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Abstract
This study evaluates six precipitation reanalysis products for the Yellow River Basin using gridded rain gauge data, runoff 
data and the Atmospheric and Hydrological Modelling System (AHMS) simulations. The assessment begins with compar-
ing the annual, seasonal, monthly and daily precipitation of the products with gridded rain gauge data. The AHMS is then 
run with each of the precipitation reanalysis products under two scenarios: one with calibrated rainfall-runoff and the other 
without. The simulated streamflow is then compared with the corresponding observations. It is found that non-gauge-cor-
rected products tend to overestimate precipitation, especially for mountainous regions. Amongst the six products evaluated, 
the China Meteorological Forcing Dataset (CMFD) and WATCH Forcing Data methodology applied to ERA5 (WFDE5/
CRU+GPCC) are identified as the most accurate products, supported by both statistical and hydrological comparisons. This 
consistency in statistical and hydrological comparisons suggests the potential applicability of the hydrological comparison 
method using the AHMS in ungagged catchments, even in the presence of significant anthropogenic impacts. Furthermore, 
the calibration of the hydrological model significantly impacts the model’s response to precipitation, effectively compensating 
for deficiencies in rainfall data within certain limits. This study highlights accurate representation of extreme rainfall events 
in precipitation products has a significant impact on calibrated soil parameters and is particularly important in hydrological 
modelling. It enhances our understanding of the reliability of hydrological simulations and provides valuable insights for the 
assessment of precipitation reanalysis products in large arid and semiarid basins affected by human activities.

1 Introduction

Precipitation is usually measured using rain gauges, ground-
based weather radars, satellite sensors, etc. For continental-
scale estimates, precipitation reanalysis is generated by the 
assimilation of observations into weather prediction models 
or climate models, and precipitation reanalysis products have 
been widely used for hydrological modelling (Michaelides 
et al., 2009). Several such products have been developed 

with different objectives, temporal ranges, data sources and 
resolutions, as summarized in Table 1. Precipitation is also 
one of the most important forcing variables for hydrological 
modelling. Thus, it is crucial to evaluate how hydrological 
models respond to different precipitation products to gain 
insight into model uncertainty and characterize the different 
biases in precipitation reanalysis. Although rainfall meas-
urements are assimilated into the reanalysis, different data 
sources and assimilation systems lead to different accura-
cies, which are difficult to assess. Therefore, hydrological 
modellers are often confronted with the question of how 
their hydrological simulations depend on the choice of pre-
cipitation products and which product performs the best for 
a given region and time (Bitew et al. 2012).

Numerous studies have evaluated precipitation products 
to understand their respective advantages and limitations 
(Beck et al. 2019, 2020; Maggioni et al. 2016). Some stud-
ies (Dinku et al. 2008; Gao and Liu 2013; Hersbach et al. 
2020; Hirpa et al. 2010) used statistical methods and rain 
gauge observations for the evaluation, while others (Bitew 
et al. 2012; Qi et al. 2016; Stisen and Sandholt 2010; Tang 
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et al. 2016) employed hydrological modelling to compare the 
simulated streamflow or soil moisture with the correspond-
ing observations. Although hydrological models offer the 
possibility of using observed water discharge to evaluate 
precipitation products, previous studies have focused pri-
marily on wet headwater areas and small basins when using 
hydrological models (Bitew et al. 2012; Tang et al. 2016; 
Wang et al. 2023), because quantifying streamflow in large 
watersheds is difficult, especially in arid and semiarid areas 
(Pilgrim et al. 1988; Vorosmarty and Sahagian 2000).

This study aims to evaluate precipitation products in 
large-scale, arid and semiarid basins using a sub-continental 
scale hydrological model considering the significant impacts 
of human activities on the water cycle. Specifically, we 
evaluate the precipitation reanalysis products for the Yellow 

River Basin using the offline Atmospheric and Hydrologi-
cal Modelling System (AHMS) integrated with an irrigation 
module (AHMS-IRR hereafter, Jiang et al. (2022)). The Yel-
low River Basin offers a compelling case study for assessing 
the accuracy of these precipitation products, for its diverse 
range of climates and geomorphic features. We initially use 
the hydrological model to evaluate its response to various 
precipitation products and subsequently analyse the model’s 
response. Our evaluation includes widely used near-surface 
precipitation reanalysis products, including NCEP/NCAR, 
ERA5, GLDAS 2.0, WFDE5/CRU, WFDE5/(CRU+GPCC) 
and CMFD. We directly compare these products with rain 
gauge observations and indirectly assess their reliability by 
comparing the model simulated streamflow with streamflow 
observations.

Table 1  Overview of seven (3 or 6-) hourly gridded precipitation products evaluated in this study. Abbreviations in the data source column are 
defined as follows: G: gauge; S: satellite; and R: reanalysis

Filename Description Data source R data G data Spatial reso-
lution

Temporal 
resolution

Temporal 
coverage

Reference

OBS Gridded rain 
gauges data 
from CMA

G None CMA 1.0° Hourly 1979–2003 Yang et al. 
(2010)

NCEP/NCAR National 
Centers for 
Environ-
mental Pre-
diction and 
National 
Centers for 
Atmos-
pheric 
Research

R NCEP/NCAR None 2.5° 6-Hourly 1979–2021 Kalnay et al. 
(1996)

ERA5 The fifth 
generation 
ECMWF 
reanalysis 
for the 
global 
climate and 
weather

R ERA5 None 0.25° Hourly 1959–present Hersbach et al. 
(2020)

GLDAS 2.0 Global 
Land Data 
Assimila-
tion System

G, S, R NCEP/NCAR GPCP and 
TRMM

0.5° 3-hourly 1979–2015 Sheffield et al. 
(2006)

WFDE5/CRU WATCH 
Forcing 
Data meth-
odology 
applied to 
ERA5

G, R ERA5 CRU TS 0.5° Hourly 1979–2019 Cucchi et al. 
(2020)WFDE5/

(CRU+GPCC)
CRU TS and 

GPCC

CMFD The China 
Meteorolog-
ical Forcing 
Dataset

G, S, R GLDAS CMA 0.1° 3-hourly 1979–2018 He et al. (2020)
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2  Study area and data

2.1  Study area

As shown in Fig. 1, the Yellow River Basin (795,000  km2) 
is the largest watershed in northern China, and the Yellow 
River is the second-longest river in the country (5464 km). 
The Yellow River flows through the Qinghai-Tibetan Pla-
teau, Inner Mongolia and Loess Plateaus and the Huang-
Huai-Hai (Yellow, Huai and Hai Rivers) Plain. Much of 
the Loess Plateau is an arid and semiarid region. The aver-
age annual temperature of the Yellow River Basin is −4°, 
and the annual precipitation amount is approximately 450 
mm, which is heavily affected by the East Asian monsoon 
and unevenly distributed. According to the Yellow River 
Water Resources Bulletin, the middle and upper reaches 
up to the Huayuankou station cover an area of 73,036  km2 
and account for 91.82% of the total basin area. The annual 
runoff at the Huayuankou station is 56.7 billion  m3. The 
Yellow River downstream from the Huayuankou station 
is an above-ground hanging river with a small catchment 
area covering 3% of the basin. Therefore, the present study 
evaluates precipitation data covering the upper reaches of 
the Huayuankou station in the Yellow River Basin.

