VIROLOGY DIVISION NEWS

Smacoviridae: a new family of animal-associated single-stranded DNA viruses

Arvind Varsani^{1,2} · Mart Krupovic³

Received: 21 February 2018 / Accepted: 19 March 2018 / Published online: 23 March 2018 © Springer-Verlag GmbH Austria, part of Springer Nature 2018

Abstract

Smacoviruses have small (~2.3-2.9 kb), circular single-stranded DNA genomes encoding rolling circle replication-associated proteins (Rep) and unique capsid proteins. Although smacoviruses are prevalent in faecal matter of various vertebrates, including humans, none of these viruses have been cultured thus far. Smacoviruses display ~45% genome-wide sequence diversity, which is very similar to that found within other families of circular Rep-encoding single-stranded (CRESS) DNA viruses, including members of the families *Geminiviridae* (46% diversity) and *Genomoviridae* (47% diversity). Here, we announce the creation of a new family *Smacoviridae* and describe a sequence-based taxonomic framework which was used to classify 83 smacovirus genomes into 43 species within six new genera, *Bovismacovirus* (n=3), *Cosmacovirus* (n=1), *Dragsmacovirus* (n=1), *Drags-macovirus* (n=2), *Huchismacovirus* (n=7), and *Porprismacovirus* (n=28). As in the case of genomoviruses, the species demarcation is based on the genome-wide pairwise identity, whereas genera are established based on the Rep amino acid sequence identity coupled with strong phylogenetic support. A similar sequence-based taxonomic framework should guide the classification of an astonishing diversity of other uncultured and currently unclassified CRESS DNA viruses discovered by metagenomic approaches.

With the advent of metagenomics approaches, a large diversity of unknown viruses has been uncovered in various environmental, plant, and animal samples [23]. Sampling of animal faecal matter has proved to be particularly efficient for the discovery of a wide variety of novel viral types, in particular those with small DNA genomes. Until recently, the circular replication-initiation protein encoding singlestranded (CRESS) DNA viruses associated with eukaryotic

Handling Editor: Sead Sabanadzovic.

Arvind Varsani arvind.varsani@asu.edu

Mart Krupovic krupovic@pasteur.fr

- ¹ The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
- ² Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory 7700, South Africa
- ³ Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France

hosts have been classified by the International Committee on Taxonomy of Viruses (ICTV) into four families, namely *Circoviridae, Genomoviridae, Geminiviridae* and *Nanoviridae*. In 2018, the ICTV created two new families for classification of CRESS DNA viruses, *Bacilladnaviridae* and *Smacoviridae*. The family *Bacilladnaviridae*, which includes viruses infecting diatoms, a major group of unicellular algae widespread in aquatic habitats, has been described elsewhere [7]. Here, we introduce the family *Smacoviridae* (*smaco*stands for *small circular DNA viruses*) and describe the ICTV-approved sequence-based taxonomic framework for classification of these viruses.

Smacoviruses [15, 17], previously also referred to as chipoviruses [22, 24], have been identified in faecal matter of various vertebrates, including humans, as well as in the abdomina of dragonflies of two species (Table 1). Thus far, none of these viruses have been cultured or found in animal tissue sample. Nonetheless, the viruses have been discovered using viral metagenomics approaches and for the majority of the smacoviruses, the validity of genome sequences has been verified by either PCR amplification using abutting primers followed by Sanger sequencing of these products or by amplification, cloning and Sanger sequencing of the recombinant plasmids [1, 3, 4, 9, 15, 22, 24].

