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Abstract
Foot-and-mouth disease (FMD) is a major worldwide viral disease in animals, affecting the national and international trade 
of livestock and animal products and leading to high economic losses and social consequences. Effective control measures 
of FMD involve prevention through vaccination with inactivated vaccines. These inactivated vaccines, unfortunately, require 
short-term protection and cold-chain and high-containment facilities. Major advances and pursuit of hot topics in vaccinology 
and vectorology are ongoing, involving peptide vaccines, DNA vaccines, live vector vaccines, and novel attenuated vaccines. 
DIVA capability and marker vaccines are very important in differentiating infected animals from vaccinated animals. This 
review focuses on updating the research progress of these novel vaccines, summarizing their merits and including ideas for 
improvement.

Highlights

• Shortcomings of current vaccination strategies
• Promising novel vaccines for FMD eradication
• Reverse genetics and new molecular technologies leading to vaccine improvement
• Marker vaccines and FMD control policy
• Immunoregulatory gene addition and FMD vaccine immunogenicity

Introduction

Foot-and-mouth disease (FMD) is a highly contagious 
transboundary disease of wild and domestic cloven-hoofed 
animals, including cattle, swine, goats, and sheep [2]. Naso-
pharyngeal infection in cattle and oropharyngeal infection in 
swine are the starting points of foot-and-mouth disease virus 
(FMDV) infection, which are subsequently followed by sys-
tematic spread, with typical vesicular lesions in the mouth, 

interdigital cleft, coronary band, udder, teat, and claws [3, 
108]. One of the dangers posed by FMDV is that animals can 
become carriers of the virus [98]. Carrier ruminant animals 
are identified based on analysis of their oro- and nasopharyn-
geal tissues [1, 5, 6, 109, 114, 134]. Despite the isolation 
of FMDV or its RNA from these animals, their role is still 
unclear [98]. Susceptible animals are infected with FMDV 
through direct or indirect contact between animals, or via 
fomites and airborne aerosols [13, 23]. Strict biosecurity 
measures, together with compulsory vaccination, have been 
implemented for eradicating or controlling FMD in Europe 
and some South American and African countries [91]. The 
primary obstacle to FMDV control is the epidemiological 
complexity in the domestic-wild animal interface, including 
maintenance of the virus in these animals. Infection of naïve 
animals can lead to grievous economic and financial losses 
related to elimination and control of infection, as occurred 
in England in 2001 [101].

Handling Editor: Tim Skern.

 * Mohamed Kamel 
 m_salah@staff.cu.edu.eg

1 Faculty of Veterinary Medicine, Department of Medicine 
and Infectious Diseases, Cairo University, Giza, Egypt

2 Laboratory of Mastitis and Molecular Diagnostics, 
Division of Veterinary Sciences, University of Guadalajara, 
Guadalajara, Mexico

http://crossmark.crossref.org/dialog/?doi=10.1007/s00705-019-04216-x&domain=pdf


1502 M. Kamel et al.

1 3

The FMDV RNA genome contains a large open read-
ing frame (ORF) that encodes four proteins that form an 
icosahedral capsid without an envelope that encloses the 
positive-sense RNA genome. The structural proteins VP1, 
VP2, VP3 and VP4 are encoded by the genes 1D, 1B, 1C, 
and 1A, respectively, and the nonstructural proteins (NPs) 
are encoded by the genes 2A, 2B, 2C and 3A, 3B, 3Cpro, 
3Dpol and Lpro [80]. The structural proteins are encoded 
within the FMD polyprotein P1 region, while the P2 and P3 
regions encode the NPs responsible for FMDV maturation 
and replication (Fig. 1). The 5′ and 3′ untranslated regions 
(UTRs) are important for replication and translation of the 
viral genome [25]. FMDV varies antigenically and is found 
as seven serologically and immunologically distinct sero-
types: A, O, C, SATs 1-3, and Asia-1 [118]. Variant strains 
within these serotypes undergo continuous antigenic and 
genomic evolution. Immunization with one serotype, or even 
a different strain of the same serotype, does not necessarily 
provide immunity to another serotype of another strain in the 
same serotype. The distribution of the different serotypes is 
variable and unequal in endemic regions; for instance, there 
are four serotypes in Africa (SAT1-3, A, O, and C), three 
serotypes in South America (A, O, and C), and four sero-
types in Asia (Asia 1, A, O, and C) [118].