2.2  Data

Table  1 presents seven gridded precipitation products, 
including one gridded rain gauge product and six precipita-
tion reanalysis products. These products were classified into 

three types: the first was based exclusively on gauge data, 
the second on reanalysis data that are not bias-corrected by 
gauge data and the third on the assimilation of reanalysis 
data and gauge data. Amongst these, we consider one first-
type (OBS), two second-type (NCEP/NCAR and ERA5) 
and four third-type (WFDE5/CRU, WFDE5/(CRU+GPCC), 
GLDAS 2.0 and CMFD) products. These seven gridded pre-
cipitation products were further interpolated to the AHMS-
IRR simulation grids with a resolution of 20 km in this 
study. They were used as forcing data for the model runs 
and for comparative analysis. Monthly, seasonal and annual 
precipitation data were generated by averaging the gridded 
daily precipitation data.

2.2.1  Non‑gauge‑corrected reanalysis precipitation 
products

NCEP/NCAR (National Centers for Environmental Predic-
tion and the National Center for Atmospheric Research) 
Reanalysis is a global dataset of atmospheric variables 
to support the needs of the climate research communities 
(Kalnay et al. 1996). A frozen state-of-the-art global data 
assimilation system and a complete database were used in 
the NCEP/NCAR Reanalysis project.

ERA5 is the fifth-generation reanalysis product created by 
the European Center for Medium-Range Weather Forecasts 
(ECMWF) for global weather and climate from 1979 to near 
real-time (Hersbach et al. 2020). This reanalysis is carried 
out with the 4D-Var data assimilation and model forecasts 
in CY41R2 of the Integrated Forecast System (IFS). ERA5 
hourly data on single levels are used in the present work. 

Fig. 1  Location and topography of the Yellow River Basin. The map includes the Yellow River network, the Loess Plateau and the four main 
hydrological stations referred to in the main text, i.e. Tangnaihe (TNH), Lanzhou (LZ), Toudaoguai (TDG) and Huayuankou (HYK)
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ERA5 has the following main advantages compared to other 
reanalysis products: higher spatial and temporal resolutions, 
advanced modelling and data assimilation systems (4D-Var), 
and a more considerable amount of integrated historical 
observations and parameters.

2.2.2  Observed precipitation products

An observed hourly gridded precipitation product across 
China was developed by Yang et al. (2010) based on the 
observed daily precipitation data provided by the China 
Meteorological Administration (CMA). Hereby, the daily 
rain gauge data from 833 weather stations across China, 
spanning the period from 1951 to 2006, was gridded to 1° 
grid resolution using the method described in Milly and 
Dunne (2002) and Xia (2008), which considered the topo-
graphic effects on rainfall. This spatial resolution was con-
ditioned by the distribution of weather stations in western 
China, shown in Fig. 17 for the Yellow River Basin. Fur-
thermore, the daily gridded precipitation was downscaled 
to hourly by using a random statistical function that is the 
same over a calendar month (Waichler and Wigmosta 2003). 
The selection of this gridded precipitation observation prod-
uct was made based on its comprehensive coverage of data 
from the majority of meteorological stations during the 
time period considered and the corresponding availability 
of hourly temporal resolution. These features are essential 
for conducting large-scale hydrological model simulations 
and facilitating climate model diagnostics.

2.2.3  Gauge‑corrected reanalysis precipitation products

WATCH Forcing Data methodology applied to ERA5 
(WFDE5) is derived from ERA5 with the methodology used 
to derive the widely employed water, energy and climate 
change (WATCH) forcing data. It is often used as a mete-
orological forcing dataset for land surface and hydrological 
models (Cucchi et al. 2020). The referenced reanalysis con-
sists of a bias-corrected reconstruction of near-surface mete-
orological variables based on ERA5 (Hersbach et al. 2020).

Precipitation fields in the WFDE5 have been adjusted using 
monthly-scale bias corrections based on Climatic Research 
Unit (CRU) and Global Precipitation Climatology Centre 
(GPCC) data. Two different precipitation products (WATCH/
CRU and WATCH/(CRU+GPCC)) come from WFDE5, one 
corrected using the CRU TS product and the other corrected 
using both the CRU TS and the GPCC observational products.

The China Meteorological Forcing Dataset (CMFD) 
is a high spatiotemporal resolution gridded near-surface 

meteorological dataset that was developed for studies on land 
surface processes (He et al. 2020). This dataset combines 
remote sensing and reanalysis products with in situ observa-
tions from weather stations. Precipitation fields in the CMFD 
are produced based on the assimilation of 753 weather stations 
from the CMA and gridded background data (base reanalysis) 
GLDAS NOAH10SUBP 3H for the research period of this 
work, i.e. from 1979 to 1989.

The goal of the Global Land Data Assimilation System 
(GLDAS) is to integrate satellite and ground-based observa-
tional data products using advanced land surface modelling 
and data assimilation techniques to generate optimal fields 
of land surface states and fluxes (Rodell et al. 2004). GLDAS 
2.0 is one of the two components of the GLDAS Version 
2 (GLDAS-2) dataset, which was produced by GLDAS. 
Moreover, GLDAS 2.0 was derived from the global mete-
orological forcing dataset from Princeton University (Shef-
field et al. 2006). Specifically, precipitation in GLDAS 2.0 
was constructed by combining global observation-based 
products from the Global Precipitation Climatology Project 
(GPCP) daily product, the Tropical Rainfall Measuring Mis-
sion (TRMM, in operation from 1997 to 2015) 3-hourly real-
time dataset and the National Centers for Environmental Pre-
diction–National Center for Atmospheric Research (NCEP/
NCAR) reanalysis.

2.2.4  Streamflow dataset

To calibrate and validate streamflow, observed daily stream-
flow  (m3  s−1) for the period 1979–1987 was acquired from 
the National Science and Technology Infrastructure of China 
(http:// gre. geoda ta. cn), and data came from the four main 
gauging stations in the basin, i.e. Tangnaihe (TNH), Lanzhou 
(LZ), Toudaoguai (TDG) and Huayuankou (HYK).

