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dusting procedures (Zhang et al. 2017). In wind power pro-
duction, a forecast with lead times of even few second may 
help to guarantee the stability of the electrical grid (Peng 
et al. 2016). From the times of Romans to WWII, forecast-
ing wind patterns was even a key to success for military 
operations (e.g. Lowe 2000, Gross 2022). Thanks to the 
availability of large datasets, machine learning, or similarly 
conceived models could soon outdate physical modelling 
(Schultz et al. 2021). However, weather models are quite 
limited on the temporary scale, ca. 10 days (Zhang et al. 
2019), making them unsuitable to predict long term wind 
variations, which is again a key variable.

In turn, feasibility studies of wind farms (Koletsis et al. 
2016), insurances (Collier et al. 2021), and environmental 
policies (Zhao et al. 2021) require prediction of medium/
long term wind fields, that can be affected by climate 
changes, cascading into changes in weather, and wind 
trajectories. For this reason, the IPCC panel uses Global 

1  Introduction

1.1  Wind forecast and future scenarios

Prediction of wind speed is relevant in several crucial fields. 
It is vital for issuing of alerts, to prevent potential catas-
trophes represented by hurricanes (Pant and Cha 2019) and 
storm surge (Barbariol et al. 2022), and limit economic 
damages. Forecast of wind speed is useful in the air/sea 
transport sector, and one can e.g. reduce fuel consumption 
and CO2 emissions (e.g. Prats et al. 2022; Sun et al. 2022). 
In agriculture, wind forecast helps scheduling spraying, and 
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Near-surface wind speed is a key climatic variable, affecting many sectors, such as energy production, air pollution, and 
natural hazard. Lombardy region of Italy is among the European areas with lowest average wind speed, leading gener-
ally to low air quality and wind energy potential. However, it is also one of the most affected area by tornadoes in Italy. 
Here we investigate possible changes in wind circulation as due to prospective global warming. We analysed wind speed 
WS under future scenarios (SSP1-2.6 and SSP5-8.5) from six Global Climate Models (GCMs) until 2100, tuned against 
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correct locally GCMs outputs. Three statistical tests, i.e. Linear Regression, Mann Kendall, Moving Window Average, 
were carried out to analyse future trends of: annual WS averages, 95th quantile (as an indicator of large WS), and the 
number of days of calm wind per year (NWC). The proposed STRC algorithm can successfully adjust the mean, stan-
dard deviation, and autocorrelation structure of the GCM outputs. No strong trends are found for the future. The chosen 
variables would all display non-stationarity, and the 95th percentile display a positive trend for most of the stations. 
Concerning NWC, notable discrepancies among GCMs are seen. The STRC algorithm can be used to successfully adjust 
GCMs outputs to reflect locally observed data and to then generate credible long-term scenarios for WSs as a tool for 
decision-making.
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Circulation Models (GCMs) that physically simulate mul-
tiple phenomena, including wind, and project climate sce-
narios based on various Social Economic Pathways (SSPs) 
until 2100.

1.2  GCMs downscaling

Because they operate at the global scale, GCMs have a large 
space resolution, ca. 200  km, which is mostly unsuitable 
for local studies. Indeed, climate variables, and particularly 
wind speed, can vary significantly, even in flat areas, within 
the span of few kilometres (Hubbard 1994). To tune the out-
put of GCMs to local weather condition, one can implement 
downscaling, which provides weather outputs at a given/
chosen resolution. Several techniques of downscaling were 
developed hitherto, and can be roughly folded into two main 
approaches, i.e. dynamic, and statistical (e.g. Keller et al. 
2022).

Dynamical downscaling uses outputs from GCMs as 
input to regional/local climate models, in turn providing 
in output regional/local climate variables. Accordingly, 
dynamic downscaling considers the complexity, and topog-
raphy of the study area, and may provide better results in 
terms of spatial and temporal variability (Vaittinada Ayar et 
al. 2016), at the cost of computationally extensive /expen-
sive simulations.

