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Abstract
A spatiotemporal oscillator model for El Niño/Southern Oscillation (ENSO) is constructed based on the thermodynamics 
and thermocline dynamics. The model is enclosed by introducing a proportional relationship between the gradient in sea 
surface temperature (SST) and the oceanic zonal current and can be transformed into a standard wave equation that can be 
decomposed into a series of eigenmodes by cosine series expansion. Each eigenmode shows a spatial mode that oscillates 
with its natural frequency. The first spatial mode, that highlights SST anomaly (SSTA) contrast between the eastern and 
western Pacific—a fundamental characteristic of the eastern Pacific (EP) El Niño events, oscillates with a natural period of 
around 4.6 years, consistent with the quasi-quadrennial (QQ) mode. The second spatial mode, that emphasizes SSTA contrast 
between the central and the eastern, western Pacific—a basic spatial structure of the central Pacific (CP) El Niño events, 
oscillates with a natural period of 2.3 years that is half of the first natural period. It is also consistent with the quasi-biennial 
(QB) modes. The combinations of the eigenmodes with different weights can feature complex spatiotemporal variations 
in SSTAs. In open ocean that is far away from the coastlines, the model can predict waves propagating both eastward and 
westward. Besides, the net surface heating further complicates the temporal variations by exerting forced frequencies. The 
model unifies the temporal and spatial variations and may provide a comprehensive viewpoint for understanding the complex 
spatiotemporal variations of ENSO.

1 Introduction

The El Niño/Southern Oscillation (ENSO) phenomenon, 
manifested by the great swings of large-scale sea surface 
temperature anomalies (SSTAs) over the equatorial central 
to eastern Pacific oceans, is a major source of interannual 
global shifts in climate patterns and weather activities (Jin 
2022). ENSO originates in the tropical Pacific through 
interactions between the ocean and the atmosphere, but its 
environmental and socioeconomic impacts are felt world-
wide (McPhaden et al. 2006). Based on the continuous 
observation in the tropical Pacific by the Tropical Ocean 
Global Atmosphere (TOGA) program, our understanding 
of ENSO has made significant process (Wang and Picaut 
2004; McPhaden et al. 2010) and has continued to evolve as 
new layers of complexity that refers to the diversity in spatial 

patterns, amplitude, and temporal evolution (Timmermann 
et al. 2018).

To deal with the temporal evolution, it is natural to high-
light the variation of SSTAs in the central to eastern Pacific. 
This naturally leads to the neglect of the west-east gradients 
in SSTAs, hence the spatial structure. The delayed oscillator 
model (Suarez and Schopf 1988; Battisti and Hirst 1989) 
introduces a time delay term to include the effects of the oce-
anic Rossby and Kelvin wave transit that had been noticed 
by McCreary (1983) in a simple coupled ocean-atmosphere 
model. The recharge oscillator (RO) model (Jin 1997) com-
bines SST dynamics and oceanic adjustment dynamics into 
a coupled basin-wide RO framework that relies on the non-
equilibrium between the zonal mean equatorial thermocline 
depth and the wind stress. There are other types of theoretical 
models to highlight different physical processes, such as the 
western Pacific oscillator model (Weisberg and Wang 1997), 
the advective-reflective oscillator model (Picaut et al. 1997), 
and the unified oscillator model (Wang 2001). The recent 
review by Wang (2018) explicitly compared the similarities 
and differences among these oscillator models. Specific to 
the RO framework, incorporating seasonality, nonlinearity, 
and multiscale processes, it allows for basic understanding 
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of how key physical processes determine ENSO’s proper-
ties, such as its amplitude, periodicity, phase‐locking, asym-
metry, and nonlinear rectification onto the mean state (Jin 
et al. 2020). For example, modified parameter RO models 
had reproduced the main phase-locking characteristics found 
in observation and suggested that seasonal modulation of the 
coupled stability is responsible for ENSO phase locking to 
the annual cycle (An and Jin 2011; Stein et al. 2014; Chen 
and Jin 2020). The state-dependent stochastic forcing in RO 
model enhances the instability of ENSO and its ensemble 
spread generates asymmetry in the predictability (Jin et al. 
2007; Levine and Jin 2010). RO framework with nonlinear 
advection may explain ENSO amplitude modulations and 
irregularity by applying the concept of homoclinic and het-
eroclinic connections (Jin 1998; Timmermann and Jin 2002; 
Timmermann et al. 2003).

To deal with the spatial diversity, theoretical and statisti-
cal analyses that are based on the observation and the model 
simulating are often used to interpret the observed two types 
of ENSO, now widely known as the central Pacific (CP) 
and the eastern Pacific (EP) El Niño events (Larkin and 
Harrison 2005a, b; Ashok et al. 2007; Kao and Yu 2009; 
Kug et al. 2009). For example, linear eigen-analysis of the 
Zebiak-Cane (ZC) model shows that there are two leading 
ENSO modes that have periods of around 4 and 2 years and 
thereby referred to the quadrennial (QQ) and quasi-biennial 
(QB) modes, respectively (Bejarano and Jin 2008; Xie and 
Jin 2018). This may be further demonstrated by natural ran-
dom variations in a multivariate, “patterns-based,” red noise 
model (Newman et al. 2011). Besides, new indices, such 
as the trans-Niño index (TNI) which is given by the differ-
ence in normalized SSTAs between NINO 1 + 2 and NINO 
4 regions (Trenberth and Stepaniak 2001) and the E and C 
indices that are based on the first two empirical orthogonal 
function (EOF) modes of tropical Pacific SSTAs (Takahashi 
et al. 2011), may also be introduced to describe the diver-
sity of patterns. Recently, Xie et al. (2020) further defined 
new indices of ENSO diversity that explicitly account for 
the nonlinear convection-SST sensitivity. The recent review 
by Capotondi et al. (2020) explicitly summarized the key 
aspects of ENSO’s spatial diversity.