Table 1 Summary of taxa that are part of the family Smacoviridae

Genus	Species	Accession #	Isolate	Isolation source			
				Host	Host species	Country	Reference
Bovismacovirus	Bovine associ- ated bovisma- covirus 1	JN634851	CP11-49-3	Domestic cow	Bos taurus	South Korea	[9]
	Bovine associ- ated bovisma- covirus 2	KT862222	48_Fec5_cow	Domestic cow	Bos taurus	New Zealand	[24]
	Dragonfly asso- ciated bovisma- covirus 1	KM598409	OdasCV-21-US- 1679SC3-12	Red-faced Drag- onlet	Erythrodiplax fusca	USA	[4]
Drosmacovirus	Camel associated drosmacovi- rus 1	KM573769	DcSCV_c1359	One-humped camel	Camelus drom- edarius	United Arab Emirates	[26]
	Camel associated drosmacovi- rus2	KM573774	DcSCV_c1330	One-humped camel	Camelus drom- edarius	United Arab Emirates	[26]
	Bovine associ- ated drosmaco- virus 1	KT862224	48_Fec9_cow	Domestic cow	Bos taurus	New Zealand	[24]
Huchismacovirus	Bovine associ- ated huchisma- covirus 1	KT862223	48_Fec59973_cow	Domestic cow	Bos taurus	New Zealand	[24]
	Bovine associ- ated huchisma- covirus 2	KT862229	GP3_46075_cow	Domestic cow	Bos taurus	New Zealand	[24]
	Chicken associ- ated huchisma- covirus 1	KY086301	RS/BR/2015/2	Domestic chicken	Gallus gallus	Brazil	[13]
	Chicken associ- ated huchisma- covirus 2	KY086300	RS/BR/2015/3	Domestic chicken	Gallus gallus	Brazil	[13]
	Human associ- ated huchisma- covirus 1	KP233180	Oregon/6/2011/ GottageGrove/5A1	Human	Homo sapiens	USA	[15]
		KP233181	Oregon/6/2011/Got- tageGrove/B3	Human	Homo sapiens	USA	[15]
		KP233182	Oregon/6/2011/Got- tageGrove/B45	Human	Homo sapiens	USA	[15]
		KP233183	Oregon/8/2011/Port- land/D56	Human	Homo sapiens	USA	[15]
		KP233185	Virginia/2/2012/ Albemarle/5I17	Human	Homo sapiens	USA	[15]
		KP233186	Virginia/2/2012/ Chesapeake/J23	Human	Homo sapiens	USA	[15]
		KP233188	Virginia/12/2011/ Albemarle/G16	Human	Homo sapiens	USA	[15]
		KP233193	Orgeon/8/2011/Port- land/D53	Human	Homo sapiens	USA	[15]
		KP264964	France/2/2008/2548	Human	Homo sapiens	France	[15]
		KP264966	France/12/2008/3454	Human	Homo sapiens	France	[15]
		KP264969	France/6/2008/2871	Human	Homo sapiens	France	[15]
		KY086299	RS/BR/2015/4	Domestic chicken	Gallus gallus	Brazil	[13]
	Human associ- ated huchisma- covirus 2	KP233174	France/8/2008/2444	Human	Homo sapiens	France	[15]

Table 1 (continued)