Statistical downscaling on the other hand uses local cli-
mate series, to modify GCMs outputs, basing on statistical, 
data driven relationships. These statistical rules are then 
applied for future scenarios to produce local climate series 
from large scale projections.

While being faster, statistical downscaling requires long 
as possible historical data to provide robust parameteriza-
tion. Both methodologies, and hybrid versions of the two, 
were used to assess future wind scenarios (e.g. Nolan et al. 
2012; Gonzalez-Aparicio et al. 2017; Reyers et al. 2015). 
While dynamical downscaling models may provide consis-
tent results to assess overall wind variations on a regional 
scale, at point scale, due to the extreme spatial variability of 
wind, a statistical model may provide better results.

Here we analysed daily wind speed, from 10 climate sta-
tions during 25 years in Lombardy region, Italy, and we pro-
jected future scenarios of wind using a statistical approach 
(namely, Stochastic Time Random Cascade STRC, properly 
introduced here, and tuned locally). Downscaled daily val-
ues were then aggregated in the three variables of interest: 
average wind speed, number of days per year of calm wind, 
and 95% quantile wind speed. To these variables we then 
applied test statistics (Linear Regression, Mann Kendall, 
Moving Window) to detect possible trends or non-stationary 
processes.

1.3  Study area

Lombardy is the most populated region of Italy, with almost 
10 million people located in a 23,863 km2 area. It is also the 
largest industrial area of the country, and one of the larg-
est in Europe. The region is almost equally divided between 
flatlands, and mountain regions, and the latter provides 
large water resources, used for industrial and agricultural 
purposes, in the Po Plain. Landlocked by the Alps in the 
North, and the Apennines in the South, wind recirculation 
in the Po Plain is mainly occurring from the Adriatic Sea on 
the East, leading to low wind velocity values. Wind power 
production in Lombardy is very modest, with only 12 wind 
farms, producing 0.06 MW (Terna 2023), but that is only 
a minor consequence of the scarce wind velocities in the 
region. The combination of the latter, with high urbanisation 
and industrialisation, makes Lombardy a most polluted area 
in Europe (Maranzano 2022), with several deaths yearly 
attributed to PM10 concentration (Baccini et al. 2011). Still, 
Po Plain is also the area of Italy most affected by tornadoes 
(Miglietta and Matsangouras 2018), as witnessed in July 
2023, when a wind storm in Milan reached velocities over 
100 km/h (Arpa 2023) causing severe damages.

2  Data and methods

2.1  Wind stations data

The wind speed (WS) observed data analysed in the study 
were measured by automatic weather stations operated by 
the Regional Environmental Protection Agency, Arpa Lom-
bardia, which provides WS data every 10, or 60 min in more 
than 500 stations, since 1989. However, only 230 of such 
station operated for more than 10 years, and all of them 
have frequent data gaps. Here, we selected 10 stations, with 
the longest periods of data collection, and the fewer gaps. 
These stations display a wide range of altitude, from 96 to 
2108 m a.s.l. (Fig. 1; Table 1). Each station was assigned 
to a specific elevation class based on criteria outlined by 
the Central Statistics Institute of Italy (ISTAT 2024), dis-
tinguishing between plain (below 300 m a.s.l.), hill (300 to 
600  m a.s.l.), and mountain (above 600  m a.s.l.) regions. 
The elevation class is not strictly determined by the station’s 
elevation, but rather by the predominant elevations of the 
entire municipality. This decision was made to account for 
the topographic characteristics of the surrounding environ-
ment in our analysis, as these factors significantly influence 
the local wind patterns.

