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Abstract The immune response to CSFV and the strat-

egies of this virus to evade and suppress the pigs’ immune

system are still poorly understood. Therefore, we investi-

gated the transcriptional response in the tonsils, median

retropharyngeal lymph node (MRLN), and spleen of pigs

infected with CSFV strains of similar origin with high,

moderate, and low virulence. Using a porcine spleen/

intestinal cDNA microarray, expression levels in RNA

pools prepared from infected tissue at 3 dpi (three pigs per

virus strain) were compared to levels in pools prepared

from uninfected homologue tissues (nine pigs). A total of

44 genes were found to be differentially expressed. The

genes were functionally clustered in six groups: innate and

adaptive immune response, interferon-regulated genes,

apoptosis, ubiquitin-mediated proteolysis, oxidative phos-

phorylation and cytoskeleton. Significant up-regulation of

three IFN-c-induced genes in the MRLNs of pigs infected

with the low virulence strain was the only clear qualitative

difference in gene expression observed between the strains

with high, moderate and low virulence. Real-time PCR

analysis of four response genes in all individual samples

largely confirmed the microarray data at 3 dpi. Additional

PCR analysis of infected tonsil, MRLN, and spleen sam-

ples collected at 7 and 10 dpi indicated that the strong

induction of expression of the antiviral response genes

chemokine CXCL10 and 20–50 oligoadenylate synthetase 2,

and of the TNF-related apoptosis-inducing ligand (TRAIL)

gene at 3 dpi, decreased to lower levels at 7 and 10 dpi. For

the highly and moderately virulent strains, this decrease in

antiviral and apoptotic gene expression coincided with

higher levels of virus in these immune tissues.

Introduction

Classical swine fever virus (CSFV), a member of the genus

Pestivirus, family Flaviviridae, causes a severe disease of

pigs that is characterized by fever, leucopenia and hem-

orrhage [65, 66]. Apoptosis has been demonstrated to be

the cause of lymphocyte death [58, 66], but the precise

mechanism by which CSFV causes apoptosis is still

unknown.

Innate immunity is a critical arm of pre-existing host

defence that functions to eliminate foreign pathogens

immediately after infection and subsequently directs the

adaptive immune response. Interferons (IFNs) are key

components of innate immunity. Through different signal-

transduction pathways, IFNs can promote the expression of

dozens of genes responsible for executing IFN-induced

anti-viral and anti-proliferative effects (reviewed in Ref.

[30]).

The best-characterized IFN-inducible components of the

antiviral response are the dsRNA-dependent protein kinase

R (PKR, alias eukaryotic translation initiation factor

2-alpha kinase 2), the 20–50 oligoadenylate synthetases

(OASs), the Mx proteins and the nitric oxide system (NO).

IFNs can control apoptosis by inducing a pro-apoptotic

state in uninfected cells For example, IFN has been shown

to influence the sensitivity of cells for apoptosis by
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inducing expression of both the ligand and the receptor of

FAS and TRAIL [71, 73]. In addition, IFNs can control the

T helper immune system by inducing a broad spectrum of

chemokines and cytokines such as CXCL10, which induce

the Th1 immune response [18].

Viruses employ numerous evasive strategies to impair

antiviral responses. In the case of CSFV, only a few viral

strategies have been identified. The CSFV Npro protein has

been described as a suppressor of IRF3 function in the IFN

expression pathway in infected cells [3, 7, 17, 42, 55, 56,

60] and has been shown to interact with IkBa, the NF-KB

inhibitor [23]. In addition, in CSFV-infected macrophages,

NO production is suppressed by up-regulation of arginase

activity [75]. However, those viral mechanisms only par-

tially explain the immune suppression caused by CSFV.

Therefore, CSFV most likely uses several other strategies

to impair different immune pathways, e.g., the function of

antigen-presenting cells, the regulation of apoptosis, anti-

viral responses and the complement system. These mech-

anisms have not yet been investigated for CSFV, and most

of the current knowledge has been gained from in vitro

experiments.

In this present study, we used micro-array and PCR

analysis to investigate the transcriptional response to rep-

lication of CSFV in relevant immune organs of pigs. Pigs

were infected with three different laboratory-derived vari-

ants of CSF virus strain Brescia [36], which were charac-

terized as highly virulent, moderately virulent, and avirulent

in earlier animal experiments [69]. However, because the

avirulent strain did cause some fever and leucopenia, we

will refer to it in this paper as low virulent. We identified

viral modulations of IFN-inducible antiviral, apoptotic and

chemotactic genes. To our knowledge, these data represent

the first in vivo gene expression study that describes anti-

viral responses to CSFV.