Broad species tropism, growth in international trade, 
a high infectivity rate, animal and human movement and 
activity, population growth, multiple modes of transmission, 
wide genetic diversity, a rapid replication rate, excretion of 
virus in large amounts, rapid changes in the environment, 
and extraordinary transmissibility make FMDV difficult and 
complex to harness and keep under control. All of these fac-
tors contribute to rapid re-emergence of FMD. To control the 
disease, several measures have to be considered, including 
eradication or prophylactic vaccination campaigns together 
with strict hygienic measures and control, including restric-
tion policies and biosecurity measures. Various factors affect 
disease outcome and severity, including previous immuni-
zation or infection, species susceptibility, and the inherent 
viral properties of the serotype and its genetic makeup [2, 
111]. The severity of FMD is high in young animals, with 
a higher mortality rate due to myocardium degeneration, 
whereas adult animals generally clear infection within two 

weeks [2, 4]. However, the mortality rate can sometimes be 
low in young animals, especially in an endemic area, due to 
acquired resistance through maternal antibodies.

An ideal vaccine be safe, induce a protective immune 
response in a single-shot vaccination, induce rapid and long-
lasting immunity, have a low cost, and allow differentiation 
between vaccinated and infected animals (Fig. 2). Several 
new types of vaccines, including DNA vaccines, peptide 
vaccines, live-vector vaccines, and others have been devel-
oped to surmount the drawbacks of the inactivated vaccines. 
Each vaccine type has its own advantages and limitations. 
It is crucial for a vaccine to have DIVA (differentiation of 
infected from vaccinated animals) capability when applied 
for eradication strategies, and for it to induce immunity 
rapidly from a single inoculation in cases of emergency 
vaccination. Most of the new vaccines – novel attenuated, 
live-vector, DNA, and peptide – can be produced safely and 
have DIVA capability. All of them are free of risk to the 
vaccinated animals, except DNA vaccines, which have a low 
but finite probability of recombining with other genomes, 
and attenuated vaccines, which have the potential to revert 
to a virulent state. Vaccination strategies and schedules are 
generally dependent on the FMDV strains found in each 
pool. Worldwide globalization, international trade, transient 
populations, and mass animal movements pose a threat to 
regions where some imported strains are not included in the 
vaccine formulation.

Vaccines used to protect against FMD: 
update and future outlook

Inactivated vaccines

Most of the usable commercial vaccines for FMD are inac-
tivated vaccines produced by treatment with binary ethyl-
eneimine (BEI) to eliminate NPs. These vaccines are either 
monovalent, bivalent, or multivalent [40, 90]. They are oil-
emulsion-, aqueous-, or aluminum-based inactivated vac-
cines. After concentration of the FMDV antigen, this kind of 
vaccine can be preserved for a long time in liquid nitrogen. 
The killed vaccine may be conventionally concentrated to 

Fig. 1  Schematic drawing 
showing the genome organiza-
tion and structure of FMDV, 
displaying structural and non-
structural proteins
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the equivalent of three times the 50% protective dose  (PD50), 
or additionally concentrated to the equivalent of six times 
the  PD50, with a higher-potency effect. This highly concen-
trated, high-potency vaccine is mainly used as an emergency 
vaccine in FMD-free countries. Factors such as the antigen 
used, the purpose of its application, and the manufacturer 
are the main determinants of how much antigen is present 
and its concentration [21, 51]. The extremely concentrated 
vaccine protects against challenge within one week. Most 
instructions and guidelines recommend two primary injec-
tions with one month in between, followed by repeated injec-
tions every four to six months for animals up to two years 
old, and then additional boosters repeated yearly [90]. The 
major disadvantages of the presently utilized inactivated 
vaccines include a requirement for a highly controlled labo-
ratory, a biosafety III facility to avoid FMDV release dur-
ing vaccine production, the need to include several different 
serotypes, which may stress the animal’s immune system, 
and the need to be kept cold, as FMDV is a heat-sensitive 
virus [32]. Most of these vaccines, unfortunately, do not 
prevent primary infection and protect only from generaliza-
tion, with a likelihood that more than half of the vaccinated 
animals will become carriers, with only DIVA assays able 
to distinguish vaccinated from diseased animals [32, 110]. 
The modern marker inactivated vaccine is a BEI-inactivated 
avirulent FMDV with several adjuvants. It contains intrinsic 
DIVA NS markers within the Lpro protein and 3AB protein 
[70]. The inactivated FMD vaccine is able to protect mice 
against challenge, and the humoral and cellular immune 
response is improved when vaccination is preceded by injec-
tion of a chemokine CCL20 plasmid as an adjuvant [64].