Starting from daily average data, we computed at monthly 
scale: the average WS, the number of days of calm wind 
(NCW), i.e. with WS < 1 m/s, and the 95th quantile (Fig. 2). 
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Fig. 1  (a) Map of Lombardy region with considered wind station clustered for elevation class. (b) Data availability for each station
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thereby. The GCMs considered have spatial resolution 
between 80 and 130 km. A first comparison between ground 
observations, and GCMs showed a low correspondence 
(Fig. 4). Specifically, this discrepancy is seen as:

i)	 A discernible bias in the calculated averages (Fig. 4a), 
with most GCMs tending to overestimate the wind speed 
(MPIESM being the one with the highest bias). Con-
versely, HADGEM3 and MIROC6 display relatively 
smaller biases, but they exhibit a tendency towards 
underestimation, particularly pronounced when consid-
ering station CA, which ranks second in altitude and 
records the highest wind speed values (both in terms of 
average and the 95th quantile) and exhibits the lowest 
NCW values (Fig. 2).

ii)	 Distinct differences of the coefficient of variation (CV). 
Most GCMs exhibit a negative bias in their CV val-
ues (Fig.  4b), indicating a smoother signal compared 
to the observed data. This disparity in wind variability 
is a somewhat common occurrence when comparing 
GCMs with local observational data, likely attributable 
to coarse spatial resolution of the former. However, it 
is noteworthy that two specific models, MIROC6 and 
MPI-ESM, exhibit a higher level of variability with 
respect to five, out of the ten monitoring stations. Sta-
tion DB, in particular, stands out displaying lowest vari-
ability, despite being located in a mountain region, with 
high wind speed values, second only to the high-altitude 
station CA.

iii)	 Substantial differences in the autocorrelation structure 
(Fig. 5). In the case of 8 out of the 10 monitoring sta-
tions, the GCMs, with the exception of MIROC6, dis-
play autocorrelation values with very rapid decline, 
when compared against observed data. GCMs thus 
fail to faithfully capture periodicity in wind speed 
variations.

To further examine the alignment between GCMs and 
observed data, we employed Pearson correlation coefficient 

We chose these additional indicators because Lombardy 
is both (i) the Italian region with lowest WSs, and thereby 
highest NCW, and (ii) one of the regions most affected by 
windstorms (Miglietta and Matsangouras 2018). The station 
with the highest WS values is CA, in the mountains, while 
lowest values are seen in BG and CP, on hilly, and flat turf, 
respectively. Seasonality of WS is evident only for DB sta-
tion, while more relevant cyclical behaviour is detected for 
NCW, where 4 stations (AR, TR, VI, ED) similarly show 
lowest values in summer.

As a further preliminary analysis, we assessed spatial 
correlation of WS through Pearson coefficient. In Fig.  3 
it is shown (a) the correlation of WS between stations, 
against horizontal distance, (b) the minimum, average and 
maximum correlation values for each station against oth-
ers. As expected, correlation is strongly related to distance, 
and higher for stations within the Po Valley (BG, CP, AG, 
AR, TR). This seemingly indicates an overall homogene-
ity, and generally calm wind of the area. On the other hand, 
the stations placed in the mountains (CA, ED, DB) show 
lower correlation values, likely because wind fields depend 
upon local microclimate conditions. It seems clear here that 
WS is a complex variable, not only affected by topography, 
but likely by other important factors, playing a role in wind 
circulation.

2.2  Global circulation models

Six Global Circulation Models (GCMs), EC-EARTH3, 
CESM2, MIROC6, CMCC-CM2, MPI-ESM, and Had-
GEM3, were considered. These come from the Assessment 
Report 6 of the Intergovernmental Panel on Climate Change 
(IPCC). We assessed potential wind scenarios in Lombardy 
according to two Shared Socioeconomic Pathways: SSP1-
2.6 (cut to net zero CO2 emissions around 2075 and esti-
mated warming of + 1.4 °C by 2100) and SSP5-8.5 (CO2 
emissions triple by 2075 and estimated warming of + 4.4 °C 
by 2100), giving somehow the expected extreme conditions 
in term of potential emission patterns, and climate evolution 

Table 1  ID and features of the weather stations
Station ID Municipality Altitude (m a.s.l.) Location Municipality elevation class Period of activity

