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Abstract Equid herpesvirus type 1 (EHV-1) is a common

viral infection associated with varied clinical outcomes

including respiratory disease, abortion and neurological

disease. We have characterized EHV-1 sequences (n = 38)

obtained from cases of equine abortion in Poland between

1999 and 2016, based on sequencing of PCR products from

open reading frames (ORF) 30 and 68 of the EHV-1 gen-

ome. The majority (81.6%) of sequences were not classi-

fied into any of the previously described groups based on

the ORF68 sequence. The remaining sequences belonged

to ORF68 group III (7.9%) or IV (10.5%). A haplotype

network analysis did not show any obvious structure within

networks of local Polish sequences, nor within a global

network of 215 EHV-1 sequences when these networks

were coloured based on the geographical origin of viruses

or date of detection. Our data suggest that ORF68 does not

provide a reliable molecular marker for epidemiological

studies of EHV-1, at least in a global sense. Its usefulness

to aid local investigations of individual outbreaks remains

to be established. All but two Polish EHV-1 sequences

belonged to the ORF30 N752 genotype. The two ORF30

D752 viruses were obtained from abortion cases in 2009 and

2010. Hence, abortion cases that occurred in Poland

between 1999 and 2016 were caused predominantly by

EHV-1 with the ORF30 N752 genotype, with no indication

of an increase in the prevalence of the ORF30 D752 variant.

Introduction

Equid herpesvirus 1 (EHV-1) is a common pathogen of

horses worldwide [1]. Of the five currently recognised

equine herpesviruses [2], EHV-1 is considered to be the

most important due to its potential for high emotional and

economic impact [3]. Many EHV-1 infections are sub-

clinical, but the virus can also cause respiratory disease of

varying severity, abortion, neonatal death or neurological

disease [4]. The frequency of reports of neurological dis-

ease associated with EHV-1 infection (equine herpesvirus

myeloencephalopathy, EHM) seems to have increased in

some parts of the world over the past 10-15 years, causing

concerns among horse owners and veterinarians [5].

While the existence of EHV-1 viruses with different

pathogenic potential is well recognised [6–8], factors that

influence the clinical outcome of EHV-1 infection are

poorly understood. A feature of EHV-1 that seems to be

directly linked to its virulence is the ability of the virus to

establish cell-associated viraemia [3, 5, 9]. Highly virulent

variants of EHV-1 seem to be able to establish cell-asso-

ciated viraemia of higher magnitude than variants of lower

virulence [10, 11].

One of the proposed markers associated with increased

virulence is dimorphism in the nucleotide sequence of the

DNA polymerase gene encoded by open reading frame

(ORF) 30. A single amino acid substitution from aspar-

agine (N) to aspartic acid (D) at position 752 has been
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associated with increased neurovirulence [10, 12]. How-

ever, this relationship is not observed for all EHV-1 field

viruses, as is exemplified by the fact that in a recent

Australian study, four out of five archival EHV-1 isolates

from EHM cases belonged to the ORF30 N752 genotype

[13]. Hence, it is likely that the viral markers of virulence

are more complex than this single amino acid substitution

[5, 14].

Considering the potential economic and emotional

impact of EHV-1 infections, it would be beneficial to

understand the local epidemiology and molecular evolution

of these viruses. This would increase our knowledge about

the ways they spread within a given facility, within a given

region, or across larger geographical areas. It would also

facilitate tracking the sources of EHV-1 in an outbreak

situation. Such information could then be utilised for the

development of effective control and prevention strategies.

However, the genome of EHV-1 appears to be relatively

stable, with very little variability, even between viruses

with markedly different disease potential. For example,

only approximately 0.1% variation at the nucleotide level

over the entire genomic sequence has been detected

between two well-characterized EHV-1 strains of different

virulence: Ab4 and V592 [12]. A short region spanning

approximately 600 bp of ORF68 has been proposed by the

same authors to be a putative genetic marker that may be

useful for epidemiological studies. Based on single-nu-

cleotide polymorphisms (SNPs) observed in this region,

106 EHV-1 sequences of field viruses were clustered into

six groups [12]. The grouping appeared to reflect the

geographical origins of the viruses. Subsequently, the same

region within ORF68 was used for molecular comparison

of EHV-1 from Hungary [15] and Australia [13], with

conflicting conclusions regarding the usefulness of the

system for molecular tracking of EHV-1.

