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Abstract
The recent introduction of Zika virus (ZIKV), the recurrence of dengue virus (DENV), and the lethality of yellow fever virus 
(YFV) have had a significant impact on Brazilian society and public health. Here, we targeted two cellular kinases implicated 
in cell proliferation and cancer that are also important for viral replication: mitogen-activated protein kinase kinase (MEK) 
and Src. We used two MEK inhibitors – trametinib and selumetinib – and two Src inhibitors – saracatinib and bosutinib – 
to inhibit ZIKV, DENV, and YFV replication in cell culture. The cytotoxicity of the four inhibitors was determined by the 
observation of abnormal morphology and quantification of adherent cells by crystal violet staining. The antiviral activity of 
these drugs was assessed based on the reduction of plaque-forming units in cell culture as evidence of the inhibition of the 
replication of the selected flaviviruses. All four inhibitors showed antiviral activity, but among them, trametinib was the safest 
and most efficacious against all of the viruses, inhibiting the replication of ZIKV and YFV by 1000-fold, and DENV2/3 by 
nearly 100-fold. This pan-antiviral effect shows that trametinib could be repurposed for the treatment of flaviviral infections.

From 2014 to 2018, the incidence of flavivirus infections 
increased in Brazil. Suspected cases of dengue fever were 
estimated at >4.2 million, Zika fever cases were estimated at 
>241,000, and yellow fever cases were estimated at >10,000 
(Supplementary Table 1, Supplementary Fig. 1) [1–9]. Zika 
virus (ZIKV) infection has been associated with congenital 
defects in fetuses and newborn children [10], and no specific 

treatment has been developed to date. Antiviral compounds 
that target cellular pathways are less likely to select resistant 
strains than those targeting the virus, and they can poten-
tially affect all viruses that use the same pathway. Mitogen-
activated protein kinase kinase (MEK) and Src are cellular 
kinases that participate in cell proliferation, development, 
differentiation, and survival [11], and they are also important 
for the replication of several viruses [12, 13]. Using high-
throughput screening assays, the MEK1/2 inhibitor U0126 
[14] and the Src inhibitors dasatinib and saracatinib [15] 
have been identified as potential anti-dengue compounds. 
They were originally designed for the treatment of cancer 
but have since been shown to inhibit viruses of other fami-
lies. Our team has already shown that phosphorylation of 
the extracellular signal-regulated kinase (ERK) by MEK is 
induced by dengue virus (DENV) and yellow fever virus 
(YFV) infection and that it is important for viral replica-
tion and assembly in cell culture and mouse models [16, 
17]. Therefore, we decided to test the antiviral activity of 
MEK1/2 inhibitors that are currently undergoing clinical 
trials for cancer – selumetinib and trametinib – and the Src 
inhibitors saracatinib and bosutinib against Brazilian strains 
of ZIKV and DENV and the YFV vaccine strain.

First, drug toxicity in cell culture was evaluated based 
on cell viability using a crystal violet assay as described 
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previously [18]. Selumetinib, trametinib, saracatinib, and 
bosutinib (purity >99% for all) were purchased from Sell-
eckchem (Houston, TX, USA), resuspended in dimethyl 
sulfoxide (DMSO) (Merck, USA), and stored at −20 °C. 
BHK-21 and Vero cells were cultured in 96-well plates with 
Dulbecco’s modified Eagle’s medium (DMEM; Cultilab, SP, 
Brazil), supplemented with 5% fetal bovine serum (FBS; 
Cultilab, SP, Brazil) and antibiotics, at 37 °C with 5% CO2. 
They were treated once with increasing concentrations of the 
inhibitors or DMSO as a control, and the medium was main-
tained for 24 or 48 h for the antiviral assays described below. 
Then, the ZIKV Asian strain PE-243, which was isolated 
from a patient with mild symptoms in the city of Recife, Bra-
zil, in 2015 [19], DENV2 PI59 [20], DENV3 MG20 [21], 
and the YFV 17DD vaccine strain [22] were propagated in 
C6/36 cells as described previously [17], and virus pools 
were stored at −80 °C. Infections were carried out in BHK-
21 and Vero cells cultured in 96-well plates with DMEM 
supplemented with 5% FBS and antibiotics and incubated 
at 37 °C with 5% CO2. The virus titer was determined by 
measuring plaque-forming units (PFU/ml) in Vero cells 
overlaid with 1.5% carboxymethylcellulose (CMC; Synth, 
SP, Brazil) in supplemented DMEM and incubated for 4–5 
days. Cells were fixed with 3.7% formaldehyde, and viral 
plaques were visualized with 1% crystal violet solution. All 
experiments were repeated at least three times. The results 
were analyzed and graphics were generated using GraphPad 
Prism 5.0 (GraphPad Software Inc., La Jolla, CA). Compari-
sons between means were analyzed using Student’s t-test, 
considering p < 0.05 significant.