The immunogenicity of FMD vaccines inactivated using 
binary ethyleneimine is comparable to that of vaccines inac-
tivated using ethyleneimine or N-acetyl ethyleneimine for 

inactivation. On the other hand, binary ethyleneimine in 
FMD vaccine preparation substantially mitigates the pos-
sible hazards related to manipulating pure ethyleneimine and 
other aziridines [8]. Formaldehyde inactivation can also be 
safe [11]. Another inactivation method, using virion-associ-
ated endonuclease, was found to be equivalent or superior to 
those including ethyleneimine or formaldehyde in potency 
tests in guinea pigs [38]. Nonchemical hydrostatic pressure 
(HP) inactivation could be a simple, cheap, safe, and repro-
ducible method of viral vaccine production [60].

Live attenuated vaccines

FMDV is subject to attenuation, either via conventional 
means, by passing through cultured cells, or by novel means, 
utilizing molecular virology techniques to deoptimize or 
delete some genes. BHK-21 cells have been used to prepare 
mouse-attenuated live FMD vaccines for immunization of 
cattle [85]. Some modifications and cloning in BHK-21 cells 
were achieved after that in 1969 [86]. In one study, the live 
attenuated vaccine for FMD was demonstrated to protect 
vaccinated animals from developing lesions, with only one 
exception – one vaccinated animal developed a fever [79].

The new attenuated FMD vaccines are considered to be 
more stable than previous strains. They also have less risk 
of reverting to virulence than traditional ones. Detailed 
investigations for identifying virulence genes are crucial 
for developing better live attenuated vaccines. One of these 
virulence determinants is the viral leader protease, which 
inhibits induction of beta interferon mRNA and blocks the 
innate immunity of the host animal. Deletion of the gene 
for this protease has been shown to render the virus aviru-
lent in swine and cattle. An in-frame shift in this gene also 
leads to its attenuation in cattle. Neither the leaderless nor 

Fig. 2  Features of an ideal FMD 
vaccine
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the in-frame vaccine causes viremia or clinical signs after 
aerosol inhalation, but the leaderless variant becomes less 
disseminated than the in-frame variant. Leaderless mutants 
have also been observed to undergo partial reversion to viru-
lence [22].

Various innovative approaches have been used to attenu-
ate FMDV, including generation of a leaderless virus (LLV), 
deletion of Lpro, which produces a virus that induces a 
strong but inadequate protective antibody response in swine 
and cattle [29, 79], and excision of the conserved SAP 
domain from Lpro, which produces a virus that protects 
swine as early as two days postimmunization against homol-
ogous challenge. Higher induction of interferon-stimulated 
genes (ISGs) in embryonic bovine kidney cell lines affects 
the mRNA level of the antiviral response, and this needs 
more in vivo investigation in cattle [39], utilizing chimeric 
FMDV with bovine rhinitis B virus (BRVB) Lpro, which is 
closely related to the FMDV Lpro [117]. The chimeric virus 
is attenuated in cattle but still shows a low level of virulence 
in pigs and induces strong protective immunity against chal-
lenge with the homologous FMDV strain. Another strategy 
for attenuation of FMDV is codon pair deoptimization [38]. 
These novel strategies achieve virus attenuation while elicit-
ing high neutralizing antibody titers in mice and swine.