2.2.5  Evapotranspiration dataset

The Global Land Evaporation Amsterdam Model (GLEAM) 
v3.5 dataset (Martens et al. 2017) was applied to validate the 
model prediction of evapotranspiration. The choice of using 
the GLEAM data for evaluating simulated evapotranspiration 
is based on its robust foundation. GLEAM employs a water 
balance equation and assimilates multiple observations, 
including surface net radiation, near-surface air temperature 
and surface soil moisture, which collectively provide a com-
prehensive picture of the land surface dynamics (Martens 
et al. 2016, 2017). GLEAM’s evapotranspiration estimates 
offer insights into real-world evapotranspiration, including 
the effects of irrigation.

http://gre.geodata.cn
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3  Methods

3.1  The offline mode of the coupled Atmospheric 
and Hydrological Modelling System integrated 
IRRigation module (AHMS‑IRR)

The Atmospheric and Hydrological Modelling System 
(AHMS) is a fully coupled atmospheric and hydrological 
modelling system (Jiang et al. 2022, 2020; Xia 2019; Xia 
et al. 2022) that combines the Weather Research and Fore-
casting Model, WRF (Skamarock and Klemp 2008), with a 
physically-based distributed regional hydrological model, 
HMS (Yu et al. 2006), through the land surface model 
NoahMP-LSM (Chen and Dudhia 2001; Niu et al. 2011). 
The coupling method developed in WRF-Hydro (Gochis 
et al. 2020) for downscaling and upscaling the variables 
associated with the land surface and hydrological models 
was adopted. AHMS can either be run offline by using pre-
scribed near-surface atmospheric forcing variables or cou-
pled with the WRF model. A schematic illustration of the 
online and offline AHMS versions is shown in Fig. 2. The 
near-surface atmospheric forcing data required to run the 
offline AHMS include incoming shortwave and longwave 
radiation, near-surface specific humidity, air temperature 
and wind, precipitation and surface pressure (see Table S1 
in the Supplement).

The AHMS-IRR used here was developed by Jiang et al. 
(2022) and incorporates a new irrigation module within 
the land surface, flow routing and groundwater models 
of the AHMS, allowing for the explicitly representation 
of irrigation processes in the water cycle. The irrigation 
amount was calculated based on the soil moisture deficits 

method, water availability in rivers or lakes and irriga-
tion fraction dataset (see Section S1 in the Supplement 
for more details). Figure 3 shows a schematic representa-
tion of the hydrological cycle in AHMS-IRR. In previous 
work, we have shown that simulations using the offline 
AHMS-IRR yield good agreement between predicted and 
observed streamflow in the Yellow River Basin for the 
time period considered (see Fig. S1 in the Supplemental 
Material of the present manuscript). Moreover, this agree-
ment is not satisfactory if irrigation is neglected in our 
simulations (Jiang et al. 2022), as also shown in Fig. S1 
of the Supplemental Material. By incorporating the irri-
gation into the simulation, a more realistic hydrological 
response was obtained near the outlet of the Yellow River 
Basin compared to previous studies (Cong et al. 2009). 
The model results thus demonstrate the ability of AHMS-
IRR to reproduce long-term hydrological processes in the 
Yellow River Basin, provided that water taken for irriga-
tion is included in the simulation.

3.2  Hydrological model setup

The AHMS-IRR model was configured for the Yellow River 
Basin with a temporal resolution of one hour and a spatial 
resolution of 20 km (Jiang et al. 2022). The key input static 
parameters, including vegetation type and soil texture data, 
are aggregated from the 30 arc-second data of the hybrid 
State Soil Geographic Database Food and Agriculture 
Organization (STATSGO/FAO) soil texture dataset and the 
USGS 24-category vegetation (land use) datasets. The per-
formance of AHMS-IRR was rigorously assessed through a 
comprehensive evaluation, incorporating a combination of 

Fig. 2  Schematic diagram of the 
AHMS-IRR which integrates 
the Atmospheric and Hydrolog-
ical Modelling System (AHMS) 
with a new irrigation model 
(Jiang et al. 2022)
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ground-based (in situ) and remote-sensing data sources. This 
evaluation encompassed various factors, including observed 
streamflow, terrestrial water storage data derived from the 
Gravity Recovery and Climate Experiment (GRACE) and 
assimilated evaporation data provided by the Global Land 
Evaporation Amsterdam Model (GLEAM). Based on sen-
sitivity analysis conducted in Jiang et al. (2022), the most 
crucial parameters for calibrating the model against observa-
tions were identified as soil saturated hydraulic conductivity 
in the rainfall-runoff model, Manning’s roughness coefficient 
in the flow routing model, irrigation-triggered soil moisture 
availability and leaf area index in the irrigation model. To 
effectively achieve our objective of evaluating various precip-
itation products using hydrological modelling in this study, 
we focused our calibration efforts solely on the rainfall-runoff 
model parameter known as soil-saturated hydraulic conduc-
tivity. We incorporated calibrated values of Manning’s rough-
ness coefficient, irrigation-induced soil water availability and 
leaf area index from the study of Jiang et al. (2022).

Furthermore, following the approach of Bitew et  al. 
(2012) and Tang et al. (2016), we designed two scenarios to 
distinguish between uncertainties related to rainfall products 
and those related to models. For Scenario 1, the rain-runoff 
model parameters were calibrated using gauged precipita-
tion and remained constant for the other precipitation prod-
ucts. For Scenario 2, the rain-runoff model parameters were 
recalibrated for each precipitation product.

Table 2 lists the two hydrological settings used for model 
calibration or validation. In Scenario 1, the offline AHMS-
IRR was calibrated for gauged precipitation from 1 Jan 1979 
to 31 Dec 1983. The model was then validated using the 
same parameters (Para 1) for each of the six (non-) gauge-
corrected precipitation reanalysis products described above 
from 1 Jan 1984 to 31 Dec 1987.

In Scenario 2, the offline AHMS-IRR was recalibrated 
for each precipitation product, and the set of parameters 
was assigned corresponding names (Para 1 to Para 7). For 
scenarios 1 and 2, the performance of six (non-) gauge-
corrected precipitation reanalysis products was assessed by 
comparing simulated and observed streamflow from major 
hydrological stations during the validation period. Moreover, 
it should be noted that the other required near-surface atmos-
pheric forcing variables (as shown in Table S1), except for 
precipitation, were the same for each setup and were derived 
from ERA5 in Scenarios 1 and 2.

Furthermore, Table S3 in Section S5 of the Supplement 
shows the calibrated parameters (soil saturated hydraulic 
conductivity) of the rainfall-runoff model in the four subba-
sins, including Headwater-Tangnaihe, Tangnaihe-Lanzhou, 
Lanzhou-Toudaoguai and Toudaoguai-Huayuankou. Spe-
cifically, we calibrated the rainfall-runoff model against the 
mean annual observed runoff in the calibration period (from 
1979 to 1983). The parameters in the rainfall-runoff model 
were calibrated here to keep the BIAS (see next section) 

Fig. 3  Sketch of the hydrologic cycle simulated in AHMS-IRR, adopted from Jiang et al. (2022)
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of runoff for each reanalysis product as small as possible. 
Moreover, Table S4 in Section S5 of the Supplement pre-
sents the simulated and observed mean annual area runoff 
from 1979 to 1987, including the calibration and validation 
periods in the Yellow River Basin. Our choice for the simu-
lation period from 1979 to 1987, with the first five years 
dedicated to calibration and the last four years for validation, 
was determined in view of the following constraints:

(1) Meteorological Data Availability: Many near-surface 
meteorological products begin in 1979, making it a 
practical starting point for our simulation and analysis.