Longitude Latitude Start End
BG Bergamo 249 9.661 45.696 Hill 01/01/1997 31/03/2010
CP Capralba 96 9.646 45.445 Plain 21/03/1996 29/12/2010
AG Agrate Brianza 162 9.354 45.576 Plain 13/03/1990 30/10/2013
VA Varese 193 8.615 45.814 Hill 27/10/2001 01/08/2012
DB Darfo Boario Terme 222 10.177 45.875 Mountain 12/02/2009 22/02/2023
AR Arconate 182 8.847 45.549 Plain 28/08/2002 22/02/2023
TR Trezzo sull’Adda 199 9.508 45.614 Plain 23/02/2001 22/02/2023
VI Vigevano 107 8.860 45.326 Plain 24/01/2004 31/12/2009
ED Edolo 2108 10.470 46.177 Mountain 01/01/2003 21/02/2023
CA Carona 1954 9.794 46.039 Mountain 01/01/2003 22/02/2023
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good enough to consider GCMs data as well representative 
of local (measured) values.

Collectively, the findings from our analysis thus far dem-
onstrate that the GCMs under scrutiny cannot generate daily 
WS time series aligning closely (in a statistical fashion) to 
the observed data. Therefore, one has to adjust GCMs out-
puts, to better conform to local wind conditions in the study 

as a quantitative measure. Correlation coefficients were cal-
culated between observations, and GCMs data within the 
corresponding geographical tiles, at daily (Fig.  6a), and 
monthly scale (Fig. 6b). Correlation values are notably low, 
particularly at daily scale, failing to attain values above 
0.1 for any combination of GCM and monitoring station. 
Considering monthly values, correlation is generally better, 
with a substantial improvement for HADGEM3, and yet not 

Fig. 2  (a) Average, (b) 95th quan-
tile and (c) number of days of 
calm wind computed at monthly 
scale for each station
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ultimately ending in the nodes at the bottom, which corre-
sponds to the variable at the finest resolution (i.e. the output 
of the algorithm).

This method enables to increase the spatial or temporal 
resolution of a signal while concurrently preserving the 
spatial or temporal correlation structure observed in the 
measured data. In our specific application, it allowed us to 
downscale GCMs data from monthly scale, which we con-
sidered to be more consistent than daily data, to synthetic 
daily series, where it is preserved the time-wise autocorrela-
tion structure identified in the observations.

2.4  STRC algorithm structure

Within the framework of the STRC algorithm, the first step 
requires to correct the GCMs data with a month specific cor-
rection factor αi

 obtained by the following:

αi =

−
WSOBS,i

−
WSGCM,i

� (1)

Where 
−

WSOBS,i is the average value of the WS observations 
of the month i , and 

−
WSGCM,i is the average value of the 

GCM WS data for the same month.

area, which is pivotal to understanding wind fields’ dynam-
ics within the study area.

2.3  The Stochastic Time Random Cascade 
downscaling

To correct the discrepancies in the GCMs data, we employed 
a Stochastic Time Random Cascade (STRC) algorithm. This 
method has been widely used in the field of meteorology, 
primarily for modelling the spatial distribution of meteo-
rological variables, with a notable focus on precipitation 
(Schertzer and Lovejoy 1987; Gupta and Waymire 1993; 
Over and Gupta 1994; Deidda 2000). Moreover, it has been 
specifically applied for spatial downscaling of GCMs pre-
cipitation outputs (Bocchiola 2007; Groppelli et al. 2011). 
Importantly, the STRC algorithm structure allows to extend 
its application to also model the temporal distribution of a 
variable, as we have done in this study with daily WS values.

The STRC algorithm is based on a branching tree struc-
ture (Fig. 7), where each layer of the tree represents the vari-
able at a different scale (e.g. Bocchiola and Rosso 2006). 
The node positioned at the top of the tree, namely the root 
node, represents the coarsest resolution data (i.e. the input 
of the algorithm). Moving downwards, each subsequent 
layer is characterized by a progressively finer resolution, 

Fig. 3  (a) Pearson correlation values of WS for each station as a function of the distance. (b) Minimum, average and maximum correlation value 
for each station with all the others. Colour code represents station considered in the comparison

 

1 3



Statistical downscaling of GCMs wind speed data for trend analysis of future scenarios: a case study in the…

the two parameters are uniquely interrelated, reducing to 
one (i.e. variance) the number of calibration parameters.

The choice of the lognormal distribution was also tested 
against another typically adopted distribution, i.e. Weibull 
(Ozay and Celiktas 2016; Pishgar-Komleh et al. 2015), the 
former giving better performance (see Sect. 3.1).

The generic WS value i at the scale s can be computed 
starting from the value at the root node as follows:

WSi
s = WS0

s∏

j=1

MFi
j � (2)

Where WS0 is the input value (i.e. the data at the coars-
est resolution) and MFi

j  is the multiplicative factor for the 
value i at the layer j. The statistics of the lognormal distribu-
tion of the factor y are the following:

E [MFs] = 1� (3)

V AR [MFs] = ϑ2
MF s � (4)

Then, the values in each layer are generated, by multi-
plying the corresponding value of the preceding layer by 
distinct multiplicative factors (MFs). The MFs are stochas-
tically drawn from a probability distribution. Notably, the 
parameters of the distribution vary for each layer-to-layer 
downward step, and are estimated from the observations. In 
this study, we decided to employ the lognormal distribution 
to model the MF. This fits with established practice in the 
application of the STRC algorithm, basing on the following 
consideration:

i)	 The product of two variables, each following a loga-
rithmic distribution, is itself described by a logarithmic 
distribution. This property applies well in the field of 
meteorology, as numerous variables have been empiri-
cally observed to exhibit lognormal distribution char-
acteristics (Baran and Lerch 2015; Bocchiola 2007; 
Tustison et al. 2002; Marsan et al. 1996; Tapley and 
Waylen 1990).

ii)	 The two parameters of the lognormal distribution (i.e. 
m, s), are directly linked to the average value of the dis-
tribution. Consequently, if the average value is known, 

Fig. 4  (a) Difference of average 
WS between GCMs estimates 
and observation. (b) Difference 
of the coefficient of variation 
(CV) between GCMs estimates 
and observation. Positive values 
point to overestimate of WS/vari-
ability of GCMs with respect to 
observed data
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Fig. 6  Pearson linear correla-
tion between (a) daily observed 
WS and daily simulated WS and 
(b) monthly observed WS and 
monthly simulated WS

 

Fig. 5  Comparison between autocorrelation of observed WS (black line) and simulated WS by GCMs: uncorrected (red line) and downscaled (DS, 
green line), for the 10 monitoring stations
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multiplying one value of the layer above by a MF. Due to 
the inherent structure of the algorithm, it follows that val-
ues derived from the same “parent” branch exhibit a higher 
degree of correlation with each other, compared to values 
obtained from a different “parent” branch. For the same rea-
son, values originating from neighbouring “parents” display 
stronger correlations than values originating from “parents” 
farther apart in the tree structure. This structure aids pro-
duction of downscaled data characterized by autocorrela-
tion patterns that diminish as the time lag increases, with 
a rate that closely approximates the observed autocorrela-
tion behaviour. Note that the calibration of σlnMF

 is done 
for every station individually, since ground based WS data 
showed a marked difference in the autocorrelation structure.

2.5  Trend analysis tests

To pursue a comprehensive trend analysis on the corrected 
GCMs data, we employed three distinct trend assessment 
methods:

i)	 The Linear Regression F-test was utilized to investigate 
the presence of a linear trend within the time series data.

ii)	 The Mann-Kendall test (Kendall 1975), a non-paramet-
ric test, was applied to examine whether there exists 
a monotonic trend in the data, without making any 
assumptions about the rate of the trend.

Equation (2) yields the average conservation of the mass in 
the cascade and it is a direct consequence of the application 
of the correction factor in Eq. 1. Since the expected value of 
a lognormal distribution is given by:

E [MFs] = eµlnMFs+
1
2ϑ

2
lnMFs � (5)

From Eqs.  (2) and (4) we can write the parameters of the 
lognormal distribution as follows:

MFs ∼ LN(−1

2
σ2
lnMF , σlnMF )� (6)

As mentioned before, from Eq. (5) one only needs to esti-
mate one parameter, σlnMF

. We employed an iterative esti-
mation algorithm, identifying σlnMF

, by variance fitting, i.e. 
minimizing the difference of the standard deviation between 
the observation and the GCMs downscaled data, at each 
time scale (i.e. for every layer of the tree structure).

