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Abstract
Tetracyclines have been used to treat many bacterial infections. The use of these antibiotics for the treatment of viral diseases 
dates to the 1960s to 1970s. Over the decades, the effect of tetracyclines on the pathogenesis of viral infections has been 
demonstrated both clinically and experimentally. Tetracyclines can act on viral infections either through their antibacterial 
properties or through direct antiviral action. This review focuses on clinical and experimental data that support the use of 
tetracycline in treating viral infections and highlights an important approach to slowing disease progression during viral 
infections. Tetracycline treatment might represent a strategy for eliminating the infection or inhibiting the progression of 
COVID-19.

Introduction

Tetracyclines are broad-spectrum antibiotics [1] that are syn-
thesized by modifying natural tetracycline to form several 
new compounds. Among these compounds, called semi-syn-
thetic tetracyclines, are doxycycline (Dox) and minocycline 
(Min). Minocycline (a second-generation tetracycline) acts 
on Gram-negative and Gram-positive bacteria and is used 
to treat various types of infections (respiratory tract, skin, 
urethritis, gonorrhea, anthrax, meningococcal infections, 
and chlamydial infections) [2, 3]. The size of minocycline 
(495 Da) and its lipophilic nature allow it to cross the blood-
brain barrier more easily than doxycycline and other tetra-
cyclines [4, 5]. Therefore, it has been used to treat various 
neurological disorders [6–9]. Doxycycline also has a wide 
range of antimicrobial [10, 11] and anti-inflammatory [12, 

13] properties and is used to treat a variety of infections 
(anthrax, chlamydial infections, pneumonia, Lyme disease, 
cholera, syphilis, and others) [14]. The use of tetracyclines 
as antiviral agents dates to the 1960s and 1970s, and over the 
decades, they have shown an antiviral effect both experimen-
tally and clinically. The aim of this review was to report on 
the different antiviral effects of tetracyclines and to highlight 
their possible beneficial effect on the treatment of COVID-
19. In this regard, a literature review was performed. Pub-
lished studies were identified through citation chasing, a 
search of PubMed and Google Scholar using the systematic 
review methods filter, and the authors’ topical knowledge.

Effects and properties of tetracyclines

Tetracyclines act through their binding to the bacterial 
ribosome at high- and low-affinity sites (30S and 50S) and 
blocking protein synthesis [15, 16]. Allosteric binding of 
tetracyclines to the ribosome inhibits the binding of ami-
noacyl-tRNAs at the acceptor site, thus inhibiting protein 
synthesis [17].

Tetracyclines have other properties besides their anti-
bacterial activity. These antibiotics can inhibit metallopro-
teinase (MMP) endopeptidases, which are zinc-dependent 
enzymes that are important in several physiological and 
pathological processes, including embryogenesis, tissue 
remodeling, inflammation, and the metastatic action of 
tumors [18–20]. The mechanism of action of tetracyclines 
on MMP is not known; however, it has been suggested that 
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they have a direct action on metalloproteinase, preventing 
its expression [21].

Tetracyclines also can act on reactive oxygen species 
(ROS). The increase in ROS induces oxidative stress dur-
ing pathological conditions that can lead to the destruction 
or dysfunction of various cellular components. Reactive 
oxygen species are formed by the superoxide anion  (O2–), 
the hydroxyl radical  (OH–), the non-free-radical hydrogen 
peroxide  (H2O2), hypochlorite (HOCl), and peroxynitrite 
 (ONOO–) [22]. Dox, Min, and other tetracyclines have a 
phenolic ring, which can bind to these radicals and eliminate 
them, leaving a stable, non-reactive phenolic radical [23].

Tetracyclines also have antiapoptotic effects. Caspases 
are a family of cysteine proteases that activate the apoptosis 
cascade. After activation of initiator caspases, downstream 
executioner caspase activation takes place, leading to cel-
lular destruction (apoptosis). Activation of caspases can 
occur either by external stimulation (death receptor) or by 
internal stimulation (mitochondrial). Ligands such as TNF-α 
and Fas, after interaction with cell surface receptor, induce 
a signal transduction cascade leading to caspase-8 activa-
tion, which activates caspase-3. In the intrinsic pathway, 
the mitochondria are stimulated by internal and external 
stimuli leading to mitochondrial alterations and resulting 
in the release of pro-apoptotic factors. These mitochondrial 
alterations are represented by increased mitochondrial per-
meability with water influx, inducing mitochondrial swelling 
and outflow of pro-apoptotic factors such as cytochrome C, 
Smac/DIABLO, and apoptosis-inducing factor (AIF). These 
factors activate caspase-9 (cytochrome C), inhibit caspase 
inhibitors (Smac/DIABLO), and induce DNA fragmentation 
(AIF). The induction of apoptosis by mitochondria is regu-
lated by pro-apoptotic (Bax, Bad, Bid) and anti-apoptotic 
(Bcl-2, Bcl-xL) proteins. In these ways, the sequential acti-
vation of caspases induces apoptosis [24–26]. Due to their 