DNA vaccines

A DNA vaccine is usually a plasmid containing the target 
sequence of interest (a microbial gene) under the control of 
a promoter for gene expression and induction of an immune 
response. The main features of DNA vaccines are as follows: 
1) They simulate both T and B cells. 2) They are not stressful 
to the immune system of the vaccinated animal. 3) They are 
safe to use due to the lack of infectious agents. 4) They are 
easy to manufacture and produce. 5) They are stable and do 
not require a cold-chain facility. 6) They can include marker 
genes with DIVA capability and can be modified quickly 
to include field strain sequences and can contain multiple 
antigenic sites [68, 97]. The main challenges of DNA vac-
cines are that they require multiple doses with large amounts 
of DNA to trigger their effect. Antibodies induced by DNA 
vaccination have the potential to target the host DNA [92]. 
Another disadvantage is that they are used to produce tar-
get protein antigens, but not lipopolysaccharide antigens. 
After inoculation, plasmid DNA is taken up by the host cells, 
which express the viral proteins, which are then delivered to 
the ER and cleaved by cellular proteases into peptides that 
are later loaded onto MHC I in the ER and presented at the 
cell surface, leading to an immune response [18, 42].

Plasmid DNA vaccines encoding an empty capsid or con-
taining a modified full-length FMDV genome, as well as 
ones expressing small regions, alone or together with immu-
noregulatory genes, have been used experimentally in animal 

models, including swine and cattle [14, 125]. The prominent 
shortcomings facing DNA vaccination are their require-
ment for large amounts of DNA, with several doses needed 
to achieve a protective effect. A protective response was 
induced in swine vaccinated with DNA encoding the FMDV 
capsid protein and the 3D RNA polymerase [26]. A bifunc-
tional DNA vaccine producing antisense RNA directed to 
the FMDV 5′ UTR and expressing the VP1 protein, has been 
developed and shown to induce a rapid inhibitory effect and 
immune response against FMDV infection in mice [128]. 
Guinea pigs vaccinated with pcDNA3.1/P12X3C were fully 
protected against FMDV challenge. However, unsatisfactory 
outcomes were obtained when animals were injected with 
plasmid pcDNA3.1/P12X3C together with protein 3D [55]. 
The plasmid expressing the replicating genome pP12X3C 
on the other hand, provoked a stronger immune response, 
in swine vaccinated by the intramuscular, intradermal, or 
gene gun route but pWRMHX lacking a cell-binding site 
incompletely protected animals from challenge with highly 
virulent FMD [14].

In another study, DNA vaccines expressing B- and T-cell 
epitopes protected mice from FMDV infection despite the 
lack of a specific humoral response upon challenge [19]. 
An advance in these vaccines included expression of both 
B- and T-cell epitopes via some modification. Directing 
antigen-presenting cells (APCs) provided complete protec-
tion against challenge [20]. A DNA vaccine encoding B- and 
T-cell epitopes directed to class II swine leukocyte antigens 
provided protection to FMDV-challenged pigs [20].

Coexpression of Bcl-Xl antiapoptotic proteins with 
FMDV T- and B-cell epitopes led to a great improvement 
in the T cell response, underlining their potential in vaccine 
development [61].

A study using DNA nanoparticle vaccines revealed 
improvement in the immunological parameters and state of 
protection provided by pVAC FMDV VP1–OmpA in guinea 
pigs [87]. Calcium phosphate nanoparticles prepared with 
an FMDV P1-3CD gene construct protected guinea pigs and 
mice against viral challenge [56].

Single plasmids tend to provide stronger immunity than a 
combination with other plasmids. Careful evaluation before 
practical application is needed when using multiple plasmids 
[120]. Changes in ambient temperature also influence DNA 
vaccination in animals. Chronic heat stress (CHS) treatment 
has a negative impact on the immune response to FMDV 
DNA vaccination and significantly impairs the cellular 
immune response [58].