In this study, we apply the algorithm for each station, by 
starting from the mean monthly value of the corresponding 
GCM cell, which is then downscaled at daily scale. The tree 
structure consists of four layers (branches), then split into 
two, three and five new branches, respectively (see Fig. 7). 
The upper layer represents the monthly average data from 
the GCM, while the layers below represent 15 days, 5 days 
and daily averages. Every value at each layer is obtained 

Fig. 7  Tree structure of the STRC algorithm employed to downscale monthly average WS data from the GCMs to a daily time scale
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However, there are exceptions, particularly evident in the 
higher MF values of specific stations (e.g. CP, VA, and 
ED). Notably, the QQ plot shapes suggest that these sta-
tions exhibit MF value distributions with a fatter right tail, 
as compared to a lognormal distribution. Consequently, for 
such stations, we expect a decreased reliability of the STRC 
algorithm for high WS values. The insights from the QQ 
plots find confirmation in the Goodness of Fit tests con-
ducted on the MF (Fig. 9). A substantial number of stations 
pass the Chi-Squared test with the majority of the GCMs. 
However, fewer GCMs pass the Kolmogorov-Smirnov and 
Anderson-Darling tests, primarily because these tests place 
greater emphasis on the tails of the distribution, which cor-
responds to a vulnerability in the MF of specific stations. In 
conclusion, we believe these findings provide enough justi-
fication for employing a lognormal distribution to character-
ize the bulk of the MF distribution, while showing potential 
limitations in representing high-extreme WS events.

3.2  STRC downscale calibration

The STRC algorithm is calibrated for each weather sta-
tion and every GCM. σlnMF

 is computed for every layer of 
the tree structures with an iterative algorithm, which mini-
mizes the difference on the standard deviation between the 
observations and the downscaled GCMs data, at every time 
scale (i.e. every layer of the tree). In this study σlnMF

 was 
computed specifically for individual months. This decision 

iii)	 The Moving Window Average test (De Michele et al. 
1998) was employed to assess whether the data series 
exhibit stationarity or exhibit significant deviations 
from the mean. This was accomplished by compar-
ing the moving average over 30-year periods (WMO, 
2017).

These trend tests were pursued on the same variables pre-
viously analysed (i.e. yearly averages, 95th quantiles and 
NCW). The data series subject to testing pertained to the 
future projections of WS under the SSP1-2.6 and SSP5-8.5 
scenarios, during 2015–2100. These projections were down-
scaled for each monitoring station. All tests were executed 
with a 95% confidence level.

3  Results and discussion

3.1  Distribution of observed multiplicative factors

The initial assumption requiring evaluation pertains to the 
distribution of the MF, derived computing the ratio between 
daily WS observations and corrected GCMs data (i.e. mul-
tiplied by the factor αi

). Quantile-Quantile (QQ) plots in 
Fig.  8 (Marden 2004), compare quantiles of the natural 
logarithm of observed MF values (Y axis), against those 
of a normal distribution (X axis). For most stations, MF 
values are well approximated by a lognormal distribution. 

Fig. 8  Quantile-Quantile plots of the MF computed between WS observations and GCMs data, for each station
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months, and higher variability during winter months, which 
suggests a corresponding behaviour of the variability of the 
WS (confirmed by observations, Fig. 2).

was made based on the observation of pronounced sea-
sonality in WS data across multiple weather stations, that 
may imply different distributions parameters of the MF. 
As expected, the estimated σlnMF

 increases as time scale 
decreases (Fig. 10). Notably, a clear time dependence is vis-
ible for 5-days average and, more evidently, for daily aver-
ages, showing lower variability of the MF during summer 

Fig. 10  σlnMF
 computed for 

each month, for the different 
layers of the STRC algorithm. 
The value of the parameter and 
its monthly changes increase with 
the temporal scale

 

Fig. 9  Number of GCMs that 
passes the goodness of fit-
ness tests, divided by test (Chi 
squared, Kolmogorov-Smirnov 
and Anderson-Darling) and by 
station
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scope of WS analysis, as no downscaling methods that 
we know of deals with for this facet. We suggest that 
this circumstance is noteworthy when carrying out WS 
analysis (e.g. proper representation of autocorrelation in 
time may be key for short term forecast when using the 
STRC, e.g. Bocchiola and Rosso 2006).