Genus	Species	Accession #	Isolate	Isolation source			
				Host	Host species	Country	Reference
		KP233175	France/1/2008/2610	Human	Homo sapiens	France	[15]
		KP233176	France/8/2008/2449	Human	Homo sapiens	France	[15]
		KP233177	France/4/2009/4265	Human	Homo sapiens	France	[15]
		KP233184	Virginia/1/2012/ Mecklenburg/H19	Human	Homo sapiens	USA	[15]
		KP233187	Virginia/2/2012/Mid- dlesex/I22	Human	Homo sapiens	USA	[15]
		KP264965	France/3/2008/2623	Human	Homo sapiens	France	[15]
		KP264967	France/12/2008/3454	Human	Homo sapiens	France	[15]
	Human associ- ated huchisma- covirus 3	KP233178	France/1/2009/3664	Human	Homo sapiens	France	[15]
		KP233179	France/1/2009/3663	Human	Homo sapiens	France	[15]
		KP264968	France/3/2009/4191	Human	Homo sapiens	France	[15]
Porprismaco- virus	Bovine associ- ated porpris- macovirus 1	KT862218	23_Fec30587_cow	Domestic cow	Bos taurus	New Zealand	[24]
	Camel associated porprismacovi- rus 1	KM573772	DcSCV_c1378	One-humped camel	Camelus drom- edarius	United Arab Emirates	[26]
	Camel associated porprismacovi- rus 2	KM573770	DcSCV_c1072	One-humped camel	Camelus drom- edarius	United Arab Emirates	[26]
	Camel associated porprismacovi- rus 3	KM573771	DcSCV_c1345	One-humped camel	Camelus drom- edarius	United Arab Emirates	[26]
	Camel associated porprismacovi- rus 4	KM573775	DcSCV_c1358	One-humped camel	Camelus drom- edarius	United Arab Emirates	[26]
	Chimpanzee associated porprismacovi- rus 1	GQ351272	DP152	Common chim- panzee	Pan troglodytes	Cameroon	[1]
		GQ351275	GM510	Common chim- panzee	Pan troglodytes	Tanzania	[1]
	Chimpanzee associated porprismacovi- rus 2	GQ351273	GM495	Common chim- panzee	Pan troglodytes	Tanzania	[1]
		GQ351274	GM476	Common chim- panzee	Pan troglodytes	Tanzania	[1]
		GQ351276	GM488	Common chim- panzee	Pan troglodytes	Tanzania	[1]
		GQ351277	GM415	Common chim- panzee	Pan troglodytes	Tanzania	[1]
	Chicken associ- ated porpris- macovirus 1	KY086298	RS/BR/2015/1	Domestic chicken	Gallus gallus	Brazil	[13]
	Gorilla associ- ated porpris- macovirus 1	KP233191	SF3	Western gorilla	Gorilla gorilla	USA	[15]
		KP233192	SF4	Western gorilla	Gorilla gorilla	USA	[15]

Table 1 (continued)

Genus	Species	Accession #	Isolate	Isolation source			
				Host	Host species	Country	Reference
	Howler monkey associated porprismacovi- rus 1	KP233189	SF1	Black howler	Alouatta caraya	USA	[15]
	Human associ- ated porpris- macovirus 1	KT600068	SmaCV2_ID31	Human	Homo sapiens	Peru	[17]
	Human associ- ated porpris- macovirus 2	KP233190	SF2	Common chim- panzee	Pan troglodytes	USA	[15]
		KT600069	SmaCV3_ID16	Human	Homo sapiens	Peru	[<mark>17</mark>]
		KX838317	BWA1115	Human	Homo sapiens	Botswana	-
		KX838318	BWA7684	Human	Homo sapiens	Botswana	-
	Lemur associated porprismacovi- rus 1	KP233194	SF5	Ring-tailed lemur	Lemur catta	USA	[15]
	Porcine associ- ated porpris- macovirus 1	JX274036	Cass	Domestic pig	Sus scrofa domesticus	New Zealand	[22]
		KF193403	J481	Domestic pig	Sus scrofa domesticus	South Korea	[8]
		KT862226	56_Coc3310_hare	European hare	Lepus europaeus	New Zealand	[24]
		KT862227	59_Coc3310_possum	Common brush- tail	Trichosurus vulpecula	New Zealand	[24]
	Porcine associ- ated porpris- macovirus 2	KC545226	f	Domestic pig	Sus scrofa domesticus	USA	[2]
		KJ577818	TP3	Domestic pig	Sus scrofa domesticus	USA	[3]
	Porcine associ- ated porpris- macovirus 3	KC545227	3L7	Domestic pig	Sus scrofa domesticus	USA	[2]
		KC545228	4L13	Domestic pig	Sus scrofa domesticus	USA	[2]
		KC545229	4L5	Domestic pig	Sus scrofa domesticus	USA	[2]
		KC545230	L2T	Domestic pig	Sus scrofa domesticus	USA	[2]
	Porcine associ- ated porpris- macovirus 4	KJ577810	DP2	Domestic pig	Sus scrofa domesticus	USA	[3]
	Porcine associ- ated porpris- macovirus 5	KJ577811	DP3	Domestic pig	Sus scrofa domesticus	USA	[3]
	Porcine associ- ated porpris- macovirus 6	KJ577819	XP1	Domestic pig	Sus scrofa domesticus	USA	[3]
	Porcine associ- ated porpris- macovirus 7	KJ577812	EP2-A	Domestic pig	Sus scrofa domesticus	USA	[3]
		KJ577813	EP2-B	Domestic pig	Sus scrofa domesticus	USA	[3]
		KJ577814	EP3-C	Domestic pig	Sus scrofa domesticus	USA	[3]