The previous investigations had highlighted either the 
spatial or the temporal variations and had greatly promoted 
our understanding ENSO complexity. Recent works have 
attempted to systematically discuss the complex spatiotem-
poral pattern diversity (STPD). For example, Fang and Mu 
(2018) extended the RO model to a three-region conceptual 
model to describe the entire western, central, and eastern 
equatorial Pacific. Takahashi et al. (2019) suggested that it is 
sufficient to produce the two types of ENSO in the nonlinear 
RO model. Geng et al. (2020) constructed a nonlinear two-
box RO model to account for event diversity of ENSO. Chen 
et al. (2022) developed a three-region multiscale stochastic 

conceptual model for the ENSO complexity by introducing 
intra-seasonal and decadal components. The model was fur-
ther developed to realistically reproduce the strength, occur-
rence frequency, and spatiotemporal patterns of both EP and 
CP Niño events (Chen and Fang 2023). Besides, the model 
is also developed to assess the predictability and quantify 
the forecast uncertainty of ENSO complexity (Fang and 
Chen 2023). More recently, Geng and Jin (2023a, b) further 
investigated the dynamics of ENSO diversity within a ZC-
type model and suggested that the diversity is fundamentally 
generated by deterministic nonlinear pathways to chaos via 
the period-doubling route and, more prevailingly, the sub-
harmonic resonance route with the presence of a seasonally 
varying basic state. These works are basically the extension 
of the classic RO framework by introducing more variables. 
The spatial patterns are basically represented by two SSTA 
variables that are predetermined in advance. Therefore, as 
Jin (2022) proposed the scientific question in a recent review 
paper—can we achieve a conceptual understanding of ENSO 
STPD through a systematic investigation of various contrib-
uting sources in a similar way to the simple RO model for 
our understanding of the basic dynamics of ENSO?

To answer this question and to better understand ENSO 
STPD, this paper tries to provide a systematic view to inte-
grate the spatial and temporal variations by introducing a 
spatiotemporal oscillator model that stands on the shoul-
ders of the previous successes. This paper is organized as 
below. Following this introduction section, the spatiotem-
poral oscillator model is established by applying reason-
able assumptions to link the SSTA gradients with the zonal 
oceanic current anomaly in Section 2. The analytic solution 
is derived in Section 3. The solution suggests that SSTA 
STPD can be decomposed into spatial modes associated with 
natural oscillations. The first two spatial modes and their 
corresponding natural oscillations, as well as the different 
combinations of the two modes, are discussed in Section 4. 
The results show that they can feature the EP and CP El 
Niño events with complex temporal variations. The model’s 
assumptions and the propagation features are discussed in 
Section 5. Finally, a conclusion ends the paper in Section 6.

2  The spatiotemporal oscillator model

SSTAs for the central and eastern Pacific must be consid-
ered for capturing the essence of the CP and EP patterns 
(Jin 2022). However, if just introducing two variables to 
represent the SSTAs in the central and the eastern Pacific 
(e.g., TC and TE ), it will only follow the existing RO frame-
work and make it more complicated. Besides, comparing 
with the traditional practice that introduced two variables 
to represent the central and eastern Pacific SSTAs that natu-
rally lose the spatial distribution, the treatment that deals 



3283A spatiotemporal oscillator model for ENSO  

1 3

with the continuous SSTAs in the tropical Pacific will be 
more precise and can naturally analyze the spatial variations. 
Therefore, to better describe the spatiotemporal variations in 
SSTAs, let us start with the thermodynamic equation for the 
upper ocean mixed layer (Deser et al. 2010)

where T  is the mixed layer temperature (equal to the SST), 
u, v are the zonal, meridional currents in the mixed layer, 
respectively, w is the vertical velocity in the mixed layer, Tb 
is the temperature of the water at depth that is entrained into 
the mixed layer, H = 50m (Jin et al. 2020) is the mixed layer 
depth, � is the density of the seawater, Cp is the heat capacity, 
and Q is the net surface heat flux.

Equation (1) contains nonlinear advection terms and is 
not convenient for theoretical analysis. Based on the budget 
analysis of the SSTAs from the ocean reanalysis data set, a 
simplified SSTA equation for ENSO (e.g., Kang et al. 2001) 
can be derived as

where T′ is the SSTA, u′ is the anomalous zonal current, 
h′ is the thermocline depth anomaly (TDA), Q′ is the net sur-
face heat flux anomaly, T is the climatological monthly mean 
SST, and Kh represents the delayed response of the thermo-
cline depth anomalies to the local wind stress forcing or the 
ocean dynamic feedback from anomalous zonal advection 
and vertical heat advection associated with the discharge/
recharge of equatorial heat content (Jin et al. 2020). Equa-
tion (2) retains the main contributing factors to SST vari-
ations and similar forms of Eq. (2) have been widely used 
in theoretical studies of ENSO (Hirst 1986, 1988; Battisti 
1988; Battisti and Hirst 1989; Wakata and Sarachik 1991; 
Neelin and Jin 1993; Jin 1996). Actually, it is also a simpli-
fied version of the thermodynamic equation in ZC model 
(Zebiak and Cane 1987). Here it must be pointed out that the 
term Khh′ is given an opposite sign comparing with previous 
studies. As Battisti and Hirst (1989) pointed out, changes 
in h′ can be written in terms of the local contribution and 
the remote contribution. The former contributes to the local 
instability growth, while the latter works a phase transition 
mechanism which may be either the reflected Kelvin wave 
at the western ocean boundary (Battisti and Hirst 1989) or 
the recharge-discharge of the equatorial heat content (Jin 
1997). The local instability growth effect can finally be 
parameterized by SSTA and hence having the same sign 
with the SSTA variations. The phase transition mechanism 
and the local response have the opposite sign (Battisti and 
Hirst 1989). Therefore, the phase transition mechanism and 
the SST variations have the opposite sign. To highlight the 
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phase transition mechanism, the local instability growth, a 
component of the Bjerknes positive feedback is neglected in 
this investigation. It can be considered and analyzed in the 
future. The value for Kh may vary from  3.5 × 10

−9
Km

−1
s−1 

(Hirst 1986, 1988) to  1.7 × 10
−8
Km

−1
s−1 (Kang and An 

1998) and may also vary with y (e.g., as Kang and An (1998) 
and Kang et al. (2001) suggested, it has a large value near 
the equator and a small value off the equator). A moderate 
value, namely, Kh = 1.0 × 10

−8
Km

−1
s−1 is specified in this 

investigation. Equation (2) may become a simpler and more 
commonly used form if replacing the net surface heat flux 
with a Newtonian cooling −�T� where 𝛼 > 0 is the damping 
coefficient.