3.4  Trend tests results

A comprehensive assessment of the time series downscaled 
data was conducted for two distinct scenarios, SSP1-2.6 and 
SSP5-8.5. The results of the trend analyses show as follows:

i)	 Absence of statistically significant trends in the annual 
average wind speeds (Table 2). However, it is notewor-
thy that a considerable portion of the models exhibited 
non-stationary behaviour in certain weather stations. 
This phenomenon was more pronounced in the SSP5-
8.5 scenario, maybe indicating an amplification of 
non-stationary behaviour of wind patterns in a higher 
emissions scenario.

ii)	 Substantial positive trends were identified in the 95th 
quantile of wind speed across all models (Table  3). 

3.3  Downscaling output

The adjusted WS time series were compared with the 
observed data, revealing a significantly improved alignment 
in contrast to the unadjusted ones. Specifically, three key 
observations can be made:

i)	 Discrepancies in the total average values become negli-
gible. The use of a correction factor based upon average 
values results in deviations from observed averages not 
exceeding 10%.

ii)	 Enhanced representativity is evident when considering 
the coefficient of variation (CV) of WS (Fig. 11). Devia-
tions from the observed CV values do not exceed 20% 
for 8 out of 10 stations. Conversely, station VA exhibits 
a pronounced deviation from the observed CV, meaning 
likely that the downscaled GCMs data display greater 
variability, compared against the observed data. This 
outcome could be caused by little adherence of MF in 
this station to a lognormal distribution (especially on 
the right tail, see Figs. 8 and 9).

iii)	 Enhanced fit is observed in the autocorrelation patterns 
between the observed and the downscaled GCMs data 
(Fig. 5). This finding is particularly relevant within the 

Table 2  Results of the trend tests (Linear Regression, LR, Mann-Kendall, MK and Moving-Window, MW) on the annual average of WS for the 
two scenarios (SSP1-2.6 and SSP5-8.5). For every model, the number of stations passing the test is indicated. The coefficient of the linear regres-
sion is indicated when the corresponding test is passed
WS SSP1-2.6 SSP5-8.5

LR [ms− 1·100y− 1] MK MW LR [ms− 1·100y− 1] MK MW
No. stations Coeff. No. stations No. stations No. stations Coeff. No. stations No. stations

CESM2 0 - 0 0 0 - 0 0
CMCCCM2 0 - 0 5 0 - 0 5
ECEARTH3 0 - 0 0 1 0.05 0 5
HADGEM3 0 - 0 2 0 - 0 4
MIROC6 0 - 0 1 0 - 0 7
MPIESM 0 - 0 5 0 - 0 1

Fig. 11  Error on the coefficient 
of variation (CV) computed sub-
tracting the CV of the observed 
WS to the CV of the corrected 
GCMs data. Compared to the 
uncorrected GCMs data the error 
on the CV is lower for almost all 
stations
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downscale method, often with opposite results. Notably, the 
main source of uncertainty typically arises from variance 
between GCMs (Koletsis et al. 2016).

Future scenarios in the Mediterranean region show a pre-
dominantly negative trend in WS. Donat et al. (2011), using 
Climate Models prior to 2007, found loss of wind storms 
(98th quantile) for the Mediterranean region. Similarly, 
Tobin et al. (2015), and Hueging et al. (2013) found a nega-
tive trend for wind energy production in the Mediterranean 
area. In another recent study (Bonanno et al., 2023), specific 
for Italy, a negative trend of wind power production was 
found, under the sole RCP 8.5 scenario. More specifically, 
the trend was detected in coastal regions, where wind power 
plants are located, while in inner areas, and particularly 
in the North, the trend is negligible. Some other scholars 
(Bloom et al. 2008; Kjellström et al. 2011) reported future 
negative trends, limited to the winter season, whereas in 
summer positive trends are found. This may be explained 
by alteration in large scale circulation patterns, e.g. result-
ing from a rise in anticyclonic impact, and a fall in cyclonic 
impact, while summer positives trend can be attributed to 
growth of air temperature.