Genus	Species	Accession #	Isolate	Isolation source			
				Host	Host species	Country	Reference
		KJ577815	EP3-D	Domestic pig	Sus scrofa domesticus	USA	[3]
	Porcine associ- ated porpris- macovirus 8	KJ577817	GP2	Domestic pig	Sus scrofa domesticus	USA	[3]
	Porcine associ- ated porpris- macovirus 9	KJ577816	FP1	Domestic pig	Sus scrofa domesticus	USA	[3]
	Porcine associ- ated porpris- macovirus 10	KT862225	49_Fec25_pig	Domestic pig	Sus scrofa domesticus	New Zealand	[24]
	Rat associated porprismacovi- rus 1	KP860906	KS/11/0577	Brown rat	Rattus norvegi- cus	Germany	[21]
		KP860907	Mu/10/1799	Brown rat	Rattus norvegi- cus	Germany	[21]
		KP860908	KS/11/0582	Brown rat	Rattus norvegi- cus	Germany	[21]
	Sheep associated porprismacovi- rus 1	KT862220	47_Fec58729_sheep	Sheep	Ovis aries	New Zealand	[24]
	Sheep associated porprismacovi- rus 2	KT862221	47_Fec60415_sheep	Sheep	Ovis aries	New Zealand	[24]
	Sheep associated porprismacovi- rus 3	KT862219	47_Fec58091_sheep	Sheep	Ovis aries	New Zealand	[24]
	Turkey associ- ated porpris- macovirus 1	KF880727	TuSCV	Wild turkey	Meleagris gal- lopavo	Hungary	[19]
Cosmacovirus	Bovine associ- ated cosmaco- virus 1	KT862228	GP3_45917_cow	Domestic cow	Bos taurus	New Zealand	[24]
Dragsmacovirus	Dragonfly asso- ciated drags- macovirus 1	KM598410	OdasCV-5-US- 1683LM1-12	Four-spotted skimmer	Libellula quadri- maculata	USA	[4]

Table 1 (continued)

The genomes of currently identified smacoviruses are ~2300-2900 nucleotides-long, contain two major open reading frames (ORF), encoding the rolling circle replicationassociated protein (Rep) and capsid protein (CP; Figure 1). The two ORFs in all 83 smacovirus genomes are bidirectionally organised, separated by two intergenic regions. Similar to other CRESS DNA viruses, smacoviruses contain a conserved nonanucleotide sequence located at a putative stemloop structure at the origin of replication (Figure 1), where nicking of the dsDNA replicative intermediate is predicted to occur. The Reps of smacoviruses are homologous but phylogenetically distinct from those of classified CRESS DNA viruses (Figure 2). Phylogenetic analysis and comparison of the conserved sequence motifs suggest a closer evolutionary relationship between the smacovirus and nanovirus Reps [7]. By contrast, although conserved among smacoviruses, the CPs do not display recognizable sequence similarity to the CPs of other known viruses.

Analysis of the genome-wide pairwise identities of the 83 smacoviruses (Figure 3) shows 45% diversity amongst these genomes, which is similar to values determined for members of the families *Geminiviridae* [27] and *Genomoviridae* [12, 25]. The plot of the distribution of pairwise identities shows a trough between 76 and 88%. Hence, for this group of viruses, 77% genome-wide pairwise identity is chosen as a species demarcation threshold. Using this approach, the 83 smacoviruses were assigned to 43 species (Table 1).

Maximum likelihood phylogenetic analysis of the Rep sequences of all 83 smacoviruses reveals four main clusters with >90% branch support and two singletons (Figure 4).