The thermocline depth is another variable that needs 
to be considered for understanding ENSO dynamics (Jin 
1997). This oceanic dynamical component has been success-
fully described by a 1.5-layer linear reduced gravity model 
(Zebiak and Cane 1987). It can be written as

Equations (2) and (3) constitute the system for compre-
hensively understanding ENSO dynamics in this investiga-
tion. Note that Eq. (3) can be enclosed by introducing zonal 
oceanic current anomaly equations just as ZC model had 
conducted. However, this will further complicate the system 
and will not be conductive to analytical analysis. Therefore, 
the system will be enclosed by introducing new approxima-
tion relations.

Now let us firstly revisit the approximate relation in con-
structing the RO model (Jin 1997), that is,

where �′ is the zonal wind stress anomaly and b1 is cou-
pling coefficient. This simple relation between wind stress 
anomaly and SSTA works since the atmospheric response to 
a warm SSTA in the central to eastern Pacific is a westerly 
and the SSTA variable in RO model is averaged over the 
central to eastern Pacific (Jin 1997). However, this approxi-
mation does not work if the SSTA variable is not limited in 
the central to eastern Pacific as Eq. (2) describes.

According to Gill (1980), the atmospheric response to 
diabatic heating (which is equivalent to SSTA as Neelin 
(1989) had pointed out) is a westerly wind west of the 
heating while an easterly wind east of the heating. Actu-
ally, Jin (1997) also pointed out this. He proposed the rela-
tion because SSTAs are averaged over the central to east-
ern Pacific so that the westerly anomaly west of the warm 
SSTA is the main consideration and also because there is 
an overall westerly (easterly) anomaly for a positive (nega-
tive) SSTA over the entire basin of the equatorial band 
(e.g., Fig. 1a). To capture the essence of the atmospheric 
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response to a warm SSTA—westerly (easterly) wind stress 
anomaly west (east) of a warm SSTA—a new simple rela-
tion is proposed here, that is,

where b2 is the coupling coefficient. This relation links the 
wind stress anomaly with the gradient of SSTA. As shown 
in Fig. 1b, the performance of this approximation relation 
is better than the relation Eq. (4). Considering the fact that 
the oceanic current in the mixed layer in general follows the 
direction of the wind stress (e.g., see Fig. 1c), a simple pro-
portional relation between them may be established, namely,

where b3 is the coefficient. This relation can be further 
improved by introducing the influence of the thermocline 
depth anomalies as Jin et al. (2020) suggested.

(5)�� = b2
�T�

�x

(6)u� = b3��

The above two relations build a linkage between the zonal 
current anomaly and the gradient of SSTA, that is,

where b = 1.25 × 10
5
m2s−1K

−1 is the coupling coefficient 
and is estimated by the linear regression of the gradient 
of the SSTA data to the oceanic current data in the sim-
ple ocean data assimilation (SODA) version 3.4.2 (Carton 
et al. 2018). The linear relation is enough significant with a 
correlation coefficient of 0.34 since the value is calculated 
from a huge total of 26,028 samples. Note that Eq. (7) holds 
not only for anomalous state but also for the climatological 
mean state, that is, u = b

�T

�x
 . This is reasonable since the 

climatological SST is also associated with the climatologi-
cal zonal wind stress (Jin and Neelin 1993) and hence the 
climatological zonal current.

Substituting Eq.  (7) into Eq.  (3) to eliminate u′ and 
replacing the horizontal advection on SST by the anomalous 

(7)u� = b
�T�

�x

Fig. 1  The linear relations between the SSTA and the zonal wind 
stress anomaly (a), between the gradient of the SSTA and the zonal 
wind stress anomaly (b), between the zonal wind stress anomaly and 
the oceanic current anomaly (c), and between the gradient of the 
SSTA and the oceanic current anomaly (d). The zonally averaged 
(5°S-5°N mean) monthly anomalies (from January 1980 to December 
2020) are selected in the tropical Pacific (150°E-90°W) from months 

(108 months in total) when the absolute value of the NINO 3.4 index 
is larger than 1 in the simple ocean data assimilation (SODA) ver-
sion 3.4.2. All longitude grids (241 in total) are used. Therefore, there 
are a huge total of 241 × 108 (= 26028) samples. To glorify, the SSTA 
gradients in (b) and (d) have been amplified  106 times as shown in the 
horizontal labels. All data are spatially smoothed
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zonal current, a linear coupled system with both thermocline 
dynamics and SSTA dynamics may be derived

Note that according to the above analysis, both the thermo-
dynamic and thermocline equations in this investigation can be 
derived from the classical ZC models (Cane and Zebiak 1985; 
Cane et al. 1986; Zebiak and Cane 1987). Therefore, the system 
can be regarded as the simplified version of the ZC model. On 
the other hand, similar as the classical RO model, the system also 
contains two variables: SSTA and TDA. Differently, the two vari-
ables do not represent the regional mean anomalies, e.g., aver-
aged anomalies in NINO 3 region and over the western Pacific 
box. They denote the SSTA and TDA in the entire equatorial 
Pacific and hence having spatial variations. Therefore, it can also 
be seen as a spatial extension to the classical RO model.

Eliminating h′ from the system, a wave equation of T′ 
may be derived as

where c =
√
KhHb = 0.25ms−1 is the wave speed. Note that 

although Eq. (10) may demonstrate wave propagation under 
certain boundary conditions, it is not the equation for the 
well-known Kelvin or Rossby waves. Actually, the wave 
speed here can be seen as an indicator of the natural oscil-
lation periods. The oscillation and propagation features will 
be discussed in the following text.