However, numerous studies have reported highly uncer-
tain results, also in regions close to case study area. Medu-
gorac et al. (2021), when studying with RCMs storm surges 
from the Adriatic Sea, the main source of air recirculation in 
Po Valley, found small probability of change in wind fields. 
Often times, significant differences are found between 

Specifically, these trends indicated an average increase 
along the century, ranging from + 0.24 to + 0.39  m/s 
(from + 10% to + 17%), for the SSP1-2.6 scenario. 
Remarkably, one model displays a negative trend under 
SSP1-2.6. For the SSP5-8.5 scenario, the trends in the 
95th quantile varied between + 0.15 and + 0.46 m/s per 
100 years (from + 6% to + 20%), with all models dis-
playing positive trends.

iii)	 Consistent non-stationary behaviour of NCW val-
ues across all models and nearly all weather-stations 
(Table  4). Furthermore, the application of the Mann-
Kendall test and the linear regression test identified sig-
nificant trends in NCW for specific stations. However, 
the direction of these trends remains ambiguous: it is not 
clear whether the NCW is projected to either increase 
(as suggested by 5 models for the scenario SSP1-2.6 
and 2 models for the SSP5-8.5), or decrease (as sug-
gested by one model for the SSP1-2.6 and 2 models for 
the SSP5-8.5).

3.5  Wind scenarios in Mediterranean area

Overall, our trend analysis results highlight the considerable 
uncertainty, and variability of projected wind speed scenar-
ios in the Mediterranean area, where Lombardy region is 
laid. Trend’s magnitude, direction and location are depen-
dent upon the area, and influenced by the chosen GCM and 

Table 3  Results of the trend tests (Linear Regression, LR, Mann-Kendall, MK and Moving-Window, MW) on the 95th quantile of WS for the two 
scenarios (SSP1-2.6 and SSP5-8.5). For every model, the number of stations passing the test is indicated. The coefficient of the linear regression 
is indicated when the corresponding test is passed
95th SSP1-2.6 SSP5-8.5

LR [ms− 1·100y− 1] MK MW LR [ms− 1·100y− 1] MK MW
No. stations Coeff. No. stations No. stations No. stations Coeff. No. stations No. stations

CESM2 9 0.32 9 10 8 0.26 7 9
CMCCCM2 1 -0.14 1 10 2 0.15 2 8
ECEARTH3 7 0.27 4 8 2 0.22 0 8
HADGEM3 4 0.25 4 9 9 0.24 8 10
MIROC6 8 0.24 9 9 1 0.46 2 9
MPIESM 10 0.39 10 10 6 0.30 7 10

Table 4  Results of the trend tests (Linear Regression, LR, Mann-Kendall, MK and Moving-Window, MW) on the annual number of calm wind 
for the two scenarios (SSP1-2.6 and SSP5-8.5). For every model, the number of stations passing the test is indicated. The coefficient of the linear 
regression is indicated when the corresponding test is passed
NCW SSP1-2.6 SSP5-8.5

LR [ndays·100 y− 1] MK MW LR [ndays·100 y− 1] MK MW
No. stations Coeff. No. stations No. stations No. stations Coeff. No. stations No. stations

CESM2 9 -22.4 8 10 5 -15.9 4 9
CMCCCM2 3 17.2 3 9 5 20.1 5 10
ECEARTH3 3 -14.8 3 8 1 13.4 1 8
HADGEM3 1 -14.2 3 10 7 -21.3 7 9
MIROC6 9 -20.7 9 9 0 - 0 8
MPIESM 10 -31.8 10 10 3 -18.8 4 10
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supplying the wind speed data collected by the weather stations and 
for their contribution in the development of the study.
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