Since our previous findings have already shown the effect 
of selumetinib on DENV [16], we decided to test selu-
metinib on ZIKV using BHK-21 cells, which are permis-
sive to many flaviviruses. BHK-21 cells were treated with 
an increasing twofold series of concentrations of 5–160 μM 

selumetinib or saracatinib or 2.5–80 μM bosutinib for 24 h. 
Light microscopy examination showed no cytotoxic effect 
of selumetinib (40 μM), although a slight change in mor-
phology was observed when cells were incubated with sara-
catinib (20 μM) and bosutinib (5 μM). Quantification of cell 
viability using a crystal violet assay and regression analysis 
to determine the 50% cytotoxic concentration (CC50) showed 
that bosutinib had the highest toxicity (Fig. 1a, Table 1). 
CC50 and cell morphology were used to choose the drug 
concentrations for antiviral assays.

To assess antiviral activity, BHK-21 cells were infected 
with ZIKV PE-243 at an MOI of 0.1 and were incubated for 
1 h to allow virus penetration. The cells were then washed 
and treated with inhibitors for 24 h, after which the superna-
tant was recovered to measure the virus titer by determining 
the number of plaque-forming units. Increasing concentra-
tions of selumetinib (2.5–40 μM), saracatinib (1.2–20 μM), 
and bosutinib (0.3–5 μM) were tested.

All inhibitors reduced the viral titer in a dose-dependent 
manner. The reduction with selumetinib and saracatinib was 
more than 10-fold (p < 0.001), and with bosutinib it was 
more than 100-fold (p < 0.001) when the maximum concen-
trations were compared against controls treated with DMSO 
(Fig. 1b). Regression analysis to determine the 50% effective 
concentration (EC50) showed that bosutinib and selumetinib 
had stronger antiviral activity than the other two compounds 
(Table 1). Because the selectivity index (SI), determined by 
calculating the CC50/EC50 ratio for each inhibitor, showed 
that bosutinib had the lowest margin of safety, we decided 
to exclude it (Table 1).

Recent studies have more commonly used Vero cells than 
BHK-21 cells for ZIKV production, probably because they 
produce slightly higher and more stable viral titers (internal 
report). Therefore, we chose this cell line to test the effect 
of MEK1/2 inhibitors that are currently in clinical trials on 

Fig. 1   Cytotoxicity in BHK-21 cells and antiviral activity of selu-
metinib, saracatinib, and bosutinib against ZIKV. a) BHK-21 cells 
were treated for 24 h with either DMSO or increasing concentrations 
of selumetinib, saracatinib, or bosutinib. Cell viability was quantified 
by crystal violet assay and represented as a percentage of the control 
and adjusted to a non-linear regression. CC50: 50% cytotoxic concen-

tration. b) BHK-21 cells were infected with ZIKV PE-243 at an MOI 
of 0.1 and treated for 24 h with DMSO or increasing concentrations 
of selumetinib, saracatinib, or bosutinib. Viral titers were determined 
by plaque assay (PFU/ml). The results are the average of three experi-
ments where *p < 0.05, **p < 0.01, and ***p < 0.001 when com-
pared to controls using a two-tailed Student’s t-test.
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ZIKV and other flaviviruses. Vero cells were treated with 
increasing twofold concentrations of 5–160 μM selumetinib 
or trametinib or 2.5–80 μM saracatinib for 24 or 48 h. Light 
microscopy examination of the cells treated for 24 or 48 h 
with selumetinib (40 μM) showed no changes. Saracatinib 
(20 μM) treatment resulted in slight changes in cell morphol-
ogy, while trametinib (20 μM) treatment resulted in some 
punctual cell agglomeration. The CC50 values after 48 h of 
treatment indicated that saracatinib had the highest toxicity 
(Fig. 2a, Table 1). Vero cells were more tolerant to MEK 
inhibitors and more sensitive to the Src inhibitor when com-
pared with BHK-21 cells. For antiviral assays, Vero cells 
were infected with ZIKV PE-243 at an MOI of 0.1 and incu-
bated for 1 h to allow virus penetration. Then, the cells were 
washed and treated with inhibitors for 24 h with non-toxic 
concentrations (5–40 μM), after which the supernatant was 
recovered to measure the virus titer by determining the num-
ber of plaque-forming units. Treatment showed a 1000-fold 
reduction in viral titer with selumetinib (40 μM, p < 0.001) 
or trametinib (20 μM, p < 0.001), whereas saracatinib treat-
ment (20 μM, p < 0.001) yielded only a 10-fold reduction 
(Fig. 2b).