Introducing the coordinate system that moves with the 
basic zonal current,
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Equation (10) may be further reduced to

Equation (12) is a standard wave equation and is easier 
to solve.

3  The solution

To make the deriving process simpler and clearer, the solu-
tion for Eq. (12) is derived and presented below. After the 
solution is obtained, it will be easy to write the solution for 
Eq. (10) according to the coordinate transform Eq. (11).

The initial values are specified as

where F
(
x1
)
 and G

(
x1
)
 are known functions. The well-

posed free boundary conditions are specified as

where L is the basin width of the equatorial Pacific. Expand-
ing T′ and Q′ into cosine series, e.g.,

where  �n =
n�

L
 , will naturally satisfy the boundary condi-

tions Eq. (15). Similarly, F
(
x1
)
 and G

(
x1
)
 are also expanded 

as cosine series,
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It is easy to derive a second-order differential equation 
with constant coefficients by substituting these cosine series 
into Eq. (12), that is,

where �n = c�n . When n = 1, 2, 3,⋯,  the solution for 
Eq. (18) is

(18)
d2Tn

dt2
1

+ �2

n
Tn =

dQn

dt1

where An = fn,Bn =
qn−Khgn

�n

 , qn = Qn(0) are coefficients that 
are determined by initial values. Equation (18) indicates a 
forced oscillation. Its free oscillation part is formally the 
same as the harmonic oscillation in the original RO model 
(Jin 1997). It is obvious that Eq. (18) further extends the RO 
model to associate with spatial modes. Or, the original RO 
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model only reflects the oscillation of a specified spatial 
mode. In this sense, it may be regarded as a spatial RO 
model.

When n = 0 , Eq. (18) becomes

and the solution is

where A0 = f0 , B0 = 0 are coefficients. Note that B0 should 
be zero to make sure SSTA is limited when time is long 
enough. A0 is a constant value that is determined by initial 
SSTA values. ∫ t1

0
Q0(�)d� is a time-related term that relies 

on the integral of the constant term in cosine series of the 
net surface heating. Note that there is no spatial variation 
when n = 0 . Therefore, this solution denotes a basin-wide 
consistent variation mode.

The solution for Eq. (12) can be eventually expresses as

or

where Cn =

√

f 2
n
+
(

qn−Khgn

�n

)2

 is the amplitude, �n is the 

phase, and sin�n =
fn

Cn

 , cos�n =
qn−Khgn

Cn�n

 . Equation  (22) or 
Eq. (23) demonstrates that the spatiotemporal variation of 
SSTA can be decomposed into the summation of a series of 
spatial modes, each of which oscillates with a natural fre-
quency of �n and a forced frequency.

For a specific spatial mode (ignoring the net surface 
heating), each point of the spatial mode oscillates with 
its natural frequency and with the same phase but varying 
amplitude of ||Cncos�nx1

|| that depends on its location in 
the spatial mode. This can also be called a stationary wave 
with zero phase speed. In other words, this specific spatial 
mode ( cos�nx1 ) oscillates with a natural frequency �n , a 
phase �n , and an amplitude Cn . The temporal variation will 
become more complex when considering the effect of the 
net surface heating forcing which may add at least one 
external forced frequency to the natural frequency for the 
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specific spatial mode. Particularly, if a forced frequency is 
just right equal to the natural frequency, the correspond-
ing amplitude will tend to be infinity due to resonance. 
Specific calculation cases will be given in the next section.   

Transforming to the (x, t) coordinate system, Eq. (23) 
becomes

S i n c e  cos�n
(
x − ut

)
= cos�nxcosut + sin�nxsinut  , 

Eq. (24) becomes

The last two terms in Eq. (25) represent temporal variations 
associating with spatial modes of sine curves. It is obvious that 
the different locations in the basin will have different phases 
due to modulation of the sine and cosine spatial modes. In 
other words, Eq. (25) may manifest traveling waves. Equa-
tion (25) is equivalent to the solution of Cauchy problem for 
Eq. (10) with no specified boundary conditions. It means that 
SSTA perturbations may propagate across the coastlines as 
if the coastlines do not exist. However, considering the fact 
that waves may be reflected or absorbed due to the blocking 
effect of the coastlines, Eq. (25) may be applied to analyze 
the wave propagation toward a far distant coastline so that 
the influence of the boundary can be ignored. This limitation 
comes from the practice that specifies a basin-wide constant 
zonal basic current that should have been zero at the coastlines. 
The constant zonal basic current over the entire basin means 
that it is hard to specify well-posed boundary conditions at 
the coastlines. Therefore, a spatial varying zonal basic current 
that vanishes at the coastlines seems a better choice. Besides, 
an external frequency that associates with the zonal basic cur-
rent is added on the temporal oscillations. Generally speaking, 
the zonal basic current further complicates the solution in both 
spatial and temporal dimensions.

4  Results

To provide a fundamental scene for understanding the spa-
tiotemporal oscillator model, the results are provided based 
on Eq. (23). It is equivalent to moving with the zonal basic 
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current or ignoring the basic zonal current for easy under-
standing. The first spatial mode ( n = 1 ) is a standard cosine 
curve in the [0, L] range with a period of 2� , hence a SSTA 
pattern with warm (or cold) SSTA in the western Pacific 
but cold (or warm) SSTA in the eastern Pacific. The sec-
ond spatial mode ( n = 2 ) is a standard cosine in the [0, L] 
range with a period of � , hence a SSTA pattern with cold 
(or warm) SSTA in the central Pacific but warm (or cold) 
SSTA in the eastern and western Pacific. These two spatial 
patterns can be seen as the theoretical prototype of the EP 
and CP El Niño events. Note that even if the first two modes 
are similar to the EP and CP El Niño events, they are not the 
observed EP and CP El Niño events. Actually, an EP or CP 
El Niño event should be seen as the combination of differ-
ent modes with different weights. For higher-order modes, 
SSTA patterns associate with small-scale structures and do 
not have clear physical images so far. Therefore, only the 
first two spatial modes are used.