antiapoptotic action, both Min and Dox have a protective 
role in various neurological disorders. This neuroprotection 
is related to a reduction in the expression of caspase-1 and/
or caspase-3 [27–30]. Min also acts by inhibiting the mito-
chondrial release of cytochrome C, Smac/DIABLO, and AIF 
in cell culture and in a mouse model of Huntington’s disease 
[31]. In this regard, the anti-apoptotic capacity of Min and 
Dox is demonstrated by their ability to inhibit caspases and 
induce mitochondrial stabilization [21] (Fig. 1).

Another property of tetracyclines is their potential anti-
inflammatory capability. Tetracyclines can be anti-proteo-
lytic agents and ROS inhibitors and are therefore likely to 
exert an anti-inflammatory effect. Tetracyclines are asso-
ciated with inhibition of pro-inflammatory cytokines, and 
MMP and ROS levels, and both Min and Dox can inhibit 
enzymes such as pancreatic and non-pancreatic phospholi-
pase A2, which are involved in inflammatory processes [32]. 
Leukocyte migration is critical for inflammatory processes 
to occur. Tetracyclines can inhibit neutrophil migration 
[33], as well as leukocyte adhesion [34] and lymphocyte 
proliferation [35]. Many of the anti-inflammatory effects of 
tetracyclines are related to their ability to inhibit the func-
tions of the NF-κB transcription factor. In this regard, Min 
and Dox inhibit IκBα (IKK) activation, IκBα phosphoryla-
tion and degradation and p65 and nuclear translocation of 
NF-κB [36, 37]. However, other pathways, such as the p38 
and ERK1/2/MAPK pathways, can be modulated by the anti-
inflammatory effects of Min and Dox [37] (Fig. 2).

Tetracyclines as antiviral agents

The study of tetracyclines as antiviral agents opens an inter-
esting field in microbiological therapy. The first available 
report on the antiviral activity of tetracycline came when 

Fig. 1  Anti-apoptotic properties 
of minocycline (Min), which 
has the potential to suppress 
apoptotic signals in cells. By 
acting on the extrinsic pathway 
of apoptosis activation, Min 
can inhibit the activation of 
caspase-7, a caspase with 
pro-apoptotic activity. In the 
intrinsic pathway of apoptosis 
activation, Min can inhibit 
oligomerization of pro-apop-
totic mitochondrial proteins 
(Bax/Bak) and the export of 
cytochrome C and Smac/Diablo, 
blocking activation of caspase 
9 and its effect on caspase 
3activation. Min also blocks the 
apoptotic effect of caspase 3
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Negrette et al. reported, between 1960 and 1970, that tetra-
cyclines provide protection against several viruses. In this 
regard, clinical experience demonstrated the beneficial role 
of tetracycline in epidemics of Venezuelan equine encepha-
litis (VEE) virus and infectious mononucleosis (Maracaibo, 
Venezuela), as well as in other viral conditions [38–44]. Tet-
racyclines also showed a high protective effect in mice and 
chicken embryos infected by VEE virus [45, 46]. These find-
ings were reported at a time when the use of antibiotics for 
the treatment of viral diseases was unknown.

In recent decades, Min and Dox and other tetracycline 
compounds have been extensively studied for their antivi-
ral activity. Lemaitre et al [47] reported that Min and Dox 
had a protective effect against the human immunodeficiency 
virus (HIV) by preventing the cytopathic effects of the virus 
on human lymphoblastic T cells. Other studies showed that 
inhibition of the microglia by Min in cell culture reduced the 
production of HIV by those cells [48]. In a simian immu-
nodeficiency virus (SIV) model, Min reduced the severity 
of encephalitis, brain viral load, and expression of brain 
inflammatory markers. In addition, Min inhibited SIV rep-
lication in vitro [49]. These protective effects were mediated 
by suppression of p38MAPK and JNK levels in the brain, 
which inhibit the kinase-regulated apoptosis signal (ASK1) 
[50]. In addition, Min has affinity for HIV-1 integrase [51], 
inhibiting the integration of viral DNA into the host genome.