A priming immunization with a replicase-based DNA 
vaccine followed by a protein boost has been used in bovine 
calves for induction of IFN-γ [35]. This is an strategy that 
can clinically protect against FMDV challenge, particu-
larly when a DNA vaccine is combined with GM-CSF and 
delivered by electroporation [46]. Coinjection of Isatis 
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indigotica extract with a DNA vaccine is a beneficial way 
to improve DNA vaccine efficacy. Isatis indigotica extract 
has an adjuvant effect that enhances the immune response 
against viruses [28]. Coexpression with IL-2 in cis was 
shown to enhance the specific immune response and provide 
protection against homologous challenge [131]. Interleukin 
15 enhanced the systemic and mucosal immunity induced 
by the DNA vaccine [121]. Insertion of CpG DNA into a 
DNA vaccine enhances the immune response against FMDV 
in guinea pigs [69]. MTT and 3H-thymidine incorporation 
assays have demonstrated good CMI responses to poly(D,L‐
lactide‐co‐glycolide (PLG) microparticles of adjuvanted 
DNA in guinea pigs using ID-pVAC [62]. Additionally, the 
use of a cationic PLG microparticle to coat the DNA vac-
cine results in a long-term immune response against FMDV 
in guinea pigs [94]. An interleukin-2-enhanced immune 
response is elicited by a DNA vaccine when it is co-admin-
istered in swine [124]. Adjuvantation with PLG consider-
ably boosts the efficacy of an FMD DNA vaccine [30]. A 
Sindbis-virus-derived plasmid (Psincp) did not improve 
the humoral immune response of a DNA vaccine express-
ing FMDV P1-2A3C3D given via intradermal injection 
and achieved higher humoral immunity [43]. The OmpA 
protein has a synergistic effect on the immunogenic FMD 
DNA vaccine construct when administered to guinea pigs 
via mannosylated chitosan nanoparticles by various routes 
[88]. Lactobacillus SFMD-1 has shown promise in mice as 
a carrier in a protective DNA vaccine against FMDV [71]. 
An oral DNA vaccine delivered by attenuated Salmonella 
choleraesuis C500, has been shown to induce cellular and 
humoral immunity against FMDV in rabbits [72].

Based on a large number of experimental tests, some 
cytokines have been identified as effective adjuvants of DNA 
vaccines. Interleukins have a crucial effect on DNA vaccine 
potency and enhance the immune response. For instance, 
IL-6 enhances the cell-mediated immune response  and 
promotes maturation of dendritic cells and their immune 
function [112], IL-9 enhances the antigen-specific cytotoxic 
T lymphocyte response [137], IL-15 enhances mucosal 
and cellular immune responses and IFN- γ production 
induced by FMD DNA vaccines [121], IL-18 increases the 
immunogenicity of vaccines, CSF enhances the immune 
response [78], INF-α/β enhances the cell-mediated immune 
response and promotes maturation of dendritic cells and 
their immune function, INF-γ augments both cellular and 
humoral immune responses [104], and IL-1 and IL-2 pro-
mote antibody responses [102, 131].

Peptide vaccines

Peptide vaccines have many advantages over inactivated 
vaccines, such as relatively low-cost production, stabil-
ity, and producibility on a large scale without the need 

for using infectious FMDV during its manufacture. Most 
peptide subunit vaccines are dependent on carrier proteins, 
such as ovalbumin or bacterial toxoid, conjugated with the 
peptide. These carriers must fulfil the criteria of potency 
and safety as well as being able to be produced easily on 
a large-scale with low production costs.