Materials and methods

Study design

An animal experiment was carried out with four groups of

nine pigs each. Three groups were inoculated with the

highly, moderately or low virulent CSF strain, while the

fourth group was left untreated. In each group, three piglets

were euthanized at 3, 7 and 10 days post-inoculation (dpi)

for the collection of tissue samples.

Animals

Thirty-six 6-week-old piglets were obtained from a con-

ventional herd that was free of pestiviruses. Groups of four

piglets of the same sex and originating from the same litter

were selected from the herd. From each group of four, one

piglet was randomly assigned to one of the four treatment

groups.

Inoculation

On day 0, the piglets of groups 1–3 were inoculated

intranasally with 2 ml virus suspension (1 ml per nostril)

containing 105 TCID50 per ml of infectious virus, as

determined using SK6 cells. The viruses used were,

respectively, CoBrB (highly virulent: HV), C1.1.1 (low

virulent: LV) and C1.1.1/CoBrB (moderately virulent:

MV). Virus C1.1.1 is a cell-adapted variant of a Brescia

strain with low virulence, whereas CoBrB (CoBrB 476S) is

the virulent variant. Sequence analysis showed 29 nucleic

acid mutations in C1.1.1, resulting in nine amino acid

substitutions, compared to the sequence of CoBrB [36].

C1.1.1/CoBrB is a chimera from C1.1.1 and CoBrB,

essentially containing the structural proteins from C1.1.1

and the non-structural proteins from CoBrB [69]. The

control group was inoculated with 2 ml PBS instead.

Observation and scoring

From 3 days before the inoculation until they were eutha-

nized, the animals were observed on a daily basis for

clinical symptoms, and their rectal temperature was mea-

sured. A list of CSF-related clinical symptoms (lack of

appetite, diarrhoea, lethargy, inability to stand up, trem-

bling) was used and scored as either present or not present.

The scores for each pig were added up to a total score per

day.

Leucocyte count

EDTA blood samples were taken on days 0, 1, 2, 3, 4, 7,

and 10 from all pigs that were still alive. White blood cell

(leucocytes) and thrombocyte counts were performed using

a Medonic� CA 620 coulter counter (Boule Medical AB,

Stockholm, Sweden). Leucopenia was defined as \8 9

109 cells/l blood, and thrombocytopenia as \200 9 109

cells/l blood [12].

Post-mortem sampling

In each group, the first three piglets were euthanized on the

first day on which the rectal body temperature was[40�C.

At 7 and 10 dpi, another three piglets were euthanized in

each group. Post-mortem tissue samples were collected

from the tonsils, spleen and median retropharyngeal lymph

node (MRLN). They were snap-frozen in liquid nitrogen

and stored at -80�C until total RNA was isolated from

these samples.
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Isolation of total RNA

From 0.5 g of tissue, total RNA (DNase-free) was isolated

using TRIzol� reagent (Invitrogen) as described recently

[50]. The yield and purity of the RNA was calculated from

measurements of the extinction at 260 and 280 nm. The

integrity of all RNA samples was checked by analyzing

0.5 lg of RNA on a 1% (w/v) agarose gel. After ethidium

bromide staining, the gel was scanned to calculate the 28S/

18S peak ratio (volume 28S over volume 18S) for each

RNA preparation. RNA with a ratio [2 was considered of

adequate quality to be used for real-time PCR and micro-

array analysis. For all RNA preparations, a 28S/18S ratio of

[2 was observed. A part of each RNA preparation was

used to prepare RNA pools for microarray analysis.

Microarray analysis

For microarray analysis a homemade porcine cDNA

microarray containing 2,928 probes from a jejunum EST

library [50] plus 2,880 probes from a spleen EST library

was used. For production of this spleen EST library,

spleens were collected from the same four 12-week-old

pigs from which the jejunal mucosal scrapings were

obtained for the preparation of the jejunum EST library

[50]. A total of 2,688 probes (ESTs) were generated from

total RNA isolated from pooled spleen tissue (n = 4 pigs).

In addition, 192 probes were generated from RNA isolated

from in vitro ConA/LPS-stimulated spleen cells derived

from the above-described pooled spleen tissue. Together

with the jejunum and spleen probes, an additional 192

cDNA probes selected from Marc1 and 2 EST libraries

[24], and probes coding for porcine cytokines (IFN-c,

TNF-a, GMCSF, IL-2, 4, 6, 8, and 10) and lung surfactant

proteins SFTPA and SFTPD were spotted in quadruplicate

on Corning UltraGAPS slides [31].

Dual-colour hybridization of slides was performed using

an RNA MICROMAX TSA labelling and detection kit

(Perkin-Elmer, Zoetermeer, The Netherlands) as described

earlier [50]. Briefly, a biotin (BI)-labeled cDNA target was

prepared from 1 lg of RNA template from an uninfected

RNA pool, and a fluorescein (FL)-labeled cDNA target was

prepared from 1 lg of RNA template from an infected

RNA pool. Labelled cDNAs were simultaneously hybrid-

ized to a microarray slide and detected with Cy5 (biotin)

and Cy3 (fluorescein), respectively. For each comparison, a

second hybridization experiment was performed in which

the BI and FL labels were reversed (dye-swap). The slides

were scanned for Cy5 and Cy3 fluorescence in a Packard

Bioscience BioChip Technologies apparatus (ScanArray

Express, Perkin-Elmer). Scan images were processed

with GenePix Pro 5.0 (Molecular Devices, Apeldoorn,

The Netherlands), automatically gridding the spots, and

measuring spot intensities. In addition, spots with irregular

shape were eliminated manually. An intensity-dependent

normalisation was performed (blank-specific background

correction; Lowess fit function with a fraction of 0.2 on all

data points) using a customized version of the statistical

software package R [74]. Significantly differentially

expressed spots with a ratio of [3.3 or \0.30 (M-value

of \-1.73 or [1.73; M = log2 (Cy5/Cy3)) and a p-value

\0.05 were selected manually from normalized data

reports. A probe was considered differentially expressed

when at least five out of the eight spots present on the two

dye-swaps passed these selection criteria. For each probe,

the mean ratio of differential expression (infected over

uninfected) of replicate spots (n C 5 and B8) is presented.

Probes that were yet not annotated were sequenced as

described previously [50].

Microarray comparisons

For each type of tissue, an RNA pool was prepared from

total RNA, isolated from three pigs originating from the

same infected group. At 3 dpi, these three piglets were

selected from the HV and MV groups on the basis of early

signs of fever (i.e., highest rectal temperature), and ran-

domly from the LV group (see above). In three separate

dye-swap hybridization experiments, mRNA expression

levels in infected spleen, tonsil, and lymph node pools were

compared to levels in RNA pools prepared from homo-

logue tissue collected from the nine uninfected (control)

pigs. Performing these tissue-specific microarrays for each

virus strain (HV, MV, LV) resulted in nine data sets of

probes hybridizing differentially with a fold change (ratio

infected over uninfected) of\0.30 or[3.3 (p-value\0.05).

Sequences of selected probes were annotated after blastn or

(t)blastx analysis (when not yet annotated).

Real-time PCR for CSFV

For the detection of CFSV, PCR assays were performed

using a LightCycler instrument with red dye, using the

RNA Master Hybprobes kit (Roche Applied Science,

Mannheim, Germany) [70]. Ct values were used to express

the amounts of virus in a semi-quantitative way.

Real-time PCR for gene expression

Gene-specific primers were developed from mRNA refer-

ence sequences (pig, cattle, human) found in sequence

databases (NBCI, KEGG). These reference sequences were

selected by homology search with EST sequences obtained

from the library probes. Primers were designed within the

open frame of the protein encoded by the gene of interest

and also, when possible, in different exons in order to
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prevent amplification of genomic DNA. The primer

sequences are listed in Table 1.

Randomly primed reverse transcription reactions were

carried out using the Transcriptor first-strand cDNA syn-

thesis kit (Roche Applied Science, Mannheim, Germany)

with approximately 200 ng of RNA as template and 60 lM

hexamer primers. The produced cDNA was stored at

-20�C until use. Real-time PCR tests were carried out with

a LightCycler instrument and a LightCycler FastStart DNA

Master SYBR Green I kit (Roche Applied Science,

Mannheim, Germany). The PCR conditions are listed in

Table 1. The relative concentration of mRNA was calcu-

lated by extrapolation on a standard curve prepared from

dilutions of an RT reaction prepared from a reference RNA

sample. The relative concentration of 18S and beta-actin

were determined once for each cDNA sample and used to

normalize concentrations of all other genes tested from the

same cDNA sample. Established quantities of 18S rRNA

and beta-actin showed essentially no differences among

any of the individual RNA samples (18S RNA average

relative concentration 1.15 ± 0.30; beta-actin average

relative concentration 0.54 ± 0.026).