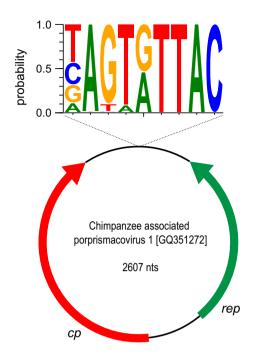


Fig. 1 Genome organization of a representative smacovirus (chimpanzee associated porprismacovirus 1 [GQ351272]) and a WebLogo of the nonanucleotide motif found in smacoviruses

Rep sequences within each of the four clades in general share >40% pairwise identity, whereas sequences from different phylogenetic clades show less than 40% identity to each other. We note that phylogenetic trees produced using complete genome (Figure 5) and CP (Figure 6) sequences are not congruent with the Rep phylogeny, presumably due to intra-familial recombination between different smacovirus genomes resulting in chimeric entities encoding Rep and CP with different evolutionary histories, as has been also observed for genomoviruses [25]. Given that smacovirus Reps are considerably more conserved than CPs (Figure 3) and due to the fact that Reps are the only proteins shared across all CRESS DNA viruses [11, 20], genera were established based on the phylogenetic analysis of the Rep sequences coupled with their pairwise sequence identity. Accordingly, 40% Rep amino acid sequence identity coupled with strong phylogenetic support is proposed as a genus level demarcation threshold.

The naming practice for smacoviruses and other uncultivated CRESS DNA viruses, such as genomoviruses [25], typically involves adoption of the name of an organism or material from which the virus genome has been sequenced. In the absence of evidence of actual infection, the word "associated" is usually added to the potential host name to

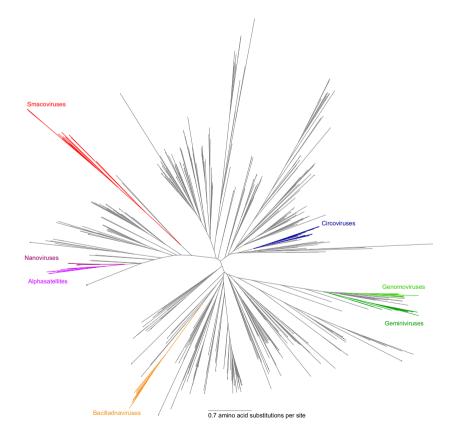
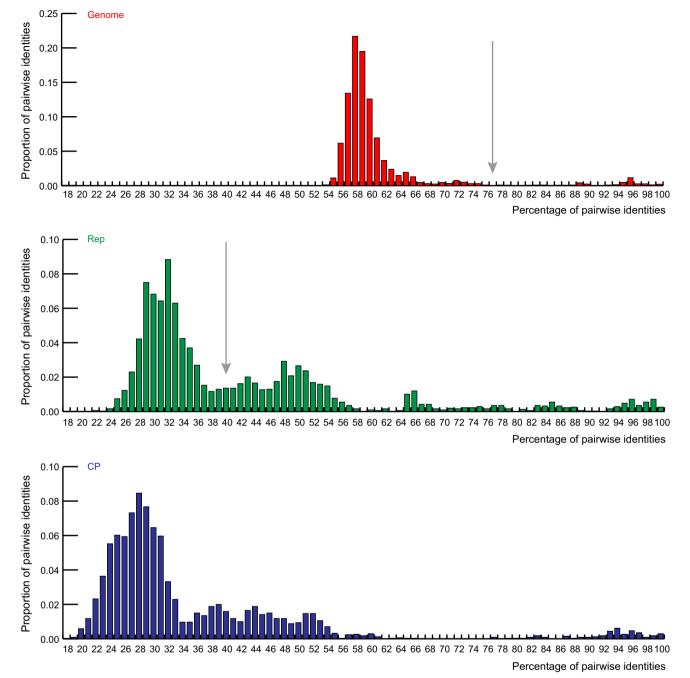
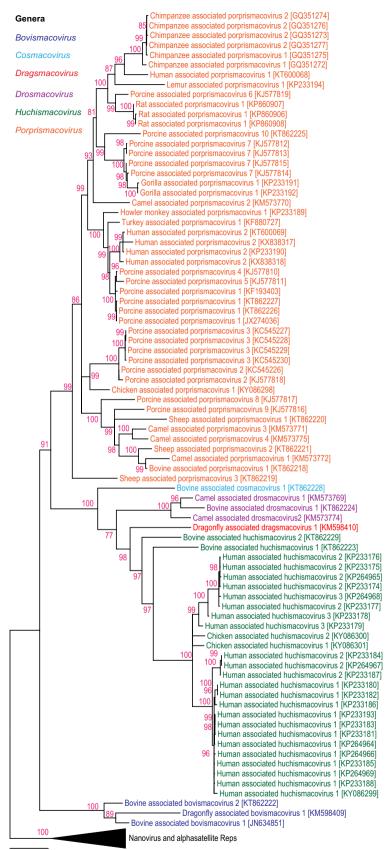
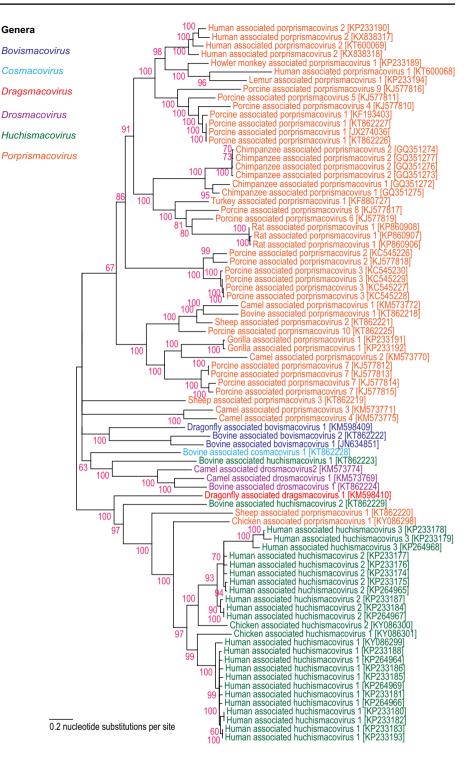