(2) Human Activities: The construction of the Longyangxia 
reservoirs (with a storage capacity of 27.6×109  m3) 
in the 1980s significantly altered the Yellow River’s 
hydrology. Since the AHMS-IRR does not currently 
account for reservoirs and dams, and given the absence 
of comprehensive reservoir management data, we 
intentionally focused on the pre-1990 period to avoid 
the influence of these anthropogenic influences.

(3) Limited Streamflow Data: Availability of streamflow 
observation data along the Yellow River is constrained, 
further impacting our choice of the simulation period.

3.3  Evaluation metrics

The agreement between the model-predicted and observed 
values was quantified by employing the following 

performance metrics: the Nash–Sutcliffe model efficiency 
coefficient (NSE) (Nash and Sutcliffe 1970), the root-mean-
square error (RMSE), the Pearson correlation coefficient 
(PCC), the mean absolute error (MAE), the mean abso-
lute percentage error (MAPE), the relative bias in percent 
(BIAS) and the modified Kling-Gupta efficiency (mKGE) 
(Gupta et al. 2009; Kling et al. 2012). These performance 
metrics are defined as follows, and the value ranges and 
perfect agreement corresponding values are summarized in 
Table S2 in the Supplement.
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Table 2  Two scenarios were 
designed to evaluate different 
precipitation products using the 
offline AHMS-IRR

Scenario Setup Calibration or 
validation

Period Precipitation product Parameter set

I 1 Calibration 1 Jan 1979–31 
Dec 1983 (same 
as below)

OBS Para 1

1–7 Validation 1 Jan 1984–31 
Dec 1987 (same 
as below)

All products

II 1 Calibration - OBS Para 1
Validation -

8 Calibration - CMFD Para 2
Validation -

9 Calibration - GLDAS 2.0 Para 3
Validation -

10 Calibration - WFDE5/CRU Para 4
Validation -

11 Calibration - WFDE5/(CRU+GPCC) Para 5
Validation -

12 Calibration - NCEP/NCAR Para 6
Validation -

13 Calibration - ERA5 Para 7
Validation -
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 where Ps and Po are the simulated and observed values of 
the P variable, respectively, and P

o
 is the mean value of 

Po. Moreover, μs and μo represent the averages of the pre-
dicted and observed values, respectively, while σs and σo 
correspond to the standard deviations of the predicted and 
observed values, respectively.

3.4  Standard deviation of elevation

The standard deviation of elevation is used to depict the 
complexity of the terrain and is defined as follows:

where SDE is the standard deviation of elevation of the 
larger grid, which is at a 20 km resolution in this study, xi is 
the elevation of the ith sub-grid at a 1 km resolution in the 
cell, N is the number of sub-grids at a 1 km resolution in the 
larger cell and μ is the average elevation of the cell. Here, a 
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moving window of 20 × 20 was used to calculate the stand-
ard deviation of elevations. Values close to zero indicate 
no variation (i.e. flat areas), while high standard deviations 
indicate areas with complex and steep terrain.

4  Results

4.1  Performance evaluation on the monthly, 
seasonal and annual scales using gauge 
observations

In this section, we evaluated the performance of six reanaly-
sis precipitation products, including NCEP/NCAR, GLDAS 
2.0, ERA5, WFDE5/CRU, WFDE5/(CRU+GPCC) and 
CMFD, across annual, seasonal and monthly timeframes by 
comparing them with gridded gauge precipitation (OBS). 
For this comparative analysis, we obtained monthly, sea-
sonal and annual precipitation data by resampling the grid-
ded daily precipitation data at a 20 km resolution using the 
mean method.

Figure 4 displays the average yearly precipitation of each 
product along with the observed annual precipitation. As 
shown, the non-gauge-corrected reanalysis precipitation 
products (NCEP/NCAR and ERA5) significantly overes-
timated precipitation by 50% and 45%, respectively. Fur-
thermore, the CMFD results were almost identical to the 
observed precipitation on an annual scale.

Moreover, Table 3 lists the annual precipitation statistics 
of seven products from 1979 to 1989. As shown, NCER/
NCAR yielded the highest average annual precipitation 
(664 m), had the widest range in the annual mean precipi-
tation (514–772 mm) and was associated with the largest 

Fig. 4  Annual precipitation in 
the Yellow River Basin from 
1979 to 1989: NCEP/NCAR 
(brown dashed line), OBS 
(orange solid line), GLDAS 2.0 
(orange dashed line), ERA5 
(green dashed line), WFDE5/
CRU (blue dashed line), 
WFDE5/(CRU+GPCC) (pink 
dashed line) and CMFD (green 
dotted line)
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deviation (82.3 mm) over the Yellow River Basin. To com-
pare, WFDE5/CRU had the narrowest range in the annual 
mean precipitation (331–479 mm) as well as the smallest 
associated deviation (46.3 mm). As shown in Fig. 5, the 
annual precipitation density from the CMFD yielded the 
best agreement with the gauge data (OBS), followed by 
the WFDE5/(CRU+GPCC). Moreover, WFDE5/CRU and 
GLDAS 2.0 yielded an overall low precipitation level with a 
peak of approximately 450 mm. Furthermore, the non-gauge-
corrected NCEP/NCAR and ERA5 products significantly 
overestimated the precipitation levels in the study period.

Figure 6 displays the spatial distributions of the precipita-
tion from all products and the Pearson correlation coefficients 
(PCCs) for the six reanalysis products in the Yellow River 
Basin (upland of Huayuankou) from 1979 to 1989. This figure 
shows that the average annual precipitation gradually increased 
from northwest to southeast. The areas with the highest annual 
precipitation were located southern Yellow River Basin, 
including the upper reaches of this basin, the Weihe Basin and 
the Sanmenxia to Huayuankou area (see Fig. 1). In contrast, the 
lowest annual precipitation occurred at Ningxia and the Hetao 
Plateau in the northwest of the basin. According to the PCC 
and RMSE, precipitation data from WFDE5/(CRU+GPCC) 
(PCC=0.99 and RMSE=0.08) and CMFD (PCC=0.98 and 
RMSE=0.09) were the most consistent with OBS. GLDAS 
2.0 and WFDE5/CRU slightly underestimated precipitation in 

the upper reaches of the river, while the non-gauge-corrected 
precipitation products (NCEP/NCAR and ERA5) significantly 
overestimated precipitation, especially in the mountainous area 
of the basin. For further details and interpretations, please refer 
to the discussion in Sect. 5a.

To evaluate extreme precipitation, we calculated the 99th 
percentile of the daily precipitation for each precipitation 
product. The results are presented in Fig. 7. Based on the 
RMSE and PCC values calculated over the research area, the 
spatial distribution of extreme precipitation (i.e. 99th per-
centile precipitation) predicted from WFDE5/(CRU+GPCC) 
(PCC=0.97 and RMSE=1.81) and CMFD (PCC=0.96 and 
RMSE=2.13) exhibited the best agreement with the observa-
tions (OBS). Remarkably, although NCEP/NCAR and ERA5 
exhibited similar annual precipitation, their spatial patterns 
of extreme precipitation showed significant differences, 
as indicated by the RMSE values of 8.09 and 4.13 and the 
PCC values of 0.21 and 0.93 for NCEP/NCAR and ERA5, 
respectively. As illustrated in Fig. 7, the statistical compari-
son suggests that all gauge-corrected reanalysis precipitation 
products underestimate extreme rainfall to various degrees, 
whereas non-gauge-corrected reanalysis precipitation prod-
ucts (ERA5) tend to overestimate extreme rainfall.