Results

Clinical parameters after infection with CSFV strains

Pigs infected with the HV and MV virus strains developed

fever (above 40�C) around 2–3 dpi together with a drop in

WBC count and, this was then followed by acute clinical

signs beginning 4 dpi (Fig. 1). Although the drop in

WBC’s and fever for LV-infected pigs coincided with

those of MV and HV-infected pigs, WBC concentrations

and rectal temperatures reached normal levels at 7 dpi.

Moreover, the moderate clinical signs observed in these

pigs dramatically declined from 8 until 10 dpi. These

results indicated that LV-infected pigs quickly recovered

from the infection. The pigs from the control group showed

normal clinical parameters during the whole animal

experiment (Fig. 1).

Gene expression analysis

Messenger RNA levels in CSFV-infected immune organs

at the port of entrance (tonsil and medial retropharyngeal

lymph node) and in the spleen at 3 dpi were compared to

levels in homologous tissues from uninfected pigs for all

three virus strains (LV, MV, and HV), using the home-

made cDNA microarray prepared from spleen and jeju-

num tissue. In these nine microarray comparisons, a total

of 44 different mRNAs (genes) hybridized differentially

with a ratio (fold change; infected over uninfected) of

\0.30 or [3.3 (p-value \0.05). Messenger RNA levels

were increased significantly for 33 genes and reduced

significantly for 11 genes. In Table 2, the ratio of dif-

ferential expression calculated from the two dye-swap

slides is presented. Based on literature search and data

mining, a tentative function was assigned for the genes

identified by blast analysis. With the probes coding for

IFN-c, TNF-a, GM-CSF, IL-2, 4, 6, 8, and 10, the fluo-

rescence intensity was never higher than the background

threshold.

Data mining and functional clustering

Based on their function, genes identified by microarray

analysis were clustered in six groups (Table 2): (1) genes

related to apoptosis (Apopt.), (2) IFN-a/b- or c-induced

genes (IFN), (3) genes related to the adaptive and innate

immune response, including antigen presentation (innate/

adapt. Immune-AP), (4) genes related to the proteosome

pathway, i.e., ubiquitin-mediated proteolysis (UBM), (5)

components of, or proteins associated with the cytoskeleton

Table 1 Gene specific primer sequences and PCR conditions

Gene Acc. number Forward primer Reverse primer Tm

(�C)

Reference

OAS2 AY288913 ACAGTCTTGAGGGGCAACTCTGA GCTGGCTTTCATCATATCCAAGGA 60

CXC10 AY789646 TGCCCACATGTTGAGATCAT CGGCCCATCCTTATCAGTAG 60

TRAIL NM_001024696 CAACAAGGCATTCCTCACCT CCAGCTCTCCATTCCTCAAG 60

IFN alpha NM_214393 TACTCAGCTGCAATGCCATC TCTGTGCTGAAGAGCTGGAA 58

18S RNA AF102857 GTTCAAAGCAGGCCCGAG CGCCGCCGCATCGCCA 57 De groot et al. (2005)

Beta actine AY550069.1 GGCATCCTGACCCTCAAGTA GGGTCATCTTCTCACGGTTG 58

C4-bp NM_213942 CTCTGGTTGGAGAGGACAGA GCTCACAGTCTTCGGGGTA 60

PCR conditions: 3 mM magnesium chloride and 0.5 mM for primer pair. The cycling PCR conditions consisted of 1 cycle at 95�C for 50,
followed by 45 cycles (95�C for 50, annealing temperature for 50, 72�C for 120) and 1 three-segment cycle of product melting
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(cytoskeleton), and (6) genes involved in oxidative phos-

phorylation, including oxygen transporters (Ox-P).

Up-regulated genes related to apoptosis included pro-

apoptotic genes such as TRAIL, which leads to caspase-

dependent cell death (reviewed in Ref. [64]) and the gene

for cathepsin C, a protease responsible for the proteolytic

maturation of granzyme [51], which induces apoptosis

through activation of caspase and the Bid protein [8, 11].