4.1  Natural oscillation

To highlight the first two natural spatiotemporal oscillation 
modes, their expressions are written separately,

where n = 1, 2 . The initial phases are set to be �
2
 , denoting 

that the SSTA in each mode has the maximum value while 
the TDA equals zero at the beginning time. They are also 

(26)Tn = sin

(
�nt1 +

�

2

)
cos

(
�nx1

)

summed with different weights to highlight their relative 
importance in constructing SSTA patterns, that is,

and

For the first mode ( n = 1 ), SSTA in the eastern and west-
ern Pacific (Fig. 2a) oscillates with alternative warm and 
cold anomalies and with a natural period of T1 =

2L

c
≈ 4.6 

years. For the second mode ( n = 2 ), SSTA (Fig. 2b), with 
warm anomalies appearing in the central Pacific while cold 
anomalies in the western and eastern Pacific, oscillates 
with a natural period that is half of the first mode, that is, 
T2 =

L

c
≈ 2.3 years. It is interesting to point out that these 

two natural periods are consistent with the previous studies 
that suggested the EP and CP El Niño events oscillate with 
QQ and QB modes (Bejarano and Jin 2008; Ren and Jin 
2013; Xie and Jin 2018). However, these two modes are the 
physical decomposition of spatiotemporal SSTA variations. 
They denote the natural oscillations of the system. This is 
different from the eigenvector analysis that is based on a 
modified linearized ZC model (Bejarano and Jin 2008; Xie 
and Jin 2018) and also different from the statistical analy-
sis that is based on observation and reanalysis data (Ren 
et al. 2013). On the other hand, since both the thermody-
namic and thermocline dynamic equations this investiga-
tion applied can be derived from the commonly applied ZC 
model, this spatiotemporal oscillator model is actually the 

(27)T� = 2T1 + T2

(28)T� = T1 + 2T2

Fig. 2  The temporal evolution 
for the first mode (a), the sec-
ond mode (b), the combination 
of them as Eq. (27) declares (c), 
and as Eq. (28) declares (d)
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physical simplification to the ZC model. Therefore, the two 
natural oscillation modes can also be seen as a theoretical 
explanation for previous studies.

If the first mode is more dominant, the warm SSTA in the 
eastern Pacific can extend from 80°W to around 180° at the 
beginning time (Fig. 2c), larger than the warm SSTA in the 
first mode where the warm and cold anomalies halve the equa-
torial Pacific. On the other hand, the cold SSTA in the east-
ern Pacific shrinks to 140°W–80°W range. The SSTA pattern 
in this combination looks quite similar to the SSTA pattern 
in the strong El Niño events, such as in 1982/83, 1997/98, 
and 2015/16, in which warm SSTAs appear in the central to 
eastern Pacific. It implies that these strong El Niño events 
may rely on the coordination between the two modes. On the 
other hand, if the second mode is more dominant, the warm 
SSTA still locates in the central Pacific at the beginning time 
(Fig. 2d), that is quite similar to case for the second mode 
alone (Fig. 2b). The variation in the spatial pattern shows the 
regulation effect of the first mode is relatively minor in the 
CP El Niño events. Note that the dipolar and tripolar SSTA 
structures look a little different from the observed patterns. 
For instance, CP El Niño events display a dipolar pattern with 
negative SSTA in the western Pacific while positive SSTA 
extending from the central to eastern Pacific, albeit with a 
central Pacific center of action (Kug et al. 2009). This dis-
crepancy is caused by the fact that only the first two modes 
are taken into consideration. As pointed out previously, the 
first and the second modes only represent the natural dipolar 
and tripolar SSTA oscillations in the tropical Pacific, or the 
QQ and QB modes, respectively. However, the specific SSTA 
pattern in an El Niño event is the superposition of different 

modes with different weights. For example, the relative weak 
cool SSTA in the western Pacific and a strong warm SSTA in 
the eastern Pacific suggest that there is a basin-wide warm-
ing mode (corresponding to n = 0 ). Therefore, we may esti-
mate that the tripolar SSTA pattern will move upward as a 
whole if considering the basin-wide warming mode. This will 
amplify the positive SSTA in the central Pacific while shrink 
the negative SSTA in the eastern Pacific (even changing to 
a weak positive SSTA). It is obvious that this will make the 
tripolar pattern closer to the observational results and even 
much closer to the observations if more natural spatial modes 
are introduced.

According to Eq. (26), the first two modes of TDA vari-
ation can be written as

Equation (29) denotes that TDA variations have the same 
spatial pattern as SSTA variations but with a phase lag in 
the temporal variations. Therefore, the temporal evolution 
for the different modes of TDA is not portrayed. Accord-
ing to Eq. (29), the amplitude of each mode is proportional 
to the natural frequency. The faster the natural frequency 
is (equivalent to larger expansion order n ), the larger the 
amplitude is. This is quite different from the SSTA modes. 
Of course, the amplitude will become smaller and smaller 
with increasing expansion order n due to limited variations 
in observed TDA.

The time series of NINO 3.4 index and the box mean 
TDA in NINO 3.4 region (Fig. 3) are further portrayed to 

(29)hn = −
1

Kh

�Tn

�t
= −

�n

Kh

cos

(
�nt1 +

�

2

)
cos

(
�nx1

)

Fig. 3  The variations in NINO 
3.4 index and box mean TDA 
in NINO 3.4 region for the 
combinations of the two modes 
as shown in Fig. 2c, d
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demonstrate the temporal variations. For the case in which 
the first spatial mode is more dominant as Eq. (27) exhibits, 
NINO 3.4 index (Fig. 3a) decreases from a maximum value 
of around 1.2 K to − 0.7 K within around 13 months and 
then increases to an extreme value of around 0.1 K within 
around 27 months to finish a cycle, the natural period of the 
second mode. Within the next 27 months, it moves to the 
same minimum value and then the maximum value to form 
a larger period of 54 months, the natural period of the first 
mode. If an El Niño event is defined by NINO 3.4 index 
that is larger than 0.5 K while La Niña event by the index 
smaller than − 0.5 K, it is quite interesting to find that two 
La Niña events will follow an El Niño event. For the case 
that the second spatial mode is more dominant as Eq. (28) 
shows, NINO 3.4 index (Fig. 3b) has the similar variation 
trend as the case that the first mode is more dominant but 
with different amplitudes. NINO 3.4 index is larger than 
0.5 K (or around 1 K) near the 27th month so that an El 
Niño event can be defined, which blocks the two La Niña 
events in a row as they occurred successively in the previ-
ous case. Therefore, El Niño and La Niña events happen 
alternatively in this case. In both two cases, TDA index has 
the same temporal variations as the NINO 3.4 index but with 
a phase lag. Besides, the intensity of two adjacent El Niño 
events is also different. It is obvious that the situation will be 

more complex if considering different combination weights 
and different initial phases. This is right the capacity of the 
model for understanding ENSO STPD.

