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Introduction

Feline immunodeficiency virus (FIV) is a lentivirus of the 
family Retroviridae that has structural, morphological, 
biochemical and genetic characteristics similar to those of 
human immunodeficiency virus (HIV). Based on this simi-
larity, domestic cats can be a valuable model for infection 
and pathogeny studies of retroviruses [1].

FIV infects mainly TCD4+ lymphocytes [2]. Infected 
felines produce specific neutralizing antibodies against the 
p15 and p24 proteins of the virus between two and four 
weeks postinfection [3]. Due to the persistence of the viral 
infection, high antibody titers are produced, which gradually 
increase in a few weeks [4].

Serological surveys show that the worldwide prevalence 
of FIV infection varies from 2.5% to 44% [5]. However, 
when using molecular tools, the prevalence decreases from 
4% to 2% of the world feline population [6]. Differences can 
be attributed to factors such as gender, age, housing, popula-
tion density, reproductive status, and territorial behavior [7].

The FIV proviral genome has two long terminal repeats, 
which regulate viral replication, and three structural genes 
[8]. The gag gene encodes the structural proteins, which are 
produced as a polyprotein that is then cleaved to form the 
capsid (CA), matrix (MA) and nucleocapsid (NC) proteins 
[9]. The pol gene encodes enzymatic proteins present inside 
the capsid: protease (PR), reverse transcriptase (RT), inte-
grase (IN), and dUTPase (DU), which are necessary for the 
maturation, reverse transcription, integration, and genomic 
repair, respectively, of the virus, [10, 11]. The env gene 
encodes the envelope, surface (gp 120), and transmembrane 
(gp 41) proteins of the virion [11].

Currently, FIV is classified into five subtypes. Subtypes 
A, B and C are found on all continents. Subtype A isolates 
are common in Australia, Europe and the United States [12]; 
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subtype B, in Europe, Japan and the United States [12, 13] 
and subtype C, which is considered the most pathogenic, in 
Canada, Europe, Taiwan and Vietnam [14, 15]. Subtype D 
has been isolated only in Japan and Vietnam; and subtype E, 
in Argentina. Most isolates obtained until now have been of 
subtypes A or B. In addition, recombinant sequences of sub-
types A and B, B and D, and A and C have also been identi-
fied, classified as “between subtypes” [12]. Studies based 
on molecular analysis have revealed great genetic diversity 
within the different FIV subtypes [16, 17].

In Brazil, subtype B is the one most frequently identified 
[14, 15]. It has been identified based on restriction fragment 
length polymorphism (RFLP) [18] in the state of Minas Ger-
ais. In the state of São Paulo, genetic sequencing revealed 
the existence of subgroups within subtype B, as indicated 
by high bootstrap values in phylogenetic analysis [19]. In 
the city of São Luís, Maranhão State, 18.33% of the animals 
tested were positive in both PCR and indirect enzyme-linked 
immunosorbent assay (ELISA) [20].

The most commonly used serological tests for FIV diag-
nosis in veterinary clinics are immunoenzymatic assays 
(ELISAs) that detect specific antibodies against the viral 
proteins p15 and p24, using samples such as blood, serum 
or plasm [21]. The detection of virus in cell culture and virus 
isolation is possible from 10 to 14 days after infection, but 
this is not practical for routine laboratory tests [22]. Molecu-
lar tools such as polymerase chain reaction (PCR) can be 
used to detect viral genome particles in infected blood cells 
after five days of infection [23].

The aim of this study was to identify the subtypes of FIV 
in cats of the city of São Luís, Maranhão State, Brazil, and to 
investigate the phylogenetic relationships and genetic varia-
tion among the subtypes.

Materials and methods

Blood samples from nine domestic cats (Felis catus domes-
ticus) from the city of São Luís, Maranhão State, Brazil, 
that were collected and analysed previously [20] were used 
in this study. All samples were positive in a rapid immuno-
chromatographic test (SNAP® Combo FeLV Ag/FIV Anti-
body Test) and in a PCR assay. This study was approved 
by the Ethical Committee on Animal Experimentation of 
the Universidade Estadual do Maranhão (protocol number 
041/2012).