Min is also effective against flavivirus infections. This 
antibiotic inhibited West Nile virus (WNV) replication in 
cultured human neural cells, preventing virus-induced apop-
tosis [52]. In experimental infection with Japanese encepha-
litis virus (JEV) in mice, Min reduced neuronal apoptosis, 
microglial activation, caspase activation, production of brain 

proinflammatory mediators, and viral replication [53]. Mac-
rophage migration inhibitory factor (MIF) facilitates dengue 
virus replication by inducing autophagy. Treatment with Min 
decreased the viral load, MIF secretion, and autophagy, and 
increased survival in dengue-virus-infected mice [54]. In 
other studies, Min was shown to induce the expression of 
genes associated with anti-inflammatory activation (M2) 
in the microglia while it inhibited the expression of genes 
associated with pro-inflammatory activation (M1) in WNV-
infected mice, reducing cytotoxicity in response to WNV 
[55]. Min also confers protection against alphavirus infec-
tion in animal models by inhibiting microglial activation 
and decreasing production of interleukin-1-beta in the cen-
tral nervous system [56]. In VEE virus-infected mice, Min 
decreased viral replication, nitric oxide production, and lipid 
peroxidation in the brain and in cultures of virus-infected 
neuroblastoma [57]. Min reduced the cytopathic effect medi-
ated by respiratory syncytial virus and prevented infection 
by this virus [58]. Min is an antiviral agent in mice infected 
by enterovirus 71, reducing the expression of cytokines and 
viral replication. In addition, Min reduced the cytopathic 
effect in THP-1 cell cultures infected with enterovirus 71 
[59]. Crimean-Congo hemorrhagic fever virus is a member 
of a family of hemorrhagic fever viruses, and its nucleopro-
tein is a key protein in virus replication. Min and Dox can 
inhibit this protein, slowing viral replication [60].

Dox has also shown antiviral activity. Recent studies have 
demonstrated the importance of the p53 protein in the host 
antiviral response against several viruses, including vesicu-
lar stomatitis virus (VSV) [61] and influenza virus [62]. The 
ability of Dox to induce p53 probably extends the antiviral 
effect of this antibiotic. In this regard, the inhibition of p53 

Fig. 2  Effect of tetracyclines 
on the NF-κB transcription 
factor pathway. Minocycline 
(Min) and doxycycline (Dox) 
are capable of inhibiting the 
NF-κB pathway, acting on 
different points of this activa-
tion by inhibiting IκBα (IKK) 
activation, IκBα phosphoryla-
tion, degradation and p65, and 
nuclear translocation of NF-κB, 
leading to a decreased pro-
inflammatory immune response
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expression by JEV in H1299 cell cultures was inhibited by 
Dox [63, 64]. Dox also inhibited the cytopathic effect and 
viral replication in H1299 cell cultures infected by VSV 
[64]. This antibiotic significantly reduced the cytopathic 
effect and viral replication in Marc-145 cells infected by 
swine respiratory syndrome virus [65]. Dox also reduced the 
severity of acute lung injury in mice infected with influenza 
H3N2 virus [66]. The antiviral effect of Dox against flavi-
viruses has also been reported. In vitro studies have shown 
that Dox prevents the entry and replication of chikungunya 
virus in Vero cell cultures [67]. Dox also inhibited the serine 
protease of dengue virus (DENV NS2B-NS3pro), inhibiting 
the entry and replication of four dengue serotypes (DENV2, 
DENV4, DENV1 and DENV3) in Vero cell cultures [68, 
69]. In addition to this mechanism, Dox, through its tetra-
cyclic rings, can alter the conformation of the dengue virus 
envelope protein and block the entry of this virus into the 
cells [70] (Fig. 3).

Viral resistance to tetracycline could be a problem in tet-
racycline treatment. Antibiotic resistance occurs when germs 
like bacteria and fungi develop the ability to defeat the drugs 
designed to kill them. Tetracycline resistance is widespread 
among Gram-positive and Gram-negative bacteria and can 
be the result of pumping the drug out of the cell before it 
reaches its site of action (efflux), protection of the ribosomal 

binding site, which decreases drug binding, or changes in the 
permeability of the cell envelope that reduce drug uptake 
[71]. Viruses are not living particles; they need host cells to 
replicate. The antiviral effect of tetracyclines is indirect and 
involves several mechanisms that the viruses use to enter and 
replicate cells. The blockage of protein synthesis in the cell 
by tetracyclines might inhibit virion formation. Thus, it is 
unlikely that the mechanisms of antibiotic resistance used by 
viruses will be similar to those used by bacteria is unlikely.