4.2  Forced oscillation

To consider the effect of the net surface heat flux forcing, 
cosine expansion is conducted for the 5°S–5°N mean equa-
torial Pacific net surface heat flux anomaly in the SODA 
version 3.4.2 data. Spectrum analysis suggests that the first 
spatial mode has a most significant annual oscillation with a 
period of 12 months (Fig. 4a), while the second spatial mode 
has a significant decadal oscillation with a period of around 
114 months (Fig. 4b). Therefore, these two significant peri-
ods are added and are analytically expressed as

where n = 1, 2 , �̂1 =
2�

12
month

−1 represents the significant 
annual cycle for the first spatial mode, �̂2 =

2�

114
month

−1 
denotes the significant decadal oscillation (around 9.5 years) 
for the second spatial mode, and Q0 = 4.89 × 10

−8Ks−1 
equivalent to a relatively weak net surface heating flux of 
10Wm−2 . According to Eqs. (23) and (26), SSTA variations 
for the first and second modes are

(30)Qn = Q0cos
(
�̂nt1

)
cos

(
�nx1

)

Fig. 4  The power spectrum of 
the time series for the first two 
spatial modes of the net surface 
heating
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(31)Tn
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the time series to make one short period cycle slightly dif-
ferent from the other. For the case that the second mode is 
more dominant, the variations in SSTA pattern (Fig. 5d) are 
quite similar to that in the previous natural case. Modulated 
by the natural periods and the forced period, the time series 
of NINO 3.4 index (Fig. 6b) also becomes more complex. 
It is interesting to point out that observations also reveal 
decadal oscillation in central Pacific SST (e.g., Power et al. 
(2021)). A simple model suggests that decadal variability 
can be explained by random changes in the relative number 
and magnitude of La Niña and El Niño events from decadal 
to decadal (Power and Colman 2006). Furthermore, other 
factors, such as the Pacific subtropical cells (Capotondi et al. 
2005), the greenhouse gas emission (Xie et al. 2010), and 
the nonlinear dynamical heating (Liu et al. 2022), have also 
been used to explain some decadal variability in the Pacific 
Ocean. Here in this investigation, a decadal signal from the 
net surface heating can also force corresponding decadal 
variability in the Pacific Ocean. Further studies may promote 
the understanding of the decadal variability. Note that the 
first and second spatial modes for the net surface heating also 
have significant periods of around 60 and 30 months (see 
Fig. 4) that are close to the corresponding natural periods. 
And if these two forced periods are specified in Eq. (30), 

Fig. 5  The same as Fig. 2, but 
for the forced oscillation

The forced oscillations (Fig. 5) are basically the same 
as the previous natural oscillations (Fig. 2). For the first 
mode ( n = 1 ), except for the significant period of around 
4.6 years, the SSTA (Fig. 5a) also oscillates with the forced 
period of 1 year (annual cycle) even though its modulation 
on SSTA is relatively minor due to relative weak intensity 
of the net surface heating. For the second mode ( n = 2 ), the 
situation is similar. It also oscillates with a natural period 
and a forced period. Similar to previous subsection, the two 
modes in Eq. (31) are also combined with different weights 
as Eqs. (27) and (28) suggest. For the case that the first mode 
is more dominant, the warm SSTA pattern (Fig. 5c) also 
looks similar to the EP El Niño events but with significant 
difference with the previous natural case. For example, the 
warm SSTA has a largest spatial range at the beginning. It 
gradually shrinks to the eastern Pacific but with strengthen-
ing intensity. After the amplitude of SSTA arrives the peak, 
it will quickly weaken to become a strong La Niña event, 
which will have matched intensity and spatial range as the 
El Niño event. The time series of NINO 3.4 index (Fig. 6a) 
oscillates with two significant periods of 4.6 and 2.3 years—
the natural periods of the first two modes. Although the 
forced period is not significant and cannot be seen directly 
in Fig. 6a, it indeed exhibits its influence on complicating 
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they will induce resonance to produce unreasonable strong 
NINO 3.4 index oscillation as Fig. 7 exhibits. During a cer-
tain time period, a forced frequency may be close to a natural 

frequency. This may breed significant SSTA variations that 
may be provide a plausible explanation for strong ENSO 
events in this time period.

Fig. 6  The same as Fig. 3, but 
only for the forced oscillation in 
NINO 3.4 index

Fig. 7  The same as Fig. 6, but 
the forced periods are set to 60 
and 30 months for the first and 
second modes, respectively
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5  Discussions

5.1  The relation between the SSTAs and the wind 
stress anomalies

Equation (5) characterizes the symmetric westerly and eastly 
wind stress anomalies on the west and east sides of a warm 
SSTA. However, this simple relation may be a little rough 
to capture the relatively weak easterly anomalies on the east 
side of the warm SSTA. Since the wind stress anomalies are 
closely linked with the SSTA and its gradient (see Fig. 1a, b), 
an improved simple relation may be proposed by combining 
Eqs. (4) and (5), that is,

where b3 and b4 are coupling coefficients. This relation may 
also be found in the classical paper of Gill (1980), in which 
the zonal wind stress anomaly is analytically expressed as a 
function of the heating and its gradient (e.g., see Gill's Eqs. 
(4.2) and (4.3) in his paper). Equation (32) can improve the 
statistical relationship among SSTA, the gradient of SSTA, 
and the zonal wind stress anomaly (Fig. 8a) and increase 
the correlation coefficient to 0.69. Based on this relation, 
Eq. (7) becomes

where b5 = 0.0446ms−1K
−1 and b6 = 8.1137 × 10

4
m2s−1K

−1 
are coupling coefficients that are determined from the SODA 
version 3.4.2 data. Equation (33) also improves the relation 
among SSTA, the gradient of SSTA, and the surface oceanic 
current anomaly (Fig. 8b). The correlation coefficient now 
becomes 0.47.

With this improved relation, Eq. (12) becomes

(32)�� = b3T� + b4
�T�

�x

(33)u� = b5T� + b6
�T�

�x

(34)
�2T�

�t2
1

= a
�T�

�x1
+ c2

�2T�

�x2
1

+
�Q�

�t1

w h e r e  a = KhHb5 ≈ 2.23 × 10
−8
ms−2  a n d 

c =
√
KhHb6 ≈ 0.20ms−1  have dimensions of acceleration 

and velocity, respectively. It is easy to introduce T� = T̂e−�x1 
and  Q� = Q̂e−�x1 where � =

a

2c2
 to reduce Eq. (34) to a stand-

ard form,

where �2 =
a2

4c2
 . It has the same form as Eq. (12) except for 

an additional −�2T̂  term and it is also easy to derive its ana-
lytic solution by expanding T̂ to cosine series as before. Sub-
stituting the cosine series expansion solution into Eq. (35), 
we can derive

where �2
n
= �2

n
+ �2 , n = 0, 1, 2,⋯ . It has the same form as 

Eq. (18) but with modified natural frequencies. Therefore, 
the influence of the new introduced parameter will be only 
discussed. Note that the natural frequency will be modified 
by the parameter � and hence a with no simple multiple rela-
tion. For example, the first natural period ( n = 1 ) becomes 
around 3 years, while the second natural period ( n = 2 ) 
becomes around 2.2 years. Besides, there will exist a new 
zeroth-order ( n = 0 ) natural period of around 3.6 years (the 
corresponding natural frequency equals � ), that is, close to 
the first-order natural period. In addition to variations in 
temporal oscillations, the spatial modes are also modified 
by the factor e−�x1 . Nonetheless, the theoretical framework 
is still the same and no explicit explanation of this solution 
is provided in present investigation. This can be done in the 
near future.

5.2  Propagation feature

According to Eq. (23), an observer who moves with the zonal 
basic current (or an stationary observer due to zero zonal 

(35)
�2T̂

�t2
1

= c2
�2T̂

�x2
1

− �2T̂ +
�Q̂

�t1

(36)
d2Tn

dt1
2
+�2

n
Tn =

dQn

dt1

Fig. 8  The linear relations 
between the combination of 
SSTA and its gradient and the 
zonal wind stress anomaly (a) 
and the oceanic current anomaly 
(b). The data come from the 
SODA version 3.4.2. The 
detailed information is the same 
as Fig. 1
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basic current) will see SSTA oscillation with no propagation. 
However, as Eq. (25) suggests, he or she may still observe 
wave propagation if the blocking effect of the boundary is 
too weak to be ignored. This works when a perturbation 
propagates toward a distant coastline. Besides, if the initial 
perturbation (the initial value) is only significant in a local 
region (e.g., in coastal regions) rather than the entire basin, 
the mutual interaction region between the westward propa-
gating and eastward propagating waves will be near the initial 
region. This means that a region, if it is far away from the 
initial perturbation, is only influenced by the westward or the 
eastward propagating wave. Therefore, at the place that is far 
away from the initial field, Eq. (12) can be described by a 
simple westward propagating equation and a simple eastward 
propagating equation,

Note that the net surface heating has been ignored here. 
Particularly, if the initial values only dominate near the west-
ern or eastern coastal region, Eq. (12) can be replaced by 
Eq. (37) or Eq. (38) to highlight the eastward or westward 
propagating wave, that should be most significant in the 
central Pacific that is both far away from the initial pertur-
bation and far away from the coastlines. When the propagat-
ing wave is closing to the coastline, it may be absorbed or 
reflected by the coastline.

For some cases the eastern coastal SSTA may play roles, 
westward propagating waves may be observed. For exam-
ple, Horel (1982) had pointed out that relatively warm SST 
appears in December–January along the coast of Peru and 
then spreads westward along the equator during the next sev-
eral months. This propagating speed is around − 0.5 m  s−1 
(Boucharel et al. 2013) and is basically in agreement with 
the wave propagation speed u − c = −0.35ms−1 (setting 
u = −0.1ms−1 ). Considering the fact that the zonal basic cur-
rent in the eastern Pacific is generally larger than 0.1 m  s−1 
(Keenlyside and Kleeman 2002), the theoretical propaga-
tion speed will be further closer to the observational propa-
gation speed. For some cases the influence of the western 
Pacific SSTA may be more significant. Therefore, eastward 
propagating waves may be observed. For example, Simon 
Wang et al. (2015) found a systematic propagating pattern 
of SSTA has emerged between 100°E and 160°W, link-
ing warm (cold) water in the western North Pacific to the 
development of El Niño (La Niña) in the central equatorial 
Pacific, for a duration of about 2–3 years. The corresponding 
propagation speed is about 0.1–0.16 m  s−1, quite consistent 
with the eastward propagating speed u + c = 0.15ms−1.