Anti-apoptotic genes were also induced, such as MCL1

(alias BCL2-related), which blocks apoptosis mediated by

ER-Ca2? release and mitochondrial Cyt-c release [14], and

is also involved in the regulation of redox- and oxidant-

mediated apoptosis [32, 43]. In addition, genes related to

glutathione metabolism (GLRX, GCLM), which also pre-

vent redox- and oxidant-mediated apoptosis in the ER and

mitochondria, were up-regulated [32]. Calbindin, a cal-

cium-binding protein suppresses apoptosis by inhibiting

caspase 3 activity [5]. Although PARP genes are well

established as cell survival factors contributing to DNA

repair, recent work has indicated that they also induce cell

death via the p53 signalling pathway and via the intrinsic

pathway [16, 33].

IFN-regulated genes were all up-regulated. These

genes included IFN-c-induced genes AIF-1, IFI 16, GBP-

2, and MOP-5, and genes induced by IFN-a/b: IFI44,

CXCL10, and OAS2. CXCL10 (alias IP10) is a pleio-

tropic cytokine that stimulates monocytes, natural killer

and T cell migration [18]. The antiviral enzyme OAS2

catalyses the synthesis of oligoadenylate chains in

response to dsRNA binding, which acts as an activator of

RNase L [61]. Active Rnase L degrades viral and cellular

RNAs, leading to inhibition of cellular protein synthesis

and impairment of viral replication (reviewed in Ref.

[62]). The proteins AIF1, IFI16, GBP2, MOP5, and IFI44

are involved in cell growth, cellular defence and cell

proliferation. Note that the up-regulation of the IFN-c-

induced genes AIF1, IFI16, and GBP2 in the MRLN of

LV-infected pigs at 3 dpi was not detected in pigs

infected with the MV and HV strains. Interestingly, it has

been reported that expression of AIF1 in vascular muscle

cells is induced in response to arterial injury, a phe-

nomenon also observed in CSFV pathogenesis [27], and

IFI16 inhibits vascular tube morphogenesis and prolifer-

ation of primary endothelial cells [52].

Up-regulated genes involved in the innate/adaptive

immune response include MHC1 genes such as SLA-1 and

B2M, the natural killer surface receptor CD16b and genes

such as immunoglobulins (J, lambda, kappa chains, heavy,

light chains, FC fragment), which are ubiquitously expres-

sed on the surface of B and T lymphocytes. The gene C4b

was down-regulated. C4bp is a regulatory component

(inhibitor) of the classical complement cascade [9] but also

acts as an activator of B cells (by binding to CD40) [15, 49]

and a protein that helps with the removal of apoptotic cells

by binding to protein S [10, 68].

Up-regulated genes involved in ubiquitin-mediated

proteolysis included a potential ubiquitine ligase (HERC6)

and components of the proteasome (UBC and Psma6).

Most of the genes found to be down-regulated were

structural components of the cytoskeleton (ACTA 2 and

TPM1), genes involved in oxygen binding and transport

(alpha–beta globin and ferroportin-1), or constituents of the

mitochondrial respiratory chain (oxidative phosphoryla-

tion) (CytB, ND6, ND4L and E-NPP 3).

RT-PCR studies

Three up-regulated anti-viral genes (OAS2, CXCL10,

TRAIL) and a gene (C4bp) that was down-regulated spe-

cifically in the MRNL were selected for real-time PCR

studies. The expression levels of these genes were deter-

mined in all tissue sample collected from all individual pigs

at 3, 7 and 10 dpi. In addition, IFNa expression and CSFV

replication were also investigated in all these samples

(Figs. 2, 3, 4). In agreement with the microarray data, a

strong up-regulation of anti-viral gene expression was

observed in all three immune tissues collected from LV-,

MV- and HV-infected pigs at 3 dpi. At 7 and 10 dpi, this

high level of expression dropped to lower levels, and in some

pigs to the (normal) levels observed in uninfected pigs. In

contrast, PCR results obtained for C4bp expression in

MRLNs of LV- and HV-infected pigs at 3 dpi (Fig. 4) did

not match with the data of the microarray, most likely due to

a naturally occurring high inter-animal variation of C4bp
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expression in the MRLN (see control animals in Fig. 4).

