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Abstract
This paper presents a validation of outputs from some GCMs of the CMIP6 project when used to assess climate projection and 
hydrological flows at a catchment scale for the case study area of the Lombardy region (Northern Italy). The modeling chain 
consists of (i) a choice of climatic scenarios from 10 GCMs of the CMIP6, (ii) the application of a stochastic downscaling 
procedure to make projections usable at the local scale, and (iii) the use of a semi-distributed physically based hydrologi-
cal model Poli-Hydro for the generation of hydrological scenarios. Data on observed precipitation and temperature were 
collected from automatic weather stations, and the hydrological budget of four target catchments within the study area was 
assessed using Poli-Hydro. An ex-post (back-casting) analysis was performed upon the control data series from the GCMs 
by comparing statistics of relevant climate variables and model-simulated discharges against observed counterparts dur-
ing the historical period 2002–2014. Then, during 2015–2021, the goodness of projections was assessed using confidence 
intervals. Our results show that the accuracy of GCMs in representing regional climate is not always reflected in a credible 
evaluation of local hydrology. The validation of climate patterns provides somewhat poor results; thus, the interaction among 
climate and hydrology needs to be explored carefully to warrant the credibility of hydrological scenarios. Overall, the spatial 
and temporal consistency of GCM projections, as explored here climatically and hydrologically, provides a clue about their 
dependability for basin scale management.

1  Introduction

Nowadays, uncertainty in future climate projections is 
a main concern since these are widely used to assess the 
impacts of climate change on the environment and to plan 
adaptation strategies worldwide (Kundzewicz et al. 2008).

Uncertainty of climate models’ outputs arises from 
the challenge of representing physical processes, e.g., 
clouds, turbulence, and further from poor understanding 
of other processes that can be represented only in simpli-
fied form, such as the effects upon climate of growing trees 
and/or presence of buildings (Curry and Webster 2011). 
These issues are not resolved in global climate models, 
but indeed, they impact the simulation of wide-scale 
temperature and precipitation. On top of such complex-
ity, one has the involvement of multiple subsystems and 
uncertainty associated with the models’ structure, e.g., 

parameters, equations, and initial and boundary condi-
tions (Palmer et al. 2005). The Intergovernmental Panel 
on Climate Change IPCC set several CO2 concentration 
pathways as external boundary conditions for (future) cli-
mate modeling. In the latest Assessment Report (AR6), it 
is stated that human activities have been the main cause 
of present global warming. However, there is still skepti-
cism about the reliability of climate projections (Busch 
and Judick 2021). Global circulation models (GCMs) 
provide climate projections on a coarse grid resolution, 
generally not suitable to represent climatic variability at 
a local scale. The consequence is a lack of confidence 
in the future projections (Räisänen 2007) and possible 
over/underestimation of precipitation projections and the 
related risks (Moreno-Chamarro et al. 2021). This range of 
uncertainty increases when assessing hydrological projec-
tions since a complex modeling chain, from GCMs sce-
narios to downscaling (most often necessary to cope with 
the large-scale jump from climate models to hydrological 
ones), and then hydrological modeling needs to be applied 
here (Casale et al. 2021). Every step introduces uncer-
tainty, leading to an overall decrease in the dependability 
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of future projections (Camici et al. 2017). Although there 
is no common agreement upon validation methods for cli-
mate models (Guillemot 2010), one method to measure/
constrain uncertainty is cross-comparison against other 
simulations and or against observations, and indeed, the 
use of past observational data is essential in evaluating 
possible future scenarios (Koutsoyiannis et  al. 2009). 
It seems clear that measuring such uncertainty plays a 
paramount role in water resource management, not only 
when applying structural measures but also for economic 
and social strategies (Knutti 2008). Hydrologists are thus 
required to assess accurately the impact of climate projec-
tions on the hydrological cycle (Kang and Ramírez 2007). 
Moreover, when assessing the impact of climate change 
on a regional scale, it is essential to evaluate the abil-
ity of GCMs to describe local meteorological variability; 
otherwise, poorly representative climate projections may 
be obtained in the study area (Salathe et al. 2007; Eyring 
et al. 2016).

The two-fold purpose of this study was to validate con-
trol data series from some GCMs and to then evaluate 
the accuracy of the subsequent climate projections at the 
local scale, also in assessing hydrological discharges at a 
catchment scale, with a focus upon a case study area in the 
Lombardy region of Northern Italy. The chosen region is a 
sensitive target for climate change because (i) it is largely 
covered by mountains, the (cryosphere dependent) hydro-
logical regimes of which is already suffering from global 
warming (Beniston et al. 2011; Fuso et al. 2021), and (ii) it 
hosts two large regulated lakes, crucial for downstream irri-
gation and hydropower production (Anghileri et al. 2011). 
Therefore, reliable hydrological projections are essential 
from an environmental, social, and economic point of view. 
We used here (i) 10 GCMs and 4 scenarios of projected 
socioeconomic global changes (shared socioeconomic path-
ways (SSPs)) of the CMIP6 of IPCC (with a forward pro-
jection phase starting in 2015), (ii) a downscaling model 
to make the climate projections suitable at the local scale, 
and (iii) the semi-distributed physically based hydrological 
model Poli-Hydro to model hydrology under the obtained 
climate scenarios. To assess the robustness of the hydro-
logical scenarios, a back-cast analysis has been carried out, 
both in terms of climatic drivers, i.e., precipitation and 
temperature, and of hydrological discharges, by comparing 
projections against observed data for 20 years, 2002–2021. 
First, we performed the back-cast against the control data 
series (2002–2014) of the 10 GCMs after downscaling by 
comparing the related statistics of temperature, precipita-
tion, and discharges against the observed ones. After such a 
test, the most representative GCMs for the area were evalu-
ated. Then, we assessed the goodness of future projections 
(here, 2015–2021) by evaluating the confidence interval of 
the SSPs and verifying whether the observed data are well 

contained within the range of uncertainty (i.e., confidence 
limits) of the projected variables.

The paper is structured as follows. In the “Study area” 
section, the study area is presented. The methodology is 
reported in the “Methodology” section. This includes the 
(choice of) global circulation models, the downscaling 
procedure, and the hydrological modeling, followed by the 
back-cast analysis and the projections. The results are shown 
in the “Results” section. Discussion and conclusions are in 
the “Discussion” and “Conclusion” sections, respectively.

2 � Study area

2.1 � Case study

The study area is a part of the Lombardy region, nested 
within the Ticino-Adda catchment (Fig. 1). The area hosts 
several mountains and glaciers, with the highest elevation 
of 4020 m, thus being largely snow/ice fed and rich in both 
surface and aquifer water (Casale et al. 2021). Two major 
lakes are located inside the basin, i.e., Lake Maggiore, with 
a volume of 37 km3, and Lake Como, with a volume of 23.4 
km3. The first is watered almost equally from the Piemonte 
region and Switzerland rivers, whereas the catchment of the 
second is for 90% in Lombardy and 10% in Switzerland.

The climate in the region is mainly cold in the lake Como 
catchment, with hot summers at low altitudes, with tempera-
ture decreasing with altitude. Overall, in the high-altitude 
catchments, temperature varies between −4 °C in winter and 
+15°C in summer. Total precipitation is around 1300 mm/
year on average, with peaks in May and November. Down-
stream into the lowlands, the climate is temperate, with the 
highest temperature up to +23 °C in summer and peaks of 
precipitation in autumn, with a total of 1800 mm/year on 
average.

The lowland area is inside the Po valley, the most pro-
ductive agricultural area of Europe (Bocchiola et al. 2013), 
intensively exploited for agriculture and hydropower pro-
duction. In recent years, due to climate change, summer 
droughts have requested more water to be released from 
the lake, conflicting with interests from hydropower pro-
ducers needing water during winter (Denaro et al. 2018). 
Future projections would depict a potential worsening of 
these issues, given that the increase in temperature and the 
decrease in precipitation will necessarily call for a renewal 
in the management strategies of water resources (Fuso et al. 
2021).

2.2 � Data

Two observational datasets were employed in this study, 
i.e., (i) daily series of precipitation and temperature (P, T) 
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collected from automatic weather stations (AWS) of ARPA 
Lombardia for a baseline period (BP) 2002–2021 and (ii) 
stream flows from four hydrometric stations (daily water 
level, converted to discharge). In Fig. 1, the 45 AWSs and 
the catchment area contributing to the four river sections 
(Adda-Fuentes, Lambro-Milano Via Feltre, Brembo-
Brembate di Sopra, and Olona-Castellanza) are shown. 
The meteorological data available here were used both 
for GCM validation to feed the hydrological model Poli-
Hydro. The hydrometric stations were selected in order to 
investigate basins with different dimensions and features, 
as shown in Table 1.

3 � Methodology

In this section, our modeling chain used is presented. First, 
the GCMs used are listed, each with 4 SSPs of the CMIP6. 
Given the coarse resolution of the GCMs, a downscaling 
procedure was necessary. Then, the precipitation and tem-
perature series from GCMs, properly downscaled, were 
used to feed the hydrological model, previously tuned for 
the baseline period. To increase the reliability of the climate 
and hydrological projections and to evaluate the most repre-
sentative GCMs within the chosen set, a back-cast analysis 
of GCM control data was performed. Finally, the goodness 

Fig. 1   Automatic weather 
stations (AWSs) available in 
the study area. Hydrological 
sub-basins identified by the 
hydrometers located at Fuentes, 
Milano Feltre, Brembate di 
Sopra, and Castellanza

Table 1   Catchments’ features, 
mean discharge, observed 
during 2002–2021, and bias 
obs/mod for each sub-basin 
averaged during the years 
2002–2021

Catchment Area [km2] Mean elevation 
[m a.s.l.]

Max elevation 
[m a.s.l.]

Mean dis-
charge [m3s−1]

Bias obs 
/mod

Adda – Fuentes 2526.16 1888.7 3801 85.43 −8.2%
Lambro – Milano Via.Feltre 355.63 370.11 1216 9.76 −1.4%
Brembo – Brembate di Sopra 787.121 1475.5 2572 26.32 +1.9%
Olona – Castellanza 173.81 375.48 876 4.71 +10.6%
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of the SSPs projections was assessed, testing whether the 
observational data occurred within the range of the projected 
variables.

3.1 � Global circulation models

In this study, 10 GCMs were employed, of which scenarios 
are being used as part of the experiment Coupled Model 
Intercomparison Project CMIP6 of the IPCC. We used the 
following models: CNRM-CM6-1 (Voldoire et al. 2019), 
IPSL-CM6A-LR (Lurton et al. 2020), NorESM2-LM (Seland 
et al. 2020), INM-CM5-0 (Volodin et al. 2018), EC-EARTH3 
(Döscher et  al. 2022), CESM2 (Lauritzen et  al. 2018), 
ECHAM6.3 (Mauritsen et al. 2019), CMCC-CM2 (Cherchi 
et al. 2018), UKESM1 (Sellar et al. 2019), and MIRCOC6 
(Tatebe et al. 2019). The forcing scenarios are a combination 
of socioeconomic scenarios (SSPs) and representative green-
house emission scenