8101, the amount of 
N3 present was clearly greater than that of N1 at most of 
the time points, particularly at 28 dpi (Fig. 1). Hence, the 
differences in viral titers supported the phenotypic obser-
vations for the relative virulence of N1 and N3.

The available statistical data from resistance assess-
ments of SMV strains N1 and N3 in the years 2015–2018 
(Supplementary Table S1) were analyzed and are sum-
marized in Table 2. A total of 352 soybean cultivars were 
assessed for virus resistance to N1 and N3, and no HR 
and HS types were found (Table 2). Among the 352 culti-
vars evaluated, 209 (59.4%) were identified as resistant to 
N1, including R (77, 21.9%) and MR types (132, 37.5%), 
whereas only 105 (29.8%) were identified as resistant to 
N3, including R (29, 8.2%) and MR types (76, 21.6%) 
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(Table 2). On the other hand, 143 (40.6%) were identified 
as susceptible to N1, including MS (131, 37.2%) and S 
types (12, 3.4%), whereas 247 (70.2%) were identified as 
susceptible to N3, including MS (134, 38.1%) and S types 
(113, 32.1%) (Table 2). The average disease index (ADI) 
of N1 was 31.94 (ranging from 28.04 to 36.82), which was 
lower than that of N3 (ADI = 42.64, ranging from 40.62 
to 45.18) (Table 2). In summary, the 352 soybean cultivars 
that were evaluated displayed an obviously higher overall 
level of resistance to N1 than to N3.

Taken together, SMV strain N3 was found to be more 
virulent than N1 based on the pathogenic phenotype, 
viral accumulation on soybean cvs. Nannong 1138-2 and 
8101 (Fig. 1), and the data of SMV resistance assessments 
(Table 2).

Sequence variations between N1 and N3

The genomes of SMV strains N1 and N3 were completely 
cloned and sequenced (Supplementary Fig. S2), and both 

Fig. 1   Symptom appearance and qRT-PCR detection of SMV strains 
N1 and N3 on soybean cvs. Nannong 1138-2 and 8101 at different 
time points. Data are expressed as the mean of three biological rep-

licates with error bars indicating the standard deviation (SD). SMV, 
soybean mosaic virus; dpi, days post inoculation
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had a genome of 9589 nucleotides encoding a 3067-amino-
acid polyprotein (Supplementary Texts S1 and S2). The 
complete sequences of N1 and N3 were deposited in the 
GenBank database with accession numbers MN623289 and 
MN623290, respectively. Sequence alignments showed that 
N1 and N3 were almost identical, sharing 99.97% sequence 
identity at both the nucleotide and amino acid levels, with 
only three nucleotide differences and one amino acid differ-
ence (Table 3, Supplementary Figs. S3 and S4). Two nucleo-
tide differences in HC-Pro (A or G at position 1439 and G or 
A at position 1914) and one nucleotide difference in CI (T 
or C at position 4377) resulted in a single amino acid differ-
ence in HC-Pro, namely Asn (N) or Ser (S) at position 436 
(Table 3, Supplementary Figs. S3 and S4).

The N3 type is the most frequent and widespread 
type worldwide

A total of 104 SMV strains/isolates were analyzed in this 
study (Supplementary Table S2). Based on the nucleo-
tide and amino acid sequence differences between N1 and 
N3 (Tables 3 and 4), SMV strains/isolates were classified 
as six pathotypes consisting of N1 type (5), intermediate 
type I (13), intermediate type II (10), intermediate type III 
(12), intermediate type IV (1), and N3 type (63) (Table 5 
and Supplementary Table S3), which were found in China 
(45), Korea (32), Japan (2), Iran (5), India (1), Canada (5), 
the USA (13), and Colombia (1) (Table 5, Supplementary 
Table S3, and Fig. 2). Among the SMV pathotypes, the Ta

bl
e 

2  
R

es
ist

an
ce

 o
f s

oy
be

an
 c

ul
tiv

ar
s t

o 
SM

V
 st

ra
in

s N
1 

an
d 

N
3 

in
 th

e 
N

at
io

na
l S

oy
be

an
 R

eg
io

na
l (

U
ni

fo
rm

) T
es

ts

n,
 n

um
be

r o
f s

oy
be

an
 c

ul
tiv

ar
s 

ev
al

ua
te

d;
 H

R
, h

ig
hl

y 
re

si
st

an
t; 

R
, r

es
ist

an
t; 

M
R

, m
od

er
at

el
y 

re
si

st
an

t; 
M

S,
 m

od
er

at
el

y 
su

sc
ep

tib
le

; S
, s

us
ce

pt
ib

le
; H

S,
 h

ig
hl

y 
su

sc
ep

tib
le

; A
D

I, 
av

er
ag

e 
di

se
as

e 
in

de
x

a  A
D

I w
as

 c
al

cu
la

te
d 

by
 a

ve
ra

gi
ng

 th
e 

co
rr

es
po

nd
in

g 
di

se
as

e 
in

di
ce

s o
f t

he
 e

va
lu

at
ed

 so
yb

ea
n 

cu
lti

va
rs

 in
 e

ac
h 

ye
ar

 (S
up

pl
em

en
ta

ry
 T

ab
le

 S
1)

, a
nd

 to
ta

l A
D

I w
ith

 st
an

da
rd

 d
ev

ia
tio

n 
w

as
 c

al
cu

-
la

te
d 

by
 av

er
ag

in
g 

th
e 

A
D

Is
 o

f t
he

se
 fo

ur
 y

ea
rs

Ye
ar

n
N

1
N

3

H
R

R
M

R
M

S
S

H
S

A
D

Ia
H

R
R

M
R

M
S

S
H

S
A

D
Ia

20
15

60
0

18
31

11
0

0
28

.0
4

0
5

18
23

14
0

40
.6

2
20

16
79

0
17

37
25

0
0

31
.0

7
0

5
20

36
18

0
42

.0
6

20
17

97
0

27
35

30
5

0
31

.8
2

0
14

16
37

30
0

42
.7

1
20

18
11

6
0

15
29

65
7

0
36

.8
2

0
5

22
38

51
0

45
.1

8
To

ta
l

35
2

0 
(0

%
)

77
 (2

1.
9%

)
13

2 
(3

7.
5%

)
13

1 
(3

7.
2%

)
12

 (3
.4

%
)

0 
(0

%
)

31
.9

4 
±

 3
.6

4
0 

(0
%

)
29

 (8
.2

%
)

76
 (2

1.
6%

)
13

4 
(3

8.
1%

)
11

3 
(3

2.
1%

)
0 

(0
%

)
42

.6
4 

±
 1

.9
0 Table 3   Nucleotide and amino acid sequence differences between 

SMV strains N1 and N3

Underlining indicates the positions of nucleotide differences, and the 
amino acid variations are highlighted in bold

Region Position of nucleotide 
(amino acid)

N1 N3

HC-Pro 1439 (436) AAT (Asn) AGT (Ser)
1914 (594) GGG (Gly) GGA (Gly)

CI 4377 (1415) AAT (Asn) AAC (Asn)

Table 4   Pathotype classification of SMV strains/isolates based on the 
nucleotide and amino acid differences between N1 and N3

N, asparagine; S, serine; R, arginine

Pathotype HC-Pro1439 HC-Pro1914 CI4377 HC-Pro436

N1 type A G T N
Intermediate type I G G T S
Intermediate type II G G C S
Intermediate type III G A T S
Intermediate type IV G G C R
N3 type G A C S



523Comparison of soybean mosaic virus strains

1 3

N1 type was found infrequently, while the N3 type was the 
most frequent by far. The other types (except for intermedi-
ate type IV) were found at a similar frequency (Table 5 and 
Supplementary Table S3). It was observed that nearly all 
of the pathotypes were present in China, while there were 
only three pathotypes in Korea and the USA and only one 
pathotype in the other countries (Table 5, Supplementary 
Table S3, and Fig. 2). In particular, it is notable that the N3 
type was found in most of the countries and is widely distrib-
uted globally (Table 5, Supplementary Table S3, and Fig. 2).

Phylogenetic analysis and the geographical 
distribution of SMV

Phylogenetic relationships among the available complete 
SMV sequences (Supplementary Table S2) were analyzed 
by aligning the nucleotide and amino acid sequences (Fig. 3) 

and constructing phylogenetic trees, which showed that N1 
and N3 were the most closely related to each other at both 
the nucleotide (Fig. 3a) and amino acid levels (Fig. 3b). 
Moreover, phylogenetic analysis revealed a significant geo-
graphical association among SMV strains/isolates. All five 
SMV sequences from Canada, two sequences from Japan, 
and most of the sequences from China and Iran clustered 
together (Fig. 3). The four G7 strains/isolates (G7a, G7d, 
G7f, and G7x) from the USA were consistently classified 
as one subgroup (Fig. 3), and the other sequences from the 
USA did not cluster closely, due to their sequence diversity. 
SMV strains/isolates from Korea could be roughly divided 
into three subgroups including seven sequences (WS109, 
WS144, WS149, WS160, WS202, WS205, and WS209), 
nine sequences (CN18, G5, G5H, G5H-clone, G6H, WS32, 
WS101, WS117, and WS155), and six sequences (WS105, 
WS110, WS116, WS132, WS135, and WS151), at both the 

Table 5   Distribution of SMV 
pathotypes worldwide

Pathotype China Korea Japan Iran India Canada USA Colombia Total

N1 type 1 0 0 0 0 0 4 0 5
Intermediate type I 5 6 2 0 0 0 0 0 13
Intermediate type II 10 0 0 0 0 0 0 0 10
Intermediate type III 2 9 0 0 0 0 1 0 12
Intermediate type IV 0 0 0 0 1 0 0 0 1
N3 type 27 17 0 5 0 5 8 1 63
Total 45 32 2 5 1 5 13 1 104

Fig. 2   Worldwide geographical distribution of SMV pathotypes. The 
number (n) of the analyzed SMV strains/isolates and the percentage 
of the pathotypes are indicated for each country, including China (n 

= 45), Korea (n = 32), Japan (n = 2), Iran (n = 5), India (n = 1), 
Canada (n = 5), USA (n = 13), and Colombia (n = 1). SMV, soybean 
mosaic virus
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Fig. 3   Phylogenetic analysis of 
SMV strains/isolates based on 
the full-length nucleotide (a) 
and amino acid (b) sequences. 
The phylogenetic trees were 
constructed using MEGA 5.0. 
The neighbor-joining method 
with 1000 bootstrap repli-
cates was used to determine 
phylogenetic relationships. The 
newly sequenced N1 and N3 
are indicated by black triangles, 
and strains/isolates with black 
circles indicate that they were 
not from the indicated country. 
SMV, soybean mosaic virus
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nucleotide and amino acid levels. No pronounced geographi-
cal correlation was found among the analyzed SMV strains/
isolates when performing the phylogenetic analysis based on 
the nucleotide and amino acid sequences of each individual 
gene (Supplementary Figs. S5 and S6), which was probably 
attributable to the limited amount of genetic information.

Selection constraints and virus population 
demography

Nucleotide variability evaluation and neutrality tests were 
carried out to investigate the evolution of SMV populations 
and variation under natural selection pressure. The results 
showed an overall Pi value less than 1 (Fig. 4), implying that 
the whole SMV genome is under negative selection, and 
some regions of the 5’UTR, P1, and P3 exhibited higher pol-
ymorphism than the other regions (Fig. 4), suggesting that 
these regions are less evolutionarily constrained. Tajima’s 
D, Fu and Li’s D∗ and F∗ values for each SMV gene were 
all negative (Table 6), suggesting that all of the SMV genes 
are under negative selection pressure to varying degrees and 
that the SMV population is increasing. P1 may be under the 
greatest selection pressure, as it was found to have the lowest 
Tajima’s D value (Table 6). The Fu and Li’s D∗ and F∗ values 
for P1, NIa-Pro, NIb, and 3’UTR were all significant, and 
the value for P1 was more highly significant, which is con-
sistent with the result of Tajima’s D test (Table 6). Moreover, 
Fu and Li’s D∗ and F∗ values were all lower than Tajima’s D 
values (Table 6), indicating that the mutation rate in SMV 
may have increased more recently.

Discussion

The SMV SC and N strains were classified on different sets 
of soybean differentials [41, 46], resulting in an inability to 
compare their pathogenicity and posing severe limitations 
on exchanging and introducing SMV-resistant soybean 
cultivars across China. In the present study, SMV strains 
N1 and N3 were found to be most closely related to strain 
SC18 (Table 1), which was strongly supported by previous 
research showing that SC18 accounted for 90.5% of the total 
isolates collected from Heilongjiang province in northeast-
ern China and was predominant and widespread in this 
region [40]. Thus, we believe that soybean cultivars resist-
ant to either SC18 or N1/N3 could be used interchangeably, 
and the mapped R genes conferring resistance to SC18 [39] 
could also provide resistance to N1 and N3. This information 
will help to overcome the problems caused by the pathogenic 
differentiation and host specialization exhibited by SMV SC 
and N strains and to facilitate the nationwide application of 
outstanding soybean materials, ultimately accelerating the 
soybean-breeding progress for improving SMV resistance 
in China. Nevertheless, the same problems caused by non-
uniform SMV strains still exist in other countries, making 
it difficult to understand the pathogenic divergence of SMV 
strains/isolates [23, 66, 68]. Consequently, we look forward 
to future international cooperation to establish a global 
standard set of soybean differentials in a system for unify-
ing the SMV classification. This will be extremely help-
ful in exploring the physiological effects and geographical 
distribution of SMV strains around the world, as well as 

Fig. 4   Sliding-window analysis 
of Pi values for each gene of 
SMV strains/isolates. Pi values 
were calculated using DnaSP 
5.0 and are shown in a sliding 
window of 100 bp with a step 
size of 25 bp. The SMV genome 
is shown to scale above the 
graph. SMV, soybean mosaic 
virus
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conveniently making use of the elite SMV-resistant soybean 
germplasm resources across borders.

HC-Pro has been shown to be strongly associated with 
symptomatology in several plant-potyvirus systems. Atreya 
et al. [3] provided evidence that amino acid substitutions 
within the N-terminus of HC-Pro of tobacco vein mottling 
virus (TVMV) affected helper component activity, virus 
accumulation, and symptom expression in infected tobacco 
plants, especially the mutation K307E, which not only com-
pletely abolished aphid transmissibility but also noticeably 
affected TVMV virulence. Replacement of two-thirds of the 
TVMV HC-Pro with that from another potyvirus attenuated 
symptoms and reduced virus accumulation on Nicotiana 
benthamiana, suggesting that HC-Pro may have universal 
importance in regulating potyvirus virulence [2]. Introduc-
tion of several mutations into HC-Pro of tobacco etch virus 
decreased virus accumulation and symptom development 
in tobacco plants [13]. Fragments were exchanged and site-
directed mutagenesis was conducted in HC-Pro of zucchini 
yellow mosaic virus, and a unique mutation (R180I) in the 
highly conserved motif (from FRNK to FINK) dramatically 
decreased symptom severity in various cucurbit species, 
including squash, cucumber, melon, and watermelon, by 
directly influencing the levels and regulatory functions of 
microRNA populations [20, 58]. Genome sequence analysis 
of the progeny virus of SMV strain G7H implied that a sin-
gle amino acid mutation (P359S) in HC-Pro led to changes in 
symptoms in soybean cv. Jinpumkong-2 [56]. Similar results 
were obtained in the current study, and based on the symp-
tom severity, viral accumulation, and the available data in 
NSRUT, SMV strain N3 was shown to be more virulent than 
strain N1 (Fig. 1, Table 2, and Supplementary Table S1). 
Whole-genome sequencing showed that only three nucleo-
tides (two in HC-Pro and one in CI) differed between N1 
and N3, with only a single amino acid difference (N436S) 
in HC-Pro between N1 and N3. The other two nucleotide 
differences were synonymous substitutions (Table 3, Sup-
plementary Figs. S3 and S4), indicating that the difference 
in virulence between N1 and N3 was very likely determined 
by the variation in HC-Pro. In combination, these results 
convince us that HC-Pro acts as a determinant of symptoms 
and virulence in the SMV-soybean pathosystem.