Fig. 2 Unrooted approximate maximum likelihood phylogenetic tree of Reps of CRESS DNA viruses inferred using FastTree [18]. Major groups of classified CRESS DNA viruses as well as alphasatellites associated with geminiviruses and nanoviruses are colour coded


Fig. 3 Distribution of pairwise identities of the full genome (upper panel), the replication initiation protein (middle panel) and the capsid protein sequences determined using SDT v1.2 [14]. The arrows

emphasize that the organism may or may not be the actual host. As a case in point, it has been recently suggested that dsRNA viruses of the family *Picobirnaviridae*, which for three decades were considered to infect eukaryotes [5], might instead replicate in bacteria that populate the enteric tract of animals [10]. Thus, utmost caution should be exercised when assigning viruses to potential hosts.

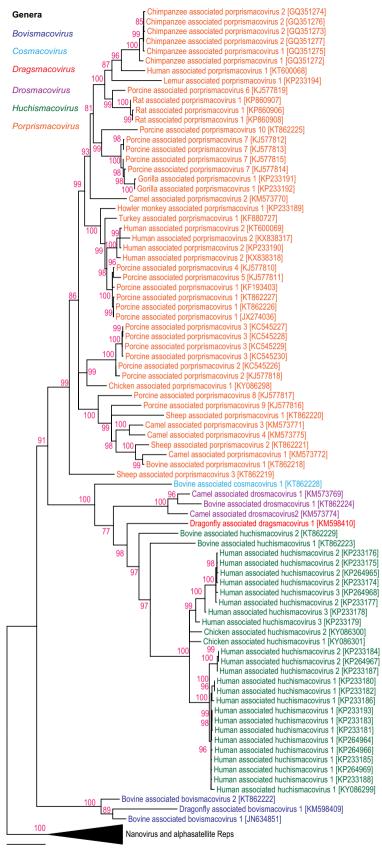
indicate the thresholds of the full genome (top panel) and Rep protein (middle panel) pairwise sequence identities used as the species and genus demarcation criteria, respectively


The following names for the six genera within the *Smaco-viridae* have been adopted