Peptide vaccines consist of a single linear peptide [7] 
corresponding to the FMDV capsid proteins or containing 
T-cell and/or B-cell epitopes [119]. At first, the peptides 
used corresponded to the C-terminal half of VP1 (resi-
dues 200-213) or to the G-H loop, which contains a B-cell 
epitope (residues 141-160), but these were not sufficiently 
protective in animal challenge experiments and induced 
only a limited T-cell response. A possible explanation of 
the limited protection and immune response is the hyper-
variability of the G-H loop domain [115]. Optimization 
of B and T sites via addition of an artificial T helper site 
and extensive flanking sequences resulted in some protec-
tion in pigs. Complex mixtures of peptides corresponding 
to several antigenic variants are more immunogenic than 
single peptides. A multiple-epitope recombinant vaccine 
provided complete protection against a challenge with the 
FMDV O/China/99 strain in swine, with high levels of 
anti-FMDV-specific antibodies at 30 days postvaccination 
[103]. As humoral immunity often requires conformational 
epitopes with the appropriate 3D structure, employing a 
3D conformational peptide results in complete protec-
tion. Additionally, poly(I:C) addition is crucial for induc-
ing interferon gamma and T cytotoxic cytokines [24]. A 
dendrimer strategy using one set of FMDV T-cell epitope 
branched out into four sets of B-cell epitope in a radi-
ally branched macromolecule shape has been shown to 
result in complete protection in swine and cattle [17, 34]. 
A commercial FMD synthetic-peptide vaccine for the pre-
vention of pig FMD (the  UBITh® vaccine) was generated 
by United Biomedical, Inc. (UBI) and licensed for use in 
Taiwan and mainland China (www.unite dbiom edica l com). 
A multiepitope chimeric recombinant protein containing 
five tandem repeats of a B-cell epitope (VP1 residues 136-
162) derived from different FMDV variants and one T-cell 
epitope (3A residues 21-35) called “5BT” has been dem-
onstrated to elicit antibodies in mice [67].

Dendrimer peptides B4T and B2T evoked specific 
humoral immune responses and partially protected against 
the challenge with a heterologous strain in cattle [106]. B4T 
and B2T peptides elicited similarly robust T cell responses, 
and all animals showed high levels of IgG1 in the serum and 
mucosa; 40% of the animals in the B4T group and 20% in 
the B2T group produced IgA antibodies.

A conformational neutralizing epitope on the VP1 pro-
tein of type A FMDV, 135YxxPxxxxxGDLG147, has been 
identified [74, 105] and used for epitope-based vaccines with 
suitable companion MAb-based diagnostic assays [73].

http://www.unitedbiomedical
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Live viral vector vaccines

Delivery of immunogenic viral structural proteins can be 
achieved easily using viral vectors to provoke a cell-medi-
ated and humoral immune response through their expression 
in vector-infected cells. These viral vectors, which act as a 
vehicle for the sequence of interest, include vaccinia virus, 
fowlpox virus, pseudorabies virus, alphaviruses, replica-
tion-defective human adenovirus virus, and Semliki Forest 
virus. A recombinant Sendai virus containing the P1 gene of 
FMDV triggered a high level of specific humoral and cellu-
lar immunity in vaccinated mice [130]. Another recombinant 
virus expressing FMDV epitopes that has been used as a 
viral vector to induce protective immunity in swine is bam-
boo mosaic virus [129]. Vaccination with recombinant infec-
tious bovine rhinotracheitis virus (IBRV) expressing FMDV 
epitopes induced protective levels of anti-FMDV humoral 
antibodies in calves and protected them from challenge 
with virulent IBRV [66]. A bovine enterovirus expressing 
an FMDV epitope was also generated, but was not tested in 
a challenge experiment [31]. In a rabbit model, a recombi-
nant bovine herpesvirus-1 displaying the FMDV VP1 gene 
induced a high level of neutralizing antibodies [95].

The recombinant PRV-FMD VP1 virus under the control 
of a gG promoter was not able to induce protective immu-
nity in swine to viral challenge but was able to mitigate the 
clinical symptoms of infection [93]. In another study, a triva-
lent recombinant pseudorabies virus (PRV) against porcine 
parvovirus and FMDV was constructed and evaluated. It 
was able to protect against PRV challenge in mice, and its 
protective antibodies were measured by serum neutralization 
test (SNT) and indirect ELISA [57].

Another type of live viral vector used for protection 
against FMD are the adenoviruses, including canine and 
human adenoviruses. Expression of the FMDV VP1 protein 
using a canine adenovirus type 2 vector vaccine provokes 
a humoral response in a porcine model [75] and was also 
shown to protect guinea pigs in another study carried out by 
De Vleeschauwer et al. [36].