COVID‑19 and tetracyclines

A new severe acute respiratory syndrome coronavirus 
(SARS-CoV-2) causing coronavirus disease 2019 (COVID-
19) emerged in Wuhan, China, in December 2019 [1]. Cur-
rently there is a race against time to identify therapeutic 
treatments for COVID-19. SARS-CoV-2 is a new emerg-
ing zoonotic coronavirus belonging to the same viral family 
as the viruses that cause SARS (severe acute respiratory 
syndrome) and MERS (Middle East respiratory syndrome). 
Tetracyclines (e.g., tetracycline, halogenated tetracyclines, 
doxycycline, and minocycline) are highly lipophilic antibiot-
ics that are known to chelate zinc compounds on matrix met-
alloproteinases (MMPs). Several functions of coronavirus 
are associated with the host MMPs complex, including rep-
lication [72, 73]. Therefore, the zinc-chelating properties of 
tetracyclines may also aid in inhibiting SARS-CoV-2 infec-
tions in humans, limiting their ability to replicate within the 
host. Tetracyclines might also be able to inhibit RNA repli-
cation of positive-sense single-stranded RNA viruses [69], 
like SARS-CoV-2, and they can downregulate the NF-κB 
pathway, decreasing the levels of inflammatory cytokines 
such as TNF‐α, IL‐1β, and IL‐6 induced by SARS-CoV-2. 
In addition, tetracyclines stand out as potential inhibitors 
of the main protease of SARS-CoV-2 [74] (Fig. 4). In this 
context, various investigators have suggested the use of tet-
racyclines as potential therapeutic agents for the treatment 
of COVID-19 [74–76].

The effect of tetracyclines on apoptosis in relation to their 
antiviral activity may be controversial in the context the 
virus type and the stage of cellular infection. As described 
above, tetracyclines can inhibit apoptosis but they can also 
induce apoptosis [77, 78]. A interesting point regarding 

Fig. 3  Effect of tetracyclines on viral pathogenesis. Tetracyclines can 
affect the viral life cycle by indirect and direct mechanisms. Indirect 
effects are based on anti-apoptotic, anti-metalloproteinase (MMPs), 
anti-oxidative stress, and anti-inflammatory properties of these com-
pounds. Different mechanisms of antiviral activity of tetracyclines 
have been reported. Overall, the properties of tetracycline by acting 
on viral pathogenesis leads to decreased entry of the virus into the 
host cell, decreasing its replication and cellular damage. MIF, mac-
rophage inhibitory factor

Fig. 4  Potential effects of 
tetracyclines on SARS-CoV-2. 
Several properties of tetracy-
clines can potentially decrease 
the ability of SARS-CoV-2 to 
enter and reproduce in the cell
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apoptosis is that a cell invaded by a virus needs to be elim-
inated by the organism as an infected cell, using various 
mechanisms, including the antiviral immune response [79], 
but the virus requires a living cell for reproduction, and in 
the late period of infection can use apoptosis as a means of 
breaking the cell and increasing the spread of the virus [79]. 
Therefore, the antiviral effect of tetracyclines on apoptosis 
may be related to the spread of infection. When tetracyclines 
induce apoptosis [77, 78], they can favor the dissemination 
of the virus, but at the same time decrease its replication, 
but when tetracyclines block apoptosis [27–31], they can 
decrease spread of the virus. It has been reported that SARS-
CoV-2 induces apoptosis in infected cells [80], and the effect 
on this process of tetracycline remains unknown.

Although several studies have shown that tetracyclines 
have antiviral and anti-inflammatory effects, all of them have 
been in vitro studies using experimental models. There are 
still no final results of clinical studies demonstrating the 
efficacy of these antibiotics for treatment of patients with 
COVID-19. There has been only one phase 2 study in which 
doxycycline was used together with ivermectin for the treat-
ment of COVID-19 patients [81]. However, the potential of 
tetracyclines as an antiviral drug is high and requires further 
clinical studies. It is important to develop antiviral treat-
ments for COVID-19 that can be administered early in infec-
tion in order to avoid the organ damage caused by the virus 
and allow the patient to produce a strong immune response 
against the virus. Therapeutic interventions in patients with 
severe organ damage caused by the virus or by an excessive 
immune response may have little effect on eliminating the 
virus or the recovery of the patient when antiviral strategies 
are given at later times.

Conclusion

Experimental studies have shown that the antiviral effects 
of tetracyclines are based on their anti-apoptotic and anti-
inflammatory activities and on direct effect on viral biol-
ogy, leading to inhibition of viral entry and viral replication. 
These studies highlight an important and fruitful approach 
in antiviral drug research. The early use of tetracyclines in 
COVID-19 could have a beneficial effect, preventing the 
viral infection from progressing to more serious stages that 
can lead to death in individuals infected with SARS-CoV-2.
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