Bovismacovirus: Bovine smacovirus 3 species (Table 1); Drosmacovirus: Dromedary smacovirus 3 species (Table 1); **Fig. 4** Maximum likelihood phylogenetic tree of the Rep amino acid sequences of the smacoviruses inferred using PhyML [6] with the LG+G+I+F substitution model. The tree is rooted with the Rep sequences of nanoviruses

0.5 amino acid substitutions per site

Fig. 5 Maximum likelihood phylogenetic tree of the genome sequences inferred using IQ-TREE [16] with K3Pu+I+G4 substitution model. Branches with <60% bootstrap support have been collapsed and the tree is mid-point rooted



Huchismacovirus: Human and chicken smacovirus
7 species (Table 1);
Porprismacovirus: Porcine and primate smacovirus
28 species (Table 1);
Cosmacovirus: Cow smacovirus
1 species (Table 1);
Dragsmacovirus: Dragonfly smacovirus.

1 species (Table 1).

We would like to note that the species *Sheep associated porprismacovirus 3*, *Bovine associated huchismacovirus 1* and *Bovine associated huchismacovirus 2* have been tentatively assigned to genera *Porprismacovirus* and *Huchismacovirus*. It is highly likely that, as more sequences become available,

Fig. 6 Maximum likelihood phylogenetic tree of the CP amino acid sequences of the smacoviruses inferred using PhyML [6] with the LG+G+I+F substitution model. The phylogenetic tree is midpoint rooted

0.5 amino acid substitutions per site

new genera will have to be created for these divergent smacoviruses (Figures 4 and 5).

Sequence based taxonomic framework employed here for smacoviruses and previously applied for genomoviruses [25] should guide the classification of an astonishing diversity of other uncultured CRESS DNA viruses described by metagenomic approaches.

Compliance with ethical standards

Conflict of interest The authors declare there are no conflicts of interest.

Research involving human participants and/or animals The research did not involve human participants or animals.

Informed consent The research did not involve human participants or animals.

References

- Blinkova O, Victoria J, Li Y, Keele BF, Sanz C, Ndjango JB, Peeters M, Travis D, Lonsdorf EV, Wilson ML, Pusey AE, Hahn BH, Delwart EL (2010) Novel circular DNA viruses in stool samples of wild-living chimpanzees. J Gen Virol 91:74–86
- Cheung AK, Ng TF, Lager KM, Bayles DO, Alt DP, Delwart EL, Pogranichniy RM, Kehrli ME (2013) A divergent clade of circular single-stranded DNA viruses from pig feces. Adv Virol 158:2157–2162
- Cheung AK, Ng TFF, Lager KM, Alt DP, Delwart E, Pogranichniy RM (2015) Identification of several clades of novel singlestranded circular DNA viruses with conserved stem-loop structures in pig feces. Adv Virol 160:353–358
- Dayaram A, Potter KA, Pailes R, Marinov M, Rosenstein DD, Varsani A (2015) Identification of diverse circular single-stranded DNA viruses in adult dragonflies and damselflies (Insecta: Odonata) of Arizona and Oklahoma, USA. Infect Genet Evol 30:278–287
- Ganesh B, Masachessi G, Mladenova Z (2014) Animal picobirnavirus. Virusdisease 25:223–238
- Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321
- Kazlauskas D, Dayaram A, Kraberger S, Goldstien S, Varsani A, Krupovic M (2017) Evolutionary history of ssDNA bacilladnaviruses features horizontal acquisition of the capsid gene from ssRNA nodaviruses. Virology 504:114–121
- Kim AR, Chung HC, Kim HK, Kim EO, Nguyen VG, Choi MG, Yang HJ, Kim JA, Park BK (2014) Characterization of a complete genome of a circular single-stranded DNA virus from porcine stools in Korea. Virus Genes 48:81–88
- Kim HK, Park SJ, Nguyen VG, Song DS, Moon HJ, Kang BK, Park BK (2012) Identification of a novel single-stranded, circular DNA virus from bovine stool. J Gen Virol 93:635–639
- Krishnamurthy SR, Wang D (2018) Extensive conservation of prokaryotic ribosomal binding sites in known and novel picobirnaviruses. Virology 516:108–114
- Krupovic M (2013) Networks of evolutionary interactions underlying the polyphyletic origin of ssDNA viruses. Curr Opin Virol 3:578–586