Figure 8 shows the monthly precipitation of the prod-
ucts in the Yellow River Basin from 1979 to 1989 and 
the average annual cycle of monthly precipitation for this 

Table 3  Annual precipitation 
statistics for the Yellow River 
Basin from 1979 to 1989 (unit: 
mm), associated with the 
different products considered in 
this study

The maximum and minimum standard deviation are highlighted in the context

Index Minimum Median Mean Maximum Standard 
deviation

OBS 353 457 442 504 50.6
NCEP/NCAR 514 666 664 772 82.3
ERA5 557 635 639 719 55.4
GLDAS 2.0 317 432 407 467 47.0
WFDE5/CRU 331 445 423 479 46.3
WFDE5/(CRU+GPCC) 366 472 456 518 52.2
CMFD 355 457 443 501 51.0

Fig. 5  Density curve (kernel 
density estimates KDE, which 
is the estimation of probability 
density functions of random 
variables based on kernels as 
weights) of annual precipitation 
of the products over the Yellow 
River Basin from 1979 to 1989
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period. As shown in Fig. 8, NCEP/NCAR and ERA5 over-
estimated precipitation in all months, while all other prod-
ucts did not differ much in terms of monthly precipitation. 
Table 4 lists the monthly precipitation statistics of the six 

reanalysis precipitation products. These monthly statistics 
showed that CMFD yielded the highest correlation coef-
ficient. Similarly, CMFD attained the lowest MAE, MAPE 
and RMSE.

Fig. 6  Spatial distribution of the daily mean precipitation of the seven 
precipitation products considered in the present study, i.e. (a) OBS, 
(b) NCEP/NCAR, (c) ERA5, (d) GLDAS 2.0, (e) WFDE5/CRU, f 
WFDE5/(CRU+GPCC) and (g) CMFD, from 1979 to 1989 over the 

Yellow River Basin (upland of Huayuankou), along with the root-
mean-square error (RMSE, mm) and the Pearson correlation coeffi-
cient (PCC) between the reanalysis product and OBS for each grid in 
the basin
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Figure 9 shows the average monthly evaluation metrics of 
the precipitation products in the Yellow River Basin from 1979 
to 1989. As seen, Fig. 9 indicates that CMFD had the lowest 

RMSE, MAE and MAPE, while NCEP/NCAR performed the 
worst. Compared to other months, all data showed the most 
considerable error in August. On the contrary, Fig. 9d shows 

Fig. 7  Spatial distribution of the 99th percentile precipitation of the 
seven precipitation products considered in the present study, i.e. (a) 
OBS, (b) NCEP/NCAR, (c) ERA5, (d) GLDAS 2.0, (e) WFDE5/
CRU, (f) WFDE5/(CRU+GPCC) and (g) CMFD, from 1979 to 1989 

over the Yellow River Basin (upland of Huayuankou), along with 
the root mean square error (RMSE, mm) and the Pearson correlation 
coefficient (PCC) between the reanalysis product and OBS for each 
grid in the basin
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that the percentage error in precipitation for these products 
was significantly higher in December, January and February.

Similarly, Fig. 10a, c, d shows that CMFD (NCEP/NCAR) 
produced the lowest (largest) RMSE, MAE and MAPE for sea-
sonal precipitation, while all products led to an overestimation 
of this precipitation in the summer. Figure 10d shows that the 
percentage error in precipitation for these products increased sig-
nificantly in the winter, especially for NCEP/NCAR and ERA5. 
This finding is consistent with Beck et al. (2017) and Jiang et al. 
(2021), as it occurs because the atmospheric model produces 
spurious drizzle and tends to overestimate low rainfall due to 
deficiencies in rainfall generation parameterization scheme. For 
further insights and interpretations, please refer to Sect. 5a.

4.2  Performance evaluation using the offline 
AHMS‑IRR

In this section, we evaluated the performance of the six 
reanalysis precipitation data products by comparing the 

offline AHMS-IRR simulated monthly streamflow with the 
corresponding observations. Figure 11 compares simulated 
monthly streamflow with gauge-calibrated parameters and 
observed monthly streamflow in both the calibration and 
the validation periods at all four main hydrological stations 
(Tangnaihe, Lanzhou, Toudaoguai and Huayuankou). As 
seen, the monthly streamflow was significantly overesti-
mated when using NCEP/NCAR and ERA5 products and 
slightly underestimated when using gauge-corrected rea-
nalysis precipitation products. The Nash–Sutcliffe model 
efficiency coefficient (NSE) and the Kling-Gupta efficiency 
(KGE) for the validation periods are displayed in Fig. 12, 
and additional data for both calibration and validation peri-
ods can be referenced in Table S5 in the Supplement. As 
shown in Fig. 12, the model performed much better upstream 
than in the middle stream area. The disparities in observed 
and simulated streamflow may be linked to inadequate rep-
resentations of the precipitation patterns of these products. 
Notably, the model’s performance appears to degrade as we 
move downstream, implying that errors accumulate along 
the river’s course.

In particular, the highest values of NSE (0.82) and KGE 
(0.82) were observed at the Tangnaihai station in the vali-
dation period (from 1984 to 1987). Moreover, WFDE5/
(CRU+GPCC) and CMFD outperformed the other products 
during the validation period, with the highest mean NSE and 
KGE values of the four stations, consistent with our statisti-
cal comparison discussed in the previous text.

Figure 13 compares simulated and observed monthly 
streamflow, where the simulated values were obtained from 
the hydrological model run with recalibrated parameters. 
Furthermore, Fig. 14 and Table S6 in the Supplement show 
the model performance (NSE and KGE) associated with the 

Fig. 8  (a) Monthly precipitation of the products over the Yellow River Basin from 1979 to 1989. (b) The annual cycle of monthly precipitation 
averaged over 1979–1989

Table 4  Statistics of the monthly precipitation of the products over 
the Yellow River Basin from 1979 to 1989 (unit: mm)

The maximum and minimum standard deviation are highlighted in 
the context

Index PCC RMSE MAE MAPE

NCEP/NCAR 0.976 25.18 18.43 61.80
ERA5 0.993 19.11 16.39 104.44
GLDAS 0.998 4.53 3.02 13.64
WFDE5/CRU 0.997 0.99 2.18 10.40
WFDE5/(CRU+GPCC) 0.999 2.02 1.34 5.68
CMFD 1.000 0.88 0.61 4.20
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different precipitation products in Scenario 2. The recalibra-
tion of the rainfall-runoff model substantially improved the 
model performance for all precipitation products compared 
to the results of Scenario 1 (Fig. 12). The improvement in 
model performance was particularly notable for models 
using gauge-corrected reanalysis precipitation products. For 
the validation period considered in the present work, the 
gauge-corrected reanalysis precipitation products, including 
WFDE5/(CRU+GPCC) and CMFD, demonstrated slightly 
better performance than other gauge-corrected products. 
However, non-gauge-corrected reanalysis precipitation 
products such as NCEP/NCAR and ERA5 exhibited poorer 
performance than gauge-corrected products. Overall, the 
performance of all gauge-corrected reanalysis precipitation 
products was similar.