Selumetinib (40 μM) and trametinib (20 μM) also 
reduced the viral titer of DENV2 PI59, DENV3 MG20, 
and the YFV 17DD vaccine strain (p < 0.01; Fig. 2c and 
d, Table 1). DENVs were tested at 48 h because of their 
longer replication cycle seen in viral replication curves 
(data not shown). Analysis of EC50 and SI values showed 
that trametinib had the highest antiviral efficacy and safety 
margins against the four flaviviruses (Table 1). Trametinib 
(20 μM) was also effective against the ZIKV African strain 

MR766 (10-fold reduction, p < 0.001), although this strain 
originally obtained from a rhesus monkey was more adapted 
to culture and should be thoroughly evaluated. Finally, no 
nonspecific virucidal effect was observed when viruses were 
pre-incubated with each inhibitor (data not shown).

In conclusion, we have shown a pan-antiviral effect of two 
MEK inhibitors, selumetinib and trametinib, against ZIKV, 
DENV2, DENV3, and YFV. This supports the importance 
of the MEK/ERK pathway for flavivirus replication. This 
is also the first report of the treatment of ZIKV with MEK 
inhibitors in vitro. Trametinib had the most promising effi-
cacy and safety margin and has already been reported to 
affect other viruses by impairing functions related to ERK 
phosphorylation. Specifically, trametinib decreases phos-
pho-ERK2 incorporation into HIV virions, which impairs 
uncoating and infectivity [23] and reduces replication of 
different influenza subtypes by blocking ERK-dependent 
nuclear export of viral ribonucleoproteins [24]. U0126, 
another MEK inhibitor, has also been reported to affect the 
infectivity of the hepatitis C virus and DENV particles due 
to reduced phospholipase activity [25]. ZIKV was inhibited 
by PHA-690509, a cyclin-dependent kinase inhibitor, which 
blocks the cell in the G0/G1 phase [26]. Likewise, trametinib 
also blocks cells is this stage [27]. These cellular mecha-
nisms affected by MEK inhibitors may be the link between 
the MEK/ERK pathway and the flaviviral replication cycle. 
Future studies to identify them should focus on the specific 
cellular partners involved. Also, a recent study has suggested 
that selumetinib may be used in the treatment of COVID-
19, as well as other MEK inhibitors with the potential to 
control the pathogenic pathways associated to SARS-CoV-2 

Table 1   Cytotoxicity and antiviral activity of MEK and Src inhibitors

CC50, 50% cytotoxic concentration; EC50, 50% effective concentration; SI, selectivity index

BHK-21 cells (μM)

Selumetinib Saracatinib Bosutinib

CC50 24 hours (μM) 81.22 97.70 7.48
EC50 ZIKV PE-243 (μM) 5.19 9.48 1.48
SI (CC50/EC50 ratio) 15.65 10.31 5.05

Vero cells (μM)

Selumetinib Trametinib Saracatinib

CC50 48 hours (μM) 177.50 173.70 16.53
EC50 ZIKV PE-243 (μM) 11.67 3.03 4.75
SI (CC50/EC50 ratio) 15.21 57.33 3.48
EC50 DENV2 PI59 (μM) 7.82 2.46 -
SI (CC50/EC50 ratio) 22.70 70.61 -
EC50 DENV3 MG20 (μM) 31.80 6.33 -
SI (CC50/EC50 ratio) 5.58 27.44 -
EC50 YFV 17DD (μM) 27.91 7.91 -
SI (CC50/EC50 ratio) 6.36 21.96 -
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[28]. Currently, there is no specific therapy or vaccine to 
treat ZIKV or DENV infections, and since trametinib has 
already been approved by the FDA (Mekinist) for melanoma 
treatment [29], it could be repurposed as a candidate for the 
treatment of flaviviral infection.

Supplementary Information  The online version contains supplemen-
tary material available at https​://doi.org/10.1007/s0070​5-021-05021​-1.
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