The aim of the current study was to characterize Polish

EHV-1 sequences based on ORF68 SNPs in order to add to

the existing data from other countries. Specifically, we

were hoping to determine whether or not this classification

system was applicable for molecular tracking of Polish

EHV-1 viruses, both within the local (within the country)

and global (between countries) sense.

Materials and methods

Source of samples

The viruses (n = 29) used in this study were isolated in

RK13 cells from tissue homogenates from cases of equine

abortion that had been submitted by field veterinarians to

the Department of Virology of the National Veterinary

Research Institute in Pulawy (Poland) for EHV-1 testing.

In addition, EHV-1 PCR-positive tissue homogenates (n =

9) that were negative for virus isolation during the initial

investigation were also included. Altogether, these 38

samples comprised all EHV-1-positive samples identified

from a total of 109 submissions received between 1999 and

2016, and originated from small private stables and

national horse studs located throughout Poland (Fig. 1).

The tissue types submitted for investigation varied but

typically included fetal spleen, liver, and lung. Some sub-

missions also included heart, kidney, thymus and placenta.

All tissues were sent to the laboratory on ice packs and

were typically received within 1-3 days of collection. On

arrival in the laboratory, the tissues were processed

according to standard laboratory protocols at the time of

submission. Typically, 10% (w/v) homogenates in Eagle’s

minimum essential medium (MEM, Sigma-Aldrich) sup-

plemented with 1% antibiotic-antimycotic solution (Sigma-

Aldrich) were prepared from each tissue. Homogenates

from all tissue types submitted from the same case were

then pooled, clarified by low-speed centrifugation, filtered

through a 0.45-lm filter, and used for virus isolation and

PCR as described previously [16, 17]. None of the isolates

were passaged in cell culture more than three times.

Samples submitted between 1999 and 2012 were tested

for both EHV-1 and EHV-4 using conventional PCR [18],

while samples submitted in 2013 onwards were tested

using quantitative PCR (qPCR) [19]. Both assays targeted

the glycoprotein B (gB) gene. Viral isolates and EHV-1-

positive tissue homogenates were stored at -80 �C.

Processing of samples

Total DNA was extracted from EHV-1 isolates and from

EHV-1-positive tissue homogenates using a High Pure

PCR Template Preparation Kit (Roche Diagnostics GmbH,

Mannheim, Germany) according to the manufacturer’s

instructions.

PCR amplification of a 764-bp fragment of EHV-1

ORF68 was based on a protocol described by Malik et al.

[15]. Each PCR reaction consisted of 0.6 mM deoxynu-

cleotide mix (Sigma-Aldrich), 0.5 lL JumpStart AccuTaq

LA DNA Polymerase (Sigma-Aldrich), 2.5 mM MgCl2, 2.5

lL of DMSO, 0.4 lM each primer (ORF68f, TTGGCAT

CTGAACCGCTTGG; ORF68r, AGAGTAGGCGTTCC

ATCCAC) and 2 lL of template DNA in 1x buffer (Sigma-

Aldrich) in a total volume of 25 lL. Amplifications were

performed in a Biometra Thermocycler (Biometra, Ger-

many) using the following cycling conditions: 3 minutes of

initial denaturation at 95 �C, followed by 40 cycles of

denaturation (1 minute at 95 �C), annealing (1 minute at

60.8 �C) and elongation (2 minutes at 72 �C).
A 380-bp product from the viral DNA polymerase gene

was amplified and digested with SalI as described
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previously [16], using template DNA from samples (n =

18) that had not been previously assigned to N/D752 vari-

ants. The viruses were assigned to N/D752 variants based on

restriction fragment length polymorphism (RFLP) of the

digested product.

PCR products of the expected sizes from both ORF30

and ORF68 PCR were sequenced using BigDye� Termi-

nator version 3.1 (Applied Biosystems) on a 3730xl DNA

Analyzer (Applied Biosystems) at Genomed (Warsaw,

Poland). The obtained sequences were assembled using

BioEdit software (version 7.2.5). Alignment and compar-

ison of the nucleotide sequences were carried out using

ClustalW in MEGA version 5.0.5. [20].