A recombinant adenovirus vaccine vector expressing P1 
of FMDV induced partial protection against FMD in immu-
nized cattle [99] and conferred protection against viral chal-
lenge in mice when expressing capsid proteins [135]. Swine 
inoculated with bivalent Ad5A24+O1 produced neutralizing 
antibodies (NA) against both O1 and A24, but the overall 
level of antibody production was substantially lower than 
that induced by a monovalent Ad5-A24 vaccine or a com-
mercial FMD vaccine [126]. A single dose of Ad5-A24 pro-
vided early protection against challenge with the homolo-
gous virus [83]. Notably, monovalent live vector vaccines 
generally induced higher levels of humoral immunity than 
bivalent viral vector vaccines designed to provide protection 
against different FMD serotypes.

The potency of a replication-deficient Ad-FMD vector 
vaccine was found to be boosted by poly(ICLC), resulting 
in protection of challenged animals even when a low dose 
was used and despite the absence of measurable FMDV-
specific NA at the time of challenge [37]. Interferon alpha 
expression by adenoviruses, together with an FMDV subunit 
vaccine, conferred instant and immediate protection against 
FMD in swine [84] as well. These results highlight the use-
fulness of poly ICLC and interferon alpha in enhancing 
the immunity provided by the Ad-FMD vector vaccine and 
decreasing the minimal protective dose.

The adenovirus-vectored FMDV subunit vaccine pro-
tected all vaccinated animals against FMDV dissemination 
[89]. The safety of replication-deficient AdtA24 vaccine was 
assessed in an extensive range of cattle studies, achieving 
safety-related specifications for U.S. regulatory requirements 
[9]. A recombinant Ad5-FMD was shown to be a safe, effec-
tive, and cross-reactive vaccine that is appropriate for use in 
outbreaks or in prevention strategies for FMDV control in 
swine [45].

A recombinant adenovirus expressing the whole FMDV 
capsid and 3C protease of serotype O bestowed protection on 
swine and guinea pigs [76]. Partial protection was achieved 
against FMDV in cattle immunized with a recombinant ade-
novirus vector expressing the precursor polypeptide (P1) of 
FMDV [100].

Cellular immunity and FMDV transgene delivery by Ad5-
vectored vaccines have been improved via the inclusion of an 
RGD motif, but unfortunately, this did not noticeably affect 
vaccine effectiveness in cattle [82]. The  ENABL® adjuvant 
reduced the protective dose of an AdtA24 vector vaccine and 
prevented the development of clinical FMD lesions follow-
ing challenge of vaccinated steers with virulent FMDV at 7 
or 14 days post-vaccination [10]. Recombinant Ad5-FMD 
functions better when used in a monovalent form, and its 
multivalent form is not promising [107]. These results high-
light the effect of using appropriate adjuvants on the potency 
of viral vector vaccines.

Taken together, unfortunately, all of the experimental 
viral vector vaccines that have been developed for protecting 
against FMD either only partially protected cattle or swine 
or were not examined in their natural host [53, 78, 99, 132]. 
Unlike most viral vectors, one of them (replication-defective 
human adenovirus virus) is licensed to be used in emergency 
situations and has been shown to induce a full and complete 
immune response via its delivery of FMDV structural pro-
teins [52, 81]. A trial was conducted recently to compare the 
immune response to this vector when interferon is encoded 
in the same vector vs. separately in another vector [65]. The 
best advantages associated with these adeno-vaccines are 
DIVA capability and the ability to induce both cellular and 
humoral immunity. They can be mass-produced and used 
economically in the veterinary sector, they do not require 
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high biosecurity levels for production, and they are geneti-
cally stable (Fig. 3).

Virus‑like particles (VLPs)

Several expression systems, including eukaryotic and 
prokaryotic systems, have been used for delivering virus-
like particles (VLPs). VLPs include only FMDV capsid 
proteins and lack an infectious genome. Baculovirus/insect 
cell systems, bacteria, plants, and larvae have been utilized 
as systems for producing VLPs [54, 122, 123].