- Krupovic M, Ghabrial SA, Jiang D, Varsani A (2016) Genomoviridae: a new family of widespread single-stranded DNA viruses. Arch Virol 161:2633–2643
- Lima DA, Cibulski SP, Finkler F, Teixeira TF, Varela APM, Cerva C, Loiko MR, Scheffer CM, Dos Santos HF, Mayer FQ, Roehe PM (2017) Faecal virome of healthy chickens reveals a large diversity of the eukaryote viral community, including novel circular ssDNA viruses. J Gen Virol 98:690–703
- Muhire BM, Varsani A, Martin DP (2014) SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE 9:e108277
- 15. Ng TFF, Zhang W, Sachsenröder J, Kondov NO, da Costa AC, Vega E, Holtz LR, Wu G, Wang D, Stine CO, Antonio M, Mulvaney US, Muench MO, Deng X, Ambert-Balay K, Pothier P, Vinjé J, Delwart E (2015) A diverse group of small circular ssDNA viral genomes in human and non-human primate stools. Virus Evol 1:vev017
- Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274
- 17. Phan TG, da Costa AC, Del Valle Mendoza J, Bucardo-Rivera F, Nordgren J, O'Ryan M, Deng X, Delwart E (2016) The fecal virome of South and Central American children with diarrhea includes small circular DNA viral genomes of unknown origin. Arch Virol 161:959–966
- Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490
- Reuter G, Boros A, Delwart E, Pankovics P (2014) Novel circular single-stranded DNA virus from turkey faeces. Adv Virol 159:2161–2164
- Rosario K, Duffy S, Breitbart M (2012) A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics. Arch Virol 157:1851–1871
- Sachsenroder J, Braun A, Machnowska P, Ng TF, Deng X, Guenther S, Bernstein S, Ulrich RG, Delwart E, Johne R (2014) Metagenomic identification of novel enteric viruses in urban wild rats and genome characterization of a group A rotavirus. J Gen Virol 95:2734–2747
- 22. Sikorski A, Arguello-Astorga GR, Dayaram A, Dobson RC, Varsani A (2013) Discovery of a novel circular single-stranded DNA virus from porcine faeces. Arch Virol 158:283–289
- 23. Simmonds P, Adams MJ, Benko M, Breitbart M, Brister JR, Carstens EB, Davison AJ, Delwart E, Gorbalenya AE, Harrach B, Hull R, King AM, Koonin EV, Krupovic M, Kuhn JH, Lefkowitz EJ, Nibert ML, Orton R, Roossinck MJ, Sabanadzovic S, Sullivan MB, Suttle CA, Tesh RB, van der Vlugt RA, Varsani A, Zerbini FM (2017) Consensus statement: virus taxonomy in the age of metagenomics. Nat Rev Microbiol 15:161–168
- 24. Steel O, Kraberger S, Sikorski A, Young LM, Catchpole RJ, Stevens AJ, Ladley JJ, Coray DS, Stainton D, Dayarama A, Julian L, van Bysterveldt K, Varsani A (2016) Circular replication-associated protein encoding DNA viruses identified in the faecal matter of various animals in New Zealand. Infect Genet Evol 43:151–164
- 25. Varsani A, Krupovic M (2017) Sequence-based taxonomic framework for the classification of uncultured single-stranded DNA viruses of the family Genomoviridae. Virus Evol 3:vew037
- 26. Woo PC, Lau SK, Teng JL, Tsang AK, Joseph M, Wong EY, Tang Y, Sivakumar S, Bai R, Wernery R, Wernery U, Yuen KY (2014) Metagenomic analysis of viromes of dromedary camel fecal samples reveals large number and high diversity of circoviruses and picobirnaviruses. Virology 471–473:117–125
- Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J, Rivera-Bustamante R, Roumagnac P, Varsani A, Ictv Report C (2017) ICTV virus taxonomy profile: Geminiviridae. J Gen Virol 98:131–133