Soybean, which has a 5000-year history of cultivation, 
originated and was domesticated in ancient China and was 
disseminated early to North, East, and South Asia, and after-
wards from Northeast China to Europe and the Americas 
after the year 1700 [32, 33, 45, 59]. The origin of SMV 
has been supposed to correspond to that of soybean, namely 
in South and East Asia, particularly in China [25, 26, 68]. 
In this study, China was found to have several different 
SMV pathotypes, displaying the highest level of genetic 
diversity, while the number of pathotypes was limited in 
the other countries (Table 5, Supplementary Table S3, and Ta
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Fig. 2), implying that SMV might have originated in China. 
Moreover, we presume that the dissemination of soybean 
has facilitated the spread of SMV across continents via 
seed-transmission, as soybean is the natural host of SMV. 
The present study showed that the N3 type is the most com-
mon and widespread worldwide (Table 5, Supplementary 
Table S3, and Fig. 2), suggesting that the enhanced virulence 
of N3 (Fig. 1 and Table 2) derived from the genetic varia-
tion in HC-Pro (Table 3, Supplementary Figs. S3 and S4) 
facilitated its spread and increased its adaptability in diverse 
geographical and ecological regions worldwide.

As no uniform system for SMV strain classification is 
available worldwide, genome sequencing is the most effec-
tive approach for exchanging information about the multi-
tudinous SMV strains/isolates [66, 68]. Therefore, the com-
plete sequences of N1 and N3 obtained in this study will 
complement the current sequence information of SMV. The 
results from the sequence analysis could broaden and enrich 
our knowledge about the molecular variability, geographi-
cal distribution, phylogenetic relationships, and evolution-
ary history of SMV. Besides, directional selection pressure 
created by the widespread application of SMV-resistant 
soybean cultivars has given rise to the frequent occurrence 
of resistance-breaking SMV strains/isolates [9, 18, 50]. Fur-
thermore, interspecific genetic exchanges between SMV and 
other potyviruses have been continually detected. Chen et al. 
[4] isolated an SMV-like virus from Pinellia ternate, which 
was shown to result from recombination between SMV 
and dasheen mosaic virus. An SMV strain that probably 
originated from the recombination between SMV and bean 
common mosaic virus (BCMV) or a BCMV-like virus is 
prevalent in soybean-growing areas of China [5, 64, 65, 67, 
68]. Jiang et al. [35] reported that an SMV isolate that was 
formed by the recombination between SMV and watermelon 
mosaic virus could cause different diseases in soybean and 
N. benthamiana plants. These observations emphasize the 
potential risk in soybean productions and the vital role of 
genome sequencing in enabling us to discover resistance-
breaking and recombinant SMV variants, providing an effi-
cient strategy for monitoring and prevention of SMV.
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