Proviral DNA was extracted using a commercial QIAamp 
DNA Blood Kit (QIAGEN, Hilden, Germany), following the 
manufacturer’s instructions. To verify the quality and the 
integrity of the extracted DNA, the samples were subjected 
to PCR to confirm the presence of the GAPDH (glyceral-
dehyde 3-phosphate dehydrogenase) gene, using the prim-
ers 5′-GGT​GAT​GCT​GGT​GCT​GAG​TA-3′ (forward) and 

3′-CCC​TGT​TGC​TGT​AGC​CAA​AT-5′ (reverse) [24]. PCR 
was performed in a final volume of 25 µL, with the following 
reagents: 5 μL of 5x Green GoTaq Flexi Buffer (Promega, 
USA), 2 μL of each primer (10 pmol/μL, Invitrogen, USA), 
0.5 μL of dNTPs (10 mM, Promega, USA), 1.5 μL of MgCl2 
(10 mM, Promega, USA), 0.1 μL of Go Taq Flexi DNA Pol-
ymerase (500 U, Promega, USA), and DNAse/RNAse-free 
ultrapure water (Invitrogen-Life Technologies, USA). The 
amplification conditions were 4 minutes at 95 °C, followed 
by 35 cycles at 95 °C for 30 seconds, 54 °C for 30 seconds, 
and 72 °C for 50 seconds, and a final extension at 72 °C for 
7 minutes. After amplification, PCR products were visual-
ized on a 1.5% agarose gel stained with ethidium bromide 
(0.5 µg/mL).

For the amplification of the gag gene, were used the prim-
ers 5′-CTA​GGA​GGT​GAG​GAA​GTT​CA-3′ (forward) and 
5′-CTG​CTT​GTT​GTT​CTT​GAG​TT-3′ (reverse) [25]. The 
PCR reaction mixture was as follows: 5.1 µL of 5x Green 
GoTaq Flexi Buffer (Promega, USA), 1.9 μL of each primer 
(5 pmol/μL, Sigma), 0.5 μL of dNTPs (10 mM, Promega, 
USA), 1.5 μL of MgCl2 (10 mM, Promega, USA), 0.26 μL 
of Go Taq Flexi DNA Polymerase (500 U, Promega, USA), 
2 μL of DNA template, and DNAse/RNAse-free ultrapure 
water (Invitrogen, Life Technologies, USA), to a final vol-
ume of 25 μL. PCR master mix plus 2 μL of water was used 
as a negative control. The amplification parameters were one 
cycle of 5 min of 94 °C, followed by 35 cycles at 94 °C for 
1 min, 2 minutes at 55 °C, and 72 °C for 2 min, and a final 
extension step at 72 °C for 5 min. The amplified products 
were visualized on 1.5% agarose gel stained with ethidium 
bromide (0.5 µg/mL).

The PCR amplicons of the nine samples were extracted 
from the gel and purified using a commercial PureLinkT-
MQuick Gel Extraction Kit following the manufacturer’s 
instructions. The amount and quality of the recovered 
amplicons were estimated by measuring optical density at 
260/280 nm wavelength in a NanoVue spectrophotometer 
(GE Healthcare, USA). Nucleotide sequencing of the puri-
fied amplicons was performed in an ABI310 Automated 
Sequencer using the reagent from a BigDye™ Terminator 
v3.1 Cycle Sequencing Kit (Applied Biosystems, USA) 
according to standard laboratory operating procedures.

The sequences were edited using the program BioEdit 
7.0 [26] and aligned using the program ClustalW 1.4 [27]. 
Phylogenetic analysis was carried out using the software 
MEGA 5.0 [28].