Bacterial toxin fusion proteins have been shown to induce 
mucosal immunity against FMDV antigens after intranasal 
administration to guinea pigs [27]. Transgenic tobacco 
expressing an FMDV epitope fused to a hepatitis B virus 
core particle in a complex structure has also been shown 
to protect mice [59]. Formation of VLPs and enhancement 
of the immunogenicity of a modified hepatitis B virus core 
particle fused to a multiepitope of FMDV has been estab-
lished [127]. An MS2-mediated VLP vaccine against FMD 
has been shown to protect pigs, mice and guinea pigs [41]. 
As antigen carriers, chimeric rabbit haemorrhagic disease 
virus (RHDV)-VLPs have been shown to induce lym-
phoproliferative-specific T-cell responses in pigs and large 
numbers of IFN-γ-secreting cells against the 3A epitope 
and RHDV-VLP [33]. Transgenic alfalfa plants containing 
FMDV polyprotein P1 have been constructed and utilized as 
an experimental immunogens [44]. Purified chimeric virus 
particles (CVPs) constructed using tobacco necrosis virus 
A, produce a potent immune response against FMDV VP, 
when administered by the intramuscular route, and intranasal 
inoculation induced systemic and mucosal immunity in mice 
[133]. Oral administration of a T4 bacteriophage displaying 

FMDV capsid protein on its surface conferred 100% protec-
tion to challenge in mice [96]. Transgenic chloroplasts of a 
green alga have also been used as a source of a mucosal vac-
cine [113]. A small ubiquitin-like modifier (SUMO) fusion 
protein system utilizing E. coli expressing VP0, VP1, and 
VP3 capsid proteins protected guinea pigs, cattle, and swine 
from challenge [54]. Several studies, as mentioned above, 
have used plants, including alfalfa, tobacco, and tomato as 
a platform for VLP production. The use of edible plants 
makes vaccine delivery simple. A number of studies have 
shown protection in mouse models but the efficacy of these 
vaccines was not investigated in a natural host [122, 123].

Marker vaccine development and DIVA 
assays

Appropriate purification of viral antigens eliminates NPs 
and enables infected animals to be distinguished from vac-
cinated animals. Therefore, a combination of purified vac-
cines and tests for detecting anti-NP antibodies fundamen-
tally provides a suitable vaccine/diagnostic marker system. 
Using these modern vaccines is very important when there 
is a need to control outbreaks and screen vaccinated animals 
to identify carriers [12]. The lack of protein 2C in purified 
FMDV vaccines provides a basis for distinguishing between 
convalescent and vaccinated animals [77].

Many vaccines have been used, together with compan-
ion diagnostic assays, as marker vaccines, such as chimeric 
FMDV vaccines [47], the partial VP1 G-H loop vaccine 
[48], FMD-negative marker vaccines [49], a vaccine with an 
exogenous FLAG epitope in RGD–4 [136], the Cav-P1/3C 
R° FMDV vaccine [36], the 3AB-truncated virus and its 

Fig. 3  Characteristic features 
of the ideal live viral vector 
vaccine
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companion assay [15], two marker FMDV vaccine candi-
dates (A24LL3DYR and A24LL3BPVKV3DYR) with Lpro 
and one of the 3B proteins deleted [116], an r3AB1-FMDV-
NSP vaccine [63], a virus with the 3AB NSP region deleted 
as a companion diagnostic assay [16], and a Mab against the 
predominant and conserved “AEKNPLE” epitope in NSP 
used as a DIVA test [50].

Improving FMD vaccines and future outlook

Recent advances in reverse genetics and infectious cDNA 
technology have led to a revolution in the rational design of 
FMD vaccines (Fig. 4). Integration of current and ongoing 
advances in viral immunology and pathogenesis and better 
understanding of these processes are crucial for improving 
FMD vaccines. Safe and effective vaccines could be achieved 
by using reverse genetics and computational biology tools, 
methods that might lead to the development of new FMD 
vaccines with optimized capsid stability, antigenic matching, 
DIVA capability, and biosafety. Advances in genetic engi-
neering and recombinant DNA technologies have resulted 
in the development of subunit vaccines. Advanced research 
on novel adjuvants and their incorporation into FMD vac-
cines could improve immunogenicity and even extend the 
duration of protection. Advances in the delivery of antigens 
directly to APCs – particularly dendritic cells (DCs) – by 
coupling epitopes to monoclonal antibodies or ligands spe-
cific for unique receptors expressed on the surface of APCs 
and active presentation of these antigens to target DCs or 
other APCs are ongoing.
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