(37)
�T�

�t1
− c

�T�

�x1
= 0

(38)
�T�

�t1
+ c

�T�

�x1
= 0

The dispersion relation of the propagating waves can 
also be discussed by specifying the single wave solution, 
e.g., T� ∼ Tkexpi(kx − �t) , Q� ∼ Qkexpi(kx − �t) , where k is 
the wavenumber, � is the frequency, and Tk and Qk are cor-
responding coefficients. Substituting them into Eq. (12) or 
Eq. (10), the dispersion relation is derived as

where  �� = � − uk is the intrinsic frequency and �k = Qk∕Tk 
is the ratio between the coefficients. Equation (39) is a quad-
ratic equation but with complex coefficients. It means the 
frequency will be complex, e.g., � = �r + i�i , where �r and 
�i are real values. Dividing it into real and imagery parts, 
it becomes

The first equation in Eq. (40) demonstrates a propagating 
wave with energy dispersion. It is obvious that the net sur-
face heating will modulate the wave frequency. The second 
equation in Eq. (40) means that the wave will develop to be 
unstable if 𝛼k > 0 but will decay if 𝛼k < 0 . The net surface 
heating in the equatorial Pacific generally acts on the ther-
modynamic damping (Jin et al. 2020). Therefore, we may 
generally set 𝛼k < 0 . The dependence of �k on the spatial 
scale (or the wavenumber) means waves with different spa-
tial scales will have different decay rates. Besides, although 
�k is generally smaller than zero, it may be larger than zero 
for specific wavenumbers in certain cases. This implies that 
the corresponding waves will be unstable. If the net surface 
heating is replaced by a Newtonian cooling coefficient � for 
simplicity in Eq. (1), it is equivalent to set 𝛼k = −𝛼 < 0 in 
Eq. (39). This results the waves, no matter what the wave-
numbers are specified, will have a constant decline rate that 
equals half the Newtonian cooling coefficient. Particularly, 
if neglecting the net surface heating force, Eq. (39) can be 
reduced to a neutral wave with no energy dispersion,

6  Conclusions

A new model is built to capture the essence of the spatiotem-
poral variations of the ENSO phenomenon in this study. The 
model contains two variables, SSTA and TDA. The equa-
tion for SSTA considers the horizontal advection, the ther-
mocline feedback process, and the net surface heating. The 
equation for TDA takes the horizontal advection and the 
divergence of the zonal current anomaly into consideration. 

(39)��2 − i�k�� − c2k2 = 0

(40)
�r = uk ±

√
c2k2 −

1

4
�2

k

�i =
1

2
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(41)� = �r =
(
u ± c
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k
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Both equations can be derived from those in the ZC mod-
els and therefore can be thought a simplified version of the 
ZC model. To benefit theoretical analysis, the zonal current 
anomalies are supposed to be proportional to the zonal wind 
stress anomalies based on the fact that the oceanic current in 
the mixed layer is mainly driven by the wind stress. Then the 
zonal wind stress anomalies are hypothesized to be propor-
tional to the gradients in SSTAs, rather than SSTAs them-
selves as in the classical RO framework. Of course, a more 
precise hypothesis that emphasizes the linkage among the 
zonal wind stress anomalies, SSTAs, and gradients in SSTAs 
can also be proposed. With above two steps, a proportional 
relationship between the zonal current anomalies and the 
gradients in SSTAs is established to enclose the system to a 
wave equation for SSTAs.

With initial values and proper boundary conditions, 
the analytic solution is derived by applying cosine series 
expansion to separate the temporal and spatial variations of 
SSTA. The solution demonstrates that SSTA variations can 
be decomposed into the superposition of a series of spatial 
modes that oscillate with both natural frequencies and forced 
frequencies. The first spatial mode highlights SSTA contrast 
between the eastern and western Pacific. The warm (or cold) 
SSTAs appear in the eastern Pacific while cold (or warm) 
SSTAs are in the western Pacific. Ignoring the external forc-
ing, it oscillates with a natural period of around 4.6 years. 
The spatial pattern of the first mode is the theoretical pro-
totype of the EP El Niño events and its natural period is 
also consistent with the QQ mode. The second spatial mode 
emphasizes SSTA contrast between the central and eastern, 
western Pacific. The warm (or cold) SSTAs are located in 
the central Pacific while the cold (or warm) SSTAs are in 
the eastern and western Pacific. It oscillates with a natural 
period of around 2.3 year, the half of the first natural period. 
The spatial pattern of the second mode is the theoretical 
prototype of the CP El Niño events and its natural period 
is also quite consistent with the QB mode. Therefore, the 
first two modes can provide an explicit physical image of 
the spatial patterns of two types of ENSO and their tempo-
ral variations. Adding these two eigenmodes together with 
different weights, they may characterize SSTA patterns in 
the strong El Niño events (e.g., twice the first plus the sec-
ond) and SSTA patterns in the CP El Niño-like events (e.g., 
twice the second plus the first). The combined SSTA pat-
terns show complex temporal variations. For example, two 
La Niña events may alternatively appear after an El Niño 
event if observing from the NINO 3.4 index. This may be 
enlightening for understanding the Triple Niña events that 
happened during in past 3 years (note that they had also 
appeared before) if considering more eigenmodes.

The net surface heating will exert its influence by intro-
ducing forced frequencies. Cosine series expansion for the 
net surface heating in SODA suggests that there exist many 

significant oscillation periods, such as 6 and 12 months for the 
first spatial mode, and 6, 12, 30, and 114 months for the sec-
ond spatial mode. It is obvious that these forcing periods will 
modulate natural periods to further complicate the temporal 
variations. Particularly, if the forcing period is close to the 
natural period, resonance will happen to amplify SSTA ampli-
tude. Besides, the solution may also show certain propagation 
features if initial perturbations are limited in coastal regions 
and propagate toward a distant coastline so that the blocking 
effect of the coastline can be ignored. The dispersion relation 
suggests that the propagating wave of a specified wavenumber 
is energy dispersive and will decline with a rate that is deter-
mined by the net surface heating. The propagation feature may 
be applied in interpreting observed propagating phenomena.

Previous studies had focused on ENSO STPD (Timmer-
mann et al. 2018; Jin 2022). This new model decomposes 
the equatorial SSTA into a series of natural spatial modes, 
each of which has its own natural oscillation. It may also be 
developed by introducing instability terms, nonlinear terms, 
stochastic terms, and so on. Therefore, this new model can 
not only provide an explicit physical paradigm for under-
standing ENSO but also a useful tool to be developed to 
address more challenges of ENSO STPD.
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