To build phylogenetic trees, the evolutionary model of 
Tamura and Ney [29] and the Neighbor-Joining (NJ) method 
were used. The best evolutionary model was determined by 
the likelihood ratio test in MEGA 5.0. The significance of 
the groups was estimated by bootstrap analysis with 1,000 
pseudoreplications [30]. The haplotype network was built 
using the software Network 4.6 [31].
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Nineteen FIV gag gene sequences from Brazil were ran-
domly selected from the GenBank database, to identify FIV 
subtypes., These included the isolates Petaluma (M25381) 
[32], Wo (L06311) [9], San Diego (M36968) [33], Sendai 
(D37821) [34], Aomoro (D37823) [34], MG (AY747073; 
AY747069) [35], Botucatu (DQ407172) [19], São Paulo 
(DQ407184) [19], Jau (DQ407177) [19], Mogi das Cru-
zes (DQ407188) [19], T1/T2/T4 (AB027298, AB027299 
and AB027301) [36], Fukuoka (D37822) [34], Shizuoka 
(AY679785) [37], and LP3/LP20/LP24 (AB027302, 
AB027303 and AB7304) [36].

Results

Samples tested with the GAPDH-Foward and GAPDH-
Reverse primers, which amplify part of the glyceraldehyde-
3-phosphate dehydrogenase gene, demonstrated that the 
in DNA extractions and amplifications were successful, 

yielding a 709-bp fragment. A 244-bp product was obtained 
in the PCRs for the gag gene [20].

Sequencing of the gag gene, of samples from nine cats 
from the city of São Luís, Maranhão and nineteen gag 
sequences from the GenBank database (28 analyzed sam-
ples in total) resulted in a fragment of 224 bp. Phylogenetic 
analysis indicated that six samples from São Luís (90, 93, 
79, 63, 23 and 74) are genetically similar to samples from 
Jaú, Botucatu and São Paulo, grouping with 83% bootstrap 
support, suggesting that they belong to subtype B (Fig. 1).

A single sample from São Luís (MA) (117) a phyloge-
netic relationship with 90% bootstrap support to subtype A 
FIV samples from San Diego and Petaluma (USA) and Wo 
(France). Samples 41 and 44, however, formed an independ-
ent subclade with 100% bootstrap support and showed no 
similarity to any of the analyzed subtypes (Fig. 1).

Of the 28 sequences analyzed, 21 haplotypes were 
obtained. Six haplotypes were found in São Luís (MA), 
one of which (h4) is shared with Jaú (SP), while the others 
were unique (H1-3, H5 and 6), demonstrating that FIV is 

Fig. 1   Phylogenetic tree con-
structed by the neighbor-joining 
method and the Tamura and Nei 
model with 1000 bootstrap rep-
licates, based on nine nucleotide 
sequences of FIV gag genes 
from São Luís, MA. The scale 
bar represents 10% divergence 
between sequences
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genetically variable (Fig. 2). A haplotype network showed 
a dispersion center from the most frequent haplotype, H4, 
indicating that it is the oldest of the haplotypes found. The 
H4 haplotype brings together samples from São Luís (MA) 
of subtype B, and it can be inferred that it is one of the 
first subtypes to affect the feline population in that state. 
Haplotypes 2 and 3, which included samples for which the 
FIV subtype was uncertain, and the haplotype 6, composed 
of subtype A samples, were unique among the others (they 
were not fixed in other populations or shared) suggesting 
that they appeared more recently in the cat population in the 
state of Maranhão.

Discussion

Nested PCR is a sensitive molecular method that uses a set 
of homologous primers to make the reaction specific. The 
first tests using the nested PCR for the detection of FIV pro-
virus were described in the 1990s [20, 38]. Studies have 
shown that it is possible to perform genetic classification of 
FIV virus using nucleotide sequence of the p17-p24 region 
of the gag gene [39, 40]. For this reason, that gene region 
was used in this study, showing strong indications that new 

subtypes or haplotypes occur in São Luís, MA, which need 
to be better characterized.

Two FIV subtypes (A and B) that are possibly affecting 
the cat population were detected in the city of São Luís, 
MA, and an unknown subtype was reported for the first 
time in Maranhão State. FIV samples 41 and 44 formed an 
independent subclade (100% bootstrap) support and did not 
cluster with any of the subtypes used for comparison. This 
independent clade was probably formed due to the genetic 
variability of the virus, resulting from mutation and/or 
recombination of the variant strains circulating in the city 
of São Luis. The high degree of molecular heterogeneity 
reported for FIV subtypes identified around the world and 
their ability to acquire mutations under immunological, 
pharmacological or environmental pressures are inherent 
characteristics of lentiviruses. Under conditions of high 
population density, there is the possibility of genetic recom-
bination of the infecting virus, and the chances are increased 
by coinfections or superinfection of felines with variants of 
the same subtype or different virus subtypes [41].

Sequencing of the p17-p24 region of the gag gene showed 
that 23 of the isolates belonged to subtype B of FIV, and 
three subgroups (1, 2 and 3) were consistently identified 
within subtype B. Subgroup 1 was composed of 15 strains 

Fig. 2   A network of haplotypes for FIV populations. The size of 
the circle is proportional to the frequency with which the haplotypes 
occur in the population. H_1, São Luis; H_2, São Luis; H_3, São 
Luis; H_4, São Luis and SP; H_5, São Luis; H_6, São Luis; H7, H8, 

H9, H10, and H11, samples from other countries; H_12 and H_13, 
Minas Gerais; H_14, H15, and H16, samples from São Paulo; H_17 
to H_21, samples from other countries. The numbers in red represent 
the mutation sites among the haplotypes
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from São Paulo State, subgroup 2 included two studied 
strains, and subgroup 3, included only one of the samples 
(Mogi das Cruzes 283) and five strains from Japan. The 
other five strains also belonged to subtype B but did not 
form subgroups [19].

Caxito et al. [35] also studied the p17-p24 region of the 
gag gene in 10 samples from the state of Minas Gerais, and 
those also belonged to subtype B. They observed that most 
of them belonged to a subgroup within subtype B, which 
suggests that they might have had a common ancestor. In the 
present study, the samples did not form a subgroup within 
the same subtype, with six samples belonging to subtype 
B. The feline population harboring FIV is very small, with 
most of the viruses corresponding to subtype B; however, 
one sample formed a group that was distinct from all other 
known subtypes, suggesting that it belongs to a new subtype 
[42].

Haplotype network analysis demonstrated that subtype 
B was probably one of the first subtypes to infect felines in 
São Luís, MA, and that subtype A was recently introduced 
to that state. The data also suggest the emergence of a new 
FIV subtype or variation.

The identification of the predominant FIV subtype in the 
northern region of Brazil and knowledge about the genetic 
diversity of the circulating strains are fundamental for the 
development of immunization strategies and the production 
and validation of diagnostic tests, especially those that are 
based on the detection of genetic material from the vírus. 
In general, molecular methods are strongly influenced by 
variations in the target sequences where the primers bind. 
Molecular studies have been carried out to identify and to 
characterize the Brazilian strains of FIV in other regions 
[19, 42–45]. Those studies have higher importance if we 
consider that Brazil has large territorial dimensions and 
occupies roughly half of South America.

Additional studies of FIV isolates in the state of Mara-
nhão are of fundamental importance for achieving a better 
understanding of the circulation of different strains of the 
virus. In addition to improving diagnosis, further research 
is needed to develop and introduce a vaccine against FIV 
in Brazil.

Conclusion

The feline population in the city of São Luís, MA, is affected 
by FIV subtypes B and A, and new variations of this virus 
have been introduced into this state. The results of this study 
are important for establishing prevention and treatment goals 
for infected cats and can serve as the basis for further studies 
related to FIV. There is no effective treatment for FIV, and 
therefore there is a need for accurate diagnosis for better 
control and prevention of infection. The development of a 

vaccine for FIV is difficult and presents a major challenge 
because of the high mutation rate and high variability in the 
env gene observed in virus isolates worldwide. The success 
of a vaccine in providing adequate protection will depend 
on knowledge about the genetic diversity of the circulating 
FIV strains in the region where the vaccination deployment 
is planned, because the vaccination program may fail if the 
strain used for vaccination differs significantly from the cir-
culating field strains.
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