Furthermore, we found the discrepancies in the pattern 
of extreme rainfall events drive variations in calibrated soil 
parameters with different precipitation products. By com-
paring Table S2 and Fig. 7, we observed a clear correla-
tion between extreme rainfall events and the calibrated soil 
parameters. Specifically, in areas where extreme rainfall was 
underestimated by the precipitation product, the calibration 
process led to a reduction in soil saturated hydraulic conduc-
tivity. This reduction compensated for the underestimated 

extreme rainfall rates, aligning the model’s surface runoff 
with observed data. This dependency illustrates that the 
accuracy of rainfall products to depict extreme rainfall 
events is critical for hydrological modelling.

Figure  15 displays the performance of the offline 
AHMS (RMSE and NSE) in predicting evapotranspira-
tion by comparing it with the GLEAM results (Martens 
et al. 2017). The analysis is associated with the differ-
ent precipitation products used in Scenarios 1 and 2. The 
results suggest that simulations driven by the non-gauge-
corrected precipitation products significantly overesti-
mated evapotranspiration. Moreover, the recalibration of 
the rainfall-runoff model led to an increase in runoff and 
an improvement in the evapotranspiration simulation for 
the gauge-corrected precipitation products, whereas it did 
not produce similar effects for the non-gauge-corrected 
precipitation products. Therefore, both Figs. 14 and 15 
reveal that when the precipitation bias exceeded a specific 
threshold (e.g. ERA5 and NCEP/NCAR with BIAS≥45%), 
the calibration of the hydrological model was no longer 
valid in terms of improving the model’s performance.

In Scenario II, as shown in Fig. 15 and Table S7, the 
performance of simulated evapotranspiration exceeds the 
OBS data for selected precipitation products (CMFD, 

Fig. 9  Averaged monthly evaluation metrics of the precipitation products over the Yellow River Basin from 1979 to 1989: (a) RMSE (mm), (b) 
PCC, (c) MAE (mm) and (d) MAPE (%)
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GLDAS 2.0, WFDE5/CRU, WFDE5/(CRU+GPCC)). The 
reasons for this divergence between the AHMS-IRR simu-
lation and the GLEAM data become apparent as we delve 
deeper into the analysis.

As shown in Fig. S2, the AHMS-IRR simulation driven 
by observed precipitation tends to slightly overestimate 
evapotranspiration during the summer, especially in 
response to extreme rainfall events. It is worth noting that, 
as indicated in Fig. S3, this overestimation is, in part, off-
set by the underestimation of precipitation during extreme 
rainfall events (see Fig. 7), resulting in a closer agreement 
with GLEAM data.

Our current model calibration focused primarily on soil 
parameters, specifically against runoff. We acknowledge 
that incorporating additional parameters and targets, 
such as vegetation characteristics and evapotranspiration, 
may further enhance model performance. Future model 
calibration efforts will consider these factors to achieve 
a more comprehensive representation of land surface 
processes.

5  Discussion

5.1  Why do the non‑gauge‑corrected reanalysis 
products overestimate the precipitation 
in the Yellow River Basin?

Many previous studies concluded that the reanalysis product 
overestimates the observed precipitation in areas of com-
plex terrain, which is consistent with the present study (see 
Fig. 6). Amjad et al. (2020) and Izadi et al. (2021) found that 
ERA5 consistently overestimated the observed precipitation 
over the mountainous areas of Turkey and Iran, while Jiang 
et al. (2021) reported that ERA5 tended to overestimate light 
precipitation events, especially in mountainous areas.

There are two possible reasons for the overestimation 
of precipitation in areas with complex terrain. On the one 
hand, this overestimation may be due to the scarcity of 
weather stations in areas of complex terrain, where the 
limited observations do not capture precipitation patterns 
in sufficient detail (Jiao et al. 2021). On the other hand, the 

Fig. 10  Seasonal evaluation metrics of the precipitation products over 
the Yellow River Basin from 1979 to 1989: DJF (winter, December 
to February), MAM (spring, March to May), JJA (summer, June to 

August), SON (autumn, September to November), (a) RMSE (mm), 
(b) PCC, (c) MAE (mm) and (d) MAPE (%)
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precipitation simulations in complex terrain areas are not 
accurate because the resolution of the precipitation simu-
lation is relatively coarse in areas of complex terrain. Spe-
cifically, as discussed in previous work (Amjad et al. 2020; 
Izadi et al. 2021), the mechanisms of humidity injection and 
turbulence through land surface-atmosphere interactions in 
complex terrain areas are poorly understood. Furthermore, 

the lack of snow removal processes in the ERA5 simulation 
could lead to excessive snowfall and precipitation in the 
Tibetan Plateau region, according to Orsolini et al. (2019). 
These findings are consistent with the fact that the percent-
age errors of non-gauge-corrected precipitation products 
(ERA5 and NCEP/NCAR) were much larger in winter than 
in summer (see Figs. 9, 10 and Sect. 4.1).

Fig. 11  Comparison of monthly streamflow simulated by offline 
AHMS-IRR with gauge-calibrated parameters (Scenario 1). The 
comparison includes seven different precipitation products against 
observed monthly streamflow at all four main hydrological stations, 
i.e. Tangnaihe (a), Lanzhou (b), Toudaoguai (c) and Huayuankou (d). 

The calibration period ranges from January 1, 1979, to December 
31, 1983, while the validation period spans from January 1, 1984, to 
December 31, 1987. Note that OBS represents the observed stream-
flow, while OBS_P represents the streamflow simulated using the 
gauged precipitation

Fig. 12  Performance of streamflow simulations forced by seven different precipitation products using the static rainfall-runoff parameters during 
the validation period (Scenario 1)



2620 C. Jiang et al.

1 3

To analyse the effect of the complex topography of the 
Yellow River Basin on the quality of the reanalysis pre-
cipitation data, Pearson correlation coefficients (PCCs) 
were calculated between precipitation observations and 
individual reanalysis precipitation using the standard 
deviation of elevation and mean annual precipitation over 
the Yellow River Basin. According to Eq. 8, the standard 
deviation of elevation was calculated at a 20 km resolu-
tion and was based on a digital estimation model at a 1 km 
resolution (USGS 1K). As shown in Fig. 16a, the Pear-
son correlation coefficient between the average annual 
observed precipitation and NCEP/NCAR reanalysis 

precipitation decreased rapidly with the standard devia-
tion of elevation, while ERA5 precipitation maintained 
a highly stable correlation with the observed data. This 
behaviour was most likely due to the higher resolution of 
ERA5 (2.5° of NCEP/NCAR and 0.25° of ERA5) and the 
advanced 4d-Var data assimilation system of ERA5. Sur-
prisingly, as the standard deviation of elevation increased 
(>230 m), the Pearson correlation coefficient for ERA5 
also slightly increased and fluctuated, which was also 
observed in the gauge-corrected reanalysis precipita-
tion products (see Fig. 16b). As shown in Fig. 16c, this 
behaviour may be explained by the fact that grids with 