Network analysis

A total of 37 EHV-1 ORF68 PCR products that generated

good-quality sequence data were used for phylogenetic

analysis (the sequence from PL_2015_I was of insuffi-

cient quality). Sequences were aligned in Geneious v

9.1.3, and ambiguous base calls where resolved by ref-

erence to chromatographs. For each sequence, a consen-

sus sequence was generated from the forward and reverse

sequencing products. Additional EHV-1 sequences (n =

178) originating from various countries (including one

Polish sequence) were obtained from the National Centre

for Biotechnology Information (NCBI) database. Selected

sequences had an ORF68 annotation, were at least 500 bp

in length, and were not the only representative from a

given country. An alignment of all 215 EHV-1 ORF68

sequences (464 bp) was generated in Geneious v 9.1.3,

and exported in nexus file format for downstream

analysis.

Population structure analysis was performed in PopART

version 1.6 (available from http://popart.otago.ac.nz) using

default parameters to produce median-joining haplotype

networks. Sequences were grouped based on areas of origin

in order to test for geographic clustering of genotypes.

Analysis of molecular variance was carried out in PopART

using the ‘Simple AMOVA’ command.

GenBank accession numbers

The nucleotide sequences of the Polish EHV-1 isolate

described in this study were deposited in GenBank under

the accession numbers KY201117-KY201134 (ORF30)

and KY201135-KY201172 (ORF68).

Results

ORF30 genotypes

All of the viruses tested as part of the current study

belonged to the ORF30 N752 variant genotype based on

PCR-RFLP testing, which was also confirmed by

sequencing.

ORF68 genotypes

Out of 38 Polish EHV-1 sequences analyzed in the current

study, three (7.9%) belonged to group III, four (10.5%)

belonged to group IV, and the remaining 31 (81.6%) were

not classified within any of the groups originally described

by Nugent and colleagues [12] (Fig. 2). Interestingly, over

half of Polish EHV-1 sequences (57.9%) contained A629

and T755 SNPs. The same substitutions were also present in

the EHV-1 sequence from UK-GB86_3_2, which was

reported as an unassigned sequence in the original study by

Nugent et al. [12]. All Polish EHV-1 sequences from the

current study contained seven G residues in a homopoly-

meric tract (nt 732 to 739).

Fig. 1 Sources of Polish EHV-

1 sequences included in the

study, stratified by province of

origin
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Network analysis

There was no obvious structure in any of the networks

generated. Genetic variation in ORF68 was not strongly

correlated with geographic distribution (/st = 0.20646, p\
0.001) based on country of origin (Fig. 3 and Online

Resource 1). While some smaller nodes consisted pre-

dominantly of sequences from one country (for example,

nodes E and H contained Polish sequences), the two largest

nodes (A and B) included viruses from a variety of geo-

graphical regions. Similarly, there was no apparent struc-

ture in the network of local Polish EHV-1 sequences

colored by the geographical region in Poland (province)

from which they originated (Fig. 4).

There was also no structure in the global network when

sequences were colored by date of origin. Often, very

similar sequences from a single node span several decades,

as seen, for example, in node A. Similarly, the dates of

isolation of Polish EHV-1 sequences from node E (Fig. 3)

span 16 years (1999 to 2015). At the same time, some

viruses from the same year/country clustered in several

different nodes (e.g., Polish viruses from 2013 clustered

within three different nodes).

Discussion

The aim of the current study was to characterize Polish

EHV-1 viruses based on ORF30 and ORF68 sequence data.

It has been shown previously that 2/20 Polish EHV-1 iso-

lates from samples submitted between 1999 and 2012

belonged to the ORF30 D752 variant genotype [16]. The

two D752 EHV-1 viruses were detected from abortion cases

in 2009 and 2010. This, combined with the fact that all

viruses in the current study belonged to the ORF30 N752

genotype, suggests that the ORF30 D752 variant, while

present in Poland, is not common. Our results are in con-

trast to those reported from several other countries, where

the frequency of detection of ORF30 D752 EHV-1 seems to

have increased over the past decade or so [21, 22]. This

apparent increase in the frequency of detection of the

ORF30 D752 variant seems to parallel the perceived

increase in reports of EHM cases in the USA and several

European countries [5]. However, a similar increase in the

number of reported EHM cases has not been observed in

Poland, nor in several other countries such as Australia [13]