However, similar to what was observed for the MV strain,

C4bp expression was significantly reduced at 7 and 10 dpi in

MRLNs and spleens of most HV-infected pigs (Figs. 3, 4).

In all three immune organs of most MV- and HV-

infected pigs, a high level of virus seemed to be associated

with a low level of up-regulation of OAS2, CXCL10,

and TRAIL. For LV-infected pigs, this inverse correlation

between viral replication and anti-viral gene expression

was also apparent in spleens and MRLNs obtained at

3 dpi and in spleens obtained at 7 dpi. However, in

spleens and MLRNs collected from LV-infected pigs at

10 dpi, hardly any (or no) viral replication could be

detected and no significant up-regulation of these anti-viral
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genes was observed. These results suggested that

regulation of OAS2, CXCL10, and TRAIL gene expression

in these immune organs is tightly linked to replica-

tion of CSFV. Interestingly, an inverse correlation

between virus replication and IFNa gene expression was

also observed in immune organs of a few infected pigs

(marked with an asterisk in Fig. 4, p-value \0.05).

Because IFNa gene expression in uninfected pigs was

very capricious (see control animals in Fig. 4), more data

are needed to draw conclusions about this.
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Discussion

In the present study, we investigated the factors involved in

the immune response of pigs during CSFV infection by

determining gene expression profiles in immune organs.

We demonstrate the extent of the porcine immune response

against CSFV and the modulation of the host-signalling

pathways by the virus. Besides the up-regulation of a

cluster of IFN-c-induced genes (AIF-1, IFI16, and GBP-2)

in MRLN specifically induced by low virulent Brescia, no

other pronounced qualitative differences in modulation of

host pathways were detected between the strains of dif-

ferent virulence tested here. This emphasizes the complex

interplay between CSFV and its host, in which subtle dif-

ferences in genetic background of the virus and subtle

differences in host factors, e.g., age and breed [21, 48], are

decisive for the course of this viral disease.

The gene expression profiles provided by microarray

indicated that enty and replication of CSFV modulated

every part of the porcine immune system: (1) innate

immunity with its humoral and chemical barriers such as

the complement system and inflammation, as well as
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Fig. 4 Gene expression in

MRNL (*p-value \0.05)
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cellular barriers such as phagocytes, and (2) adaptive

immunity, which involves B cells, killer T cells, and helper

T cells.

Cytokines and chemokines such as IL6, IL8, TNF-a,

IFNs, IL10 and IL12 have been demonstrated to be induced

by CSFV [7, 38]. However, in the present study, CXCL10

is the most strongly up-regulated cytokine. CXCL10 (alias

IP10) has been reported to be involved in effector T cell,

monocyte and NK recruitment in response to infections

with viruses involved in neurological disease, liver disease,

heart disease and hemorrhagic fever disease [1, 18, 41, 44,

45]. It also has a pro-apoptotic effect via the p53-mediated

(intrinsic) apoptotic pathway [76], which, according to our

gene expression profiles, was also found to be activated by

CSFV. This suggests that CXCL10 plays an important role

in innate immunity through the recruitment of immune

cells but also as a potential pro-apoptotic factor in CSFV

disease.

The activation of TRAIL by CSFV confirms the con-

clusions of previous studies showing that programmed cell

death is involved in the mechanism of lymphopenia during

CSF [19, 66] and extends the list of death ligands known to

be used by CSFV (TNF-a and FAS). Indeed, TRAIL

functions as an antiviral protein [13, 72] by inducing cell

death in infected cells via the extrinsic pathway but can

also induce immunosuppression. It has been demonstrated

that viruses such as HIV, measles virus, and cytomegalo-

virus infect DCs and induce TRAIL and TNF-a expression

on their surface [64, 71]. Such DCs cannot present antigens

and prime T cells for the generation of virus-specific CTLs.

Instead, they kill interacting T, B and NK cells via the FAS

and TRAIL/death-receptor pathway. This suggests that

TRAIL plays a key role in the induction of apoptosis in

uninfected cells and is also an immunosuppressor in CSF.

CFSV, by its replication in host cells, induced ER stress

and oxidative stress, which intrinsically trigger apoptosis.