Fig. 13  Same as in Fig. 11 but with product-specific calibrated parameters for each of the seven precipitation products (Scenario 2)

Fig. 14  Performance of offline AHMS simulations of streamflow forced by seven different precipitation products using the dynamic rainfall-
runoff parameters during the validation period (Scenario 2)
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higher standard deviation elevations are scarce. Further-
more, Fig. 16b shows that the gauge-corrected reanalysis 
precipitation data maintained a stable correlation with 
the observed data as the standard deviation of elevation 
changed compared with the non-gauge-corrected rea-
nalysis precipitation products. Specifically, WFDE5/
(CRU+GPCC) and CMFD performed better than GLDAS 
2.0 and WFDE5/CRU.

Considering the influence of complex terrain on pre-
cipitation simulations, the simulation grid for future cli-
mate modelling should be refined in areas of complex 
terrain to reach a pre-defined threshold of the standard 
deviation of elevation (Bacon et al. 2000; Dietachmayer 
1992). This refinement process improves the simulation 
of precipitation in areas with complex terrain without 
wasting computing capacity (Skamarock and Klemp 
2008).

5.2  Why do CMFD and WFDE5/(CRU+GPCC) agree 
the best with the precipitation observations?

The strong agreement between the CMFD and WFDE5/
(CRU+GPCC) products with precipitation observations can 
be attributed to several key factors discussed below.

As indicated by the comparison of annual and monthly 
precipitation (Figs. 4, 6, 7 and 9) and monthly streamflow 
(Figs. 12 and 14), CMFD performs exceptionally well and 
is nearly on par with the gridded rain gauge product and 
WFDE5/CRU+GPCC. However, its superior performance 
can be attributed to a combination of factors, including—in 
addition to its high spatial resolution (0.1°)—a substantial 
volume of rain gauge data, as well as the incorporation of 
remote sensing data. As indicated by He et al. (2020), CMFD 
integrates a more extensive product of weather station obser-
vations from the China Meteorological Administration 

Fig. 15  Performance of offline AHMS-IRR simulations in terms of evapotranspiration forced by seven different precipitation products using the 
static (Scenario 1 in blue) and dynamic (Scenario 2 in yellow) rainfall-runoff parameters for the period 1980–1987

Fig. 16  Pearson correlation coefficient (PCC) between the average 
annual observed precipitation and six reanalysis precipitation prod-
ucts with a standard deviation of elevation calculated in each 20 km 

grid over the Yellow River Basin (a) and (b). (c) The number of grids 
with a 20 km resolution and standard deviation of elevation over the 
Yellow River Basin



2622 C. Jiang et al.

1 3

(CMA), which began sharing data through the China Mete-
orological Data Service Center (CMDC) in recent years.

However, when comparing the performance of CMFD 
and WFDE5/CRU+GPCC, it is clear that the high spatial 
resolution of CMFD (0.1°) does not yield a clear advan-
tage over WFDE5/(CRU+GPCC) (0.5°). Therefore, we 
attribute the better performance of CMFD and WFDE5/
(CRU+GPCC) to the incorporation of a significantly larger 
number of weather stations, as explained below.

The disparities in the performances of gauge-corrected 
reanalysis precipitation products are closely linked to 
the number of assimilated rain gauges. During the study 
period (1979~1989), only a few weather stations from 
CMA were shared globally through the Global Telecom-
munications System (GTS). Figure 17 shows the distribu-
tion of a total of 82 CMA weather stations in the Yellow 
River Basin, including 22 national benchmark climate sta-
tions shared worldwide through the GTS and the other 60 
national ordinary stations not shared via the GTS. This 
is an important reason why the gauge-corrected reanaly-
sis precipitation products (WFDE5/CRU and GLDAS 
2.0) underestimated the annual precipitation compared 
with gauge observations and explained why CMFD and 
WFDE5/(CRU+GPCC) agreed the best with the precipita-
tion observations.

Specifically, CMFD and WFDE5/(CRU+GPCC) 
employed a more significant number of stations than 
WFDE5/CRU and GLDAS 2.0. According to He et  al. 

(2020) and Yu et al. (2020), the CMFD uses approximately 
753 stations across China, while WFDE5/(CRU+GPCC) 
essentially assimilates the same stations. In contrast, only 
approximately 300 stations across China, shared by the 
Global Telecommunications System (GTS), have been 
incorporated to derive the WFDE5/CRU and GLDAS 2.0 
products. In this study, we found that WFDE5/CRU and 
GLDAS 2.0 slightly underestimated the observed annual 
precipitation, which was consistent with the observations of 
Shi et al. (2017). These authors also concluded that the CRU 
TS product underestimated precipitation over the three-river 
headwaters region of China.

5.3  What challenges do hydrological model 
uncertainties and anthropogenic influences 
pose in this study?

In this study, we employed an offline AHMS-IRR and 
measured water discharge to assess (non-) gauge-cor-
rected precipitation reanalysis. Although the use of offline 
AHMS-IRR and measured water discharge provides us 
with an additional dimension for assessing precipitation, 
it is associated with additional uncertainties related to 
the parameters of the rainfall-runoff model and the flow 
routing model. Therefore, to reduce model uncertainty 
as much as possible, we recalibrated the rainfall-runoff 
model separately with each meteorological forcing data 
in the present study. In addition, we used two evaluation 

Fig. 17  Distribution of weather stations of the China Meteorological 
Administration in the Yellow River Basin (upstream of HYK station). 
Twenty-two national benchmark climate stations are shared world-

wide through the Global Telecommunication System (GTS) (red 
points), and the other 60 national ordinary stations (green points) are 
not shared through the GTS
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metrics to evaluate model performance, i.e. the Nash-Sut-
cliffe model efficiency coefficient (NSE) and the modi-
fied Kling-Gupta efficiency (mKGE) (Gupta et al. 2009; 
Kling et al. 2012). Hereby, we focused on the agreements 
between the observed and simulated streamflow peak and 
correlation, bias and variability.

Furthermore, anthropogenic factors such as irrigation 
play an important role in hydrological processes and pro-
foundly impact the water balance in arid and semiarid basins 
such as the Yellow River Basin. To quantify anthropogenic 
influences, we used the recently introduced and extended 
offline AHMS-IRR that applies to arid and semiarid regions 
by explicitly considering the effects of irrigation on hydro-
logical processes (Jiang et al. 2022). The extended offline 
AHMS-IRR integrates a new irrigation module, which com-
putes the dynamic irrigation demand, into the modified land 
surface, flow routing and groundwater models. This new 
extended offline AHMS-IRR explicitly represents anthro-
pogenic processes, such as irrigation, which significantly 
impact the water balance in the arid and semiarid areas of 
the Yellow River Basin.

The pronounced discrepancy at Toudaoguai, also 
observed in companion papers (Jia et al. 2006; Yin et al. 
2021), may arise from various factors, including the com-
plex diversion and drainage process in the Hetao irrigation 
district of Inner Mongolia. Another potential contributing 
factor could be the reliance on a single set of empirical 
hydraulic geometry equations in the channel routing model 
of AHMS-IRR and the absence of bathymetry observation 
data, which may not comprehensively capture the intricate 
bathymetry of the Yellow River, especially in its middle and 
lower reaches. Furthermore, NSE is sensitive to peak flow 
values (Krause et al. 2005). As suggested by Gupta et al. 
(2009) and Kling et al. (2012), mKGE (Modified Kling-
Gupta Efficiency) offers a more balanced metric, taking into 
account three independent criteria: correlation coefficient, 
bias ratio and variability ratio.

As seen in Figs. S3 and S4, Tables S8 and S9, we evalu-
ated of the model’s performance based on daily streamflow 
for the Tangnaihe, Lanzhou, Toudaiguai and Huayuankou 
stations. We indeed observe a slightly worse performance 
of the model results for the daily streamflow, compared to 
results associated with the monthly streamflow, particularly 
when using the NSE metric.

It is worth noting that our study area encompasses a 
large basin with extensive human interventions—including 
complex diversion and drainage processes in the irrigation 
district, damming and reservoir operations—which can 
strongly affect the behaviour of daily streamflow. Moreo-
ver, the profiles of riverbed, width and Manning roughness 
coefficient are poorly known, thus constraining the accuracy 
of flow dynamics simulation within the routing model and 

limiting our ability to accurately represent daily streamflow 
dynamics. As mentioned earlier, our choice to employ the 
NSE metric is influenced by its sensitivity to peak flows, and 
monthly streamflow offers a more robust metric for assessing 
model performance across various precipitation products.

5.4  Why do the calibrated model parameters vary 
with the different precipitation products?

In our study, the calibration process is primarily based on 
matching the model-simulated surface runoff with observed 
data. Surface runoff is fundamentally determined by the bal-
ance between incoming water from rainfall and the soil’s 
infiltration capacity. Detailed calculations for infiltration 
capacity and infiltration-excess runoff in this study can be 
found in Section S2 of the Supplement.

However, the following two main factors make the cali-
bration process challenging:

(1) Heterogeneity of rainfall and soil properties: Both 
rainfall and the surface soil properties exhibit spati-
otemporal heterogeneity (Yu 1998). Rainfall patterns 
vary across time and space, and soil properties also 
exhibit variations across the watershed. This inherent 
heterogeneity complicates the calibration process, as it 
requires modifying the soil parameters to account for 
inaccuracies in the rainfall data.

(2) Impact of extreme rainfall events: Surface runoff gen-
eration and peak river runoff are strongly influenced 
by extreme rainfall events. These events often play a 
crucial role in shaping the calibrated soil parameters. 
The accurate representation of rainfall extremes in pre-
cipitation products significantly impacts the magnitude 
of the calibrated soil parameters.

In our analysis, we examined the relationship between 
extreme rainfall events and the calibrated soil parameters. 
By comparing Table S2 and Fig. 7, we observed a clear 
correlation. Specifically, in areas where extreme rainfall 
was underestimated by the precipitation dataset, the cali-
bration process led to a reduction in soil saturated hydraulic 
conductivity. This reduction compensated for the underes-
timated extreme rainfall rates, aligning the model’s surface 
runoff with observed data. This dependency illustrates that 
the accuracy of rainfall products to depict extreme rainfall 
events is critical for hydrological modelling.

In short, we found that the discrepancies in the pattern 
of extreme rainfall events drive variations in the calibrated 
soil parameters with different precipitation products. The 
calibration process aims to ensure that the model accurately 
reproduces surface runoff, and variations in calibrated soil 
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properties are a means to achieve this goal, considering the 
challenges posed by heterogeneity in both rainfall and soil 
characteristics.

6  Summary and conclusions

In this study, we evaluated the performance of six widely 
used precipitation reanalysis products in the hydrology 
community for the Yellow River Basin, focusing on their 
accuracy against observed data and their influence on 
streamflow predictions using offline AHMS-IRR. The 
evaluated products included both non-gauge-corrected 
(NCEP/NCAR and ERA5) and gauge-corrected rea-
nalysis products (GLDAS 2.0, WFDE5/CRU, WFDE5/
(CRU+GPCC) and CMFD). We conducted a comprehen-
sive evaluation based on annual, seasonal and monthly 
precipitation observation statistics, alongside a compari-
son of streamflow observations at four main hydrological 
stations along the Yellow River with corresponding pre-
dictions using a recently introduced regional hydrologi-
cal model (Jiang et al. 2022). Each precipitation product 
served as the meteorological input for offline AHMS-IRR 
simulations, considering two model setups with static and 
dynamic parameters of the rainfall-runoff model. Our key 
findings can be summarized as follows:

1) CMFD and WFDE5/(CUR+GPCC) demonstrated the 
best agreement with observed precipitation and stream-
flow through statistical and hydrological comparisons 
in the Yellow River Basin. This superior performance 
can be attributed to CMFD and WFDE5/(CUR+GPCC) 
assimilate a significantly larger number of rain gauges 
compared to other precipitation products, as well as their 
high spatial resolutions.

2) Non-gauge-corrected reanalysis products (NCEP/NCAR 
and ERA5) significantly overestimated annual precipi-
tation, especially in mountain areas. ERA5 performed 
better due to its higher resolution and the advanced data 
assimilation system.

3) The hydrological response in the Yellow River Basin is 
significantly influenced by the precipitation, and calibra-
tion of the rainfall-runoff model can compensate for data 
deficiencies. We found that the accurate representation 
of extreme rainfall events in the precipitation dataset 
plays a crucial role in shaping the calibrated soil param-
eters. The dependency illustrates that the accuracy of 
rainfall products in depicting extreme rainfall events is 
critical for hydrological modelling.

Hence, we recommend the utilization of CMFD or 
WFDE5/(CUR+GPCC) as near-surface meteorological 
variables in the hydrological modelling in the Yellow 

River Basin. To enhance reanalysis products, it is crucial 
to integrate weather station observations sharing through 
the China Meteorological Data Service Center (CMDC) 
by the China Meteorological Administration (CMA). Fur-
thermore, improving precipitation simulations in moun-
tainous regions can be achieved through a deeper under-
standing and parameterization of land surface-atmosphere 
interactions, coupled with higher-resolution simulations. 
It is important to carefully calibrate the hydrological 
model to reduce dependence on the quality of precipita-
tion input, which has significant impacts on the compo-
nents of the water balance. Our evaluation contributes 
not only to improved hydrological modelling practices 
but also but also holds broader implications for Earth 
system and climate modelling across various spatiotem-
poral scales.
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Github repository (https:// github. com/ Jiang Cong1 990/ AHMS- IRRIG). 
Model input and simulation data of AHMS-IRR in the Yellow River 
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