or New Zealand [23]. The lack of detection of the ORF30

D752 variant in samples collected between 2012 and 2016

in the current study corresponds well to the lack of reports

of EHM in Polish horses. Alternatively, it may also reflect

the relatively small sample size or the source of EHV-1

(abortion versus EHM cases). EHM may truly be rare

among Polish horses, or it may be underreported due to

inherent difficulties associated with this diagnosis, partic-

ularly in sporadic cases [24]. The suitability of the ampli-

fied ORF68 region as a molecular marker associated with

the geographical origin of the virus was first proposed by

Nugent et al. [12], who established six ORF68 groups (I to

VI) based on SNPs present within this short (559 bp)

region. A similarly large amount of variability in the

location of SNPs within the analyzed ORF68 region was

also reported in a recent Hungarian study, where four

additional groups were established to accommodate all

ORF68 SNP patterns from 35 Hungarian EHV-1 isolates

[15].

Consistent with the results of these previous studies, 37

Polish EHV-1 formed five nodes (Fig. 3) based on ORF68

analysis. The majority (21/37, 56%) of the Polish EHV-1

sequences analyzed clustered together in a global network

(node E in Fig. 3), despite the fact that the dates of isola-

tion of these viruses span 16 years (1999 to 2015). How-

ever, the results of the network analysis did not support the

Fig. 2 Location of SNPs within the ORF68 gene of Polish EHV-1 sequences. Nucleotides are numbered according to accession number

DQ172353.1. Nucleotide positions typical for each of the ORF68 groups [12] are highlighted
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use of ORF68 as an epidemiological tool for monitoring

the origin and geographical spread of EHV-1, as there was

no obvious structure in any of the networks generated.

Similar conclusions have recently been reached by Aus-

tralian investigators, based on the analysis of 66 archival

Australian EHV-1 sequences [13]. The existence of several

different ORF68 genotypes within the same geographical

region of Hungary was also reported by Malik et al. [15].

Interestingly, sequences with SNPs characteristic of group

II viruses were most frequently (40%) detected among the

35 Hungarian EHV-1 isolates tested in that study, with only

six (17.1%) of the sequences classified as belonging to

group III. This was in contrast to data from the original

paper by Nugent et al. [12], who reported that group II

sequences were most common among EHV-1 isolates of

American origin, and group III sequences were most

common among EHV-1 isolates of European origin.

Four viruses from the same outbreak of EHV-1-associ-

ated abortion that occurred in 2013 (PL_2013_IV to VII)

all grouped together (group H in Fig. 3). To our knowl-

edge, none of the other Polish viruses included in the

current study were epidemiologically linked. This raises

the possibility that, while ORF68 does not appear to be a

useful marker in a global sense, it may facilitate tracking of

EHV-1 within the outbreak situation and allow differenti-

ation of the outbreak virus from other EHV-1 strains that

may circulate locally. Availability of a larger data set

including multiple sequences from recognized outbreaks of

EHV-1-associated disease would be required to further

evaluate this possibility.

In summary, based on the available data, the ORF68

does not appear, to provide a reliable molecular marker for

epidemiological studies of EHV-1, at least in a global

sense. Its usefulness for aiding local investigations of

Fig. 3 International network of

EHV-1 ORF68 sequences

including sequences from

GenBank (n = 178) and Polish

sequences described in the

current study (n = 37, labelled

PL_year of isolation_ID

number). All sequences were

concatenated and trimmed to

464 nt. Nodes are labelled with

capital letters (A through F),

scaled based on the number of

representative sequences, and

coloured based on the

geographic origin of the sample

(country). The details for

sequences included in each node

are listed in Online Resource 1.

No obvious clustering was

evident in the network shown in

the figure. There was also no

clustering when the network

was coloured by the date of

EHV-1 detection
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individual outbreaks remains to be established. Abortion

cases that occurred in Poland between 1999 and 2016 were

caused predominantly by viruses with the ORF30 N752

genotype, with no indication of the increase in the preva-

lence of the D752 variant.
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