As a countermeasure, several anti-apoptotic genes may

have been activated, such as MCL1 (a gene related to

Bcl-2), glutathione metabolism genes, and the gene for the

Ca2? regulation/transport protein calbindin. These obser-

vations are in agreement with previous in vitro studies with

bovine virus diarrhoea virus, in which Bcl-2 gene expres-

sion was up-regulated in MDBK cells infected with a

noncytopathic strain and down-regulated in these cells

when infected with a cytopathic strain [6, 40]. This Bcl-2

down-regulation resulted in a reduced production of the

antioxidant glutathione. Other viruses such as African

swine fever virus or Epstein-Barr virus are known to reg-

ulate apoptosis by the synthesis of a viral protein homol-

ogous to Bcl-2 ([54], reviewed in Ref. [22]). Our results

suggest that such anti-apoptotic gene activation, which may

afford significant protection against virus-induced cell

death, also may play a role in the pathogenesis of CSFV.

No genes involved in NO metabolism were found to be

regulated by CSFV.

The results show IFN-response-gene activation,

although no significant up-regulation of IFN genes was

found. This could be explained either by very early and

short IFN expression (before day 3) [35] or by a low level

of IFN expression produced by plasmacytoid DCs, which

were not inhibited by CSFV [2, 57, 67] and probably

undetectable by microarray due to the relatively low con-

centration of these cells in whole tissue samples.

CSFV also affects the regulation of the complement

system by shutting down the normal host complement

inhibitor C4bp. Since the complement regulator proteins

(C4bp, factor H and factor I) have been shown to be major

targets for inhibition of complement by viruses [20, 25],

this down-regulation could reflect a viral defence response.

However, C4pb has been implicated in other functions such

as B-cell activation and the removal of apoptotic cells and

bacteria (reviewed in Ref. [10]). Therefore, further inves-

tigation is necessary for a better comprehension of the

C4bp function in CSF.

Ubiquitin-mediated proteolysis by the proteasome,

another pathway identified by the microarray, is involved

in directing protein trafficking and degradation (reviewed

in Ref. [46]). In CSFV infection, the proteasome has been

shown to degrade interferon regulatory factor 3 (IRF3)

after interaction with viral protein N-Pro [4, 60], leading to

the interruption of the transcription of IFNs. In addition, it

has been shown that various other viruses can stimulate

ubiquitin-mediated degradation of regulatory factors for

their own benefit, for example, to support evasion of the

host immune system (e.g., MHCI or STAT1 and 2, regu-

lators of IFN expression; [26]), and to suppress apoptosis

(e.g., the degradation of IAP, NFKB or Bcl-2; reviewed in

Ref. [39]). Given that CFSV infection leads to immune

suppression and apoptosis, the ubiquitin-proteasome is

more likely to be used by CSFV to control, in addition of

the IRF3, some of those crucial pathways. Anti-viral gene

expressions (OAS2, CXCL10) and pro-apoptotic gene

expression (TRAIL) showed a marked decrease when the

virus replicated to a high level.

Although the WBC count is low in the animals at that

stage of the disease (7 and 10 dpi), the depletion of T cells

and DC cells does not by itself explain the decrease in gene

expression. All of the gene data were normalized with 18S

and beta-actin genes in order to eliminate this type of error.

In addition, not all of the tested genes showed a decrease in

gene expression. For example, MOP5 (data not shown)

which is also an IFN-induced gene, showed no significant

decrease in gene expression at 7 and 10 dpi.

This study also suggests that CSFV can modulate host-

signalling pathways to enhance its persistence and sur-

vival.The exact mechanism of the modulation remains to
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be elucidated. However, several strategies have already

been identified to control those pathways. For example,

poliovirus, reovirus and influenza A virus can inhibit OAS

activation by viral dsRNA-protein binding (reviewed in

Ref. [63]). Several RNA and DNA viruses block IFN

signaling in order to inhibit multiple pathways simulta-

neously, such as cellular antiviral enzymes (OAS, PKR,

Mx1), anti-inflammatory response (CXCL10), and death

ligands (TRAIL, FAS, TNF-a; reviewed in Ref. [53]). In

addition to modulation of IFN production by Npro and

Erns [28, 34, 37, 47], the pestivirus BVDV shows modu-

lation of IFN signaling, such as PKR and MX activities, to

establish a persistent infection [29, 59].

In conclusion, the functional analyses of gene expres-

sion show that most of the expressed genes contribute to

anti-virus defense responses and pathogenesis of CSFV,

while others reflect viral defense responses. Therefore, our

findings can provide new insights into understanding the

molecular basis of pathogenesis in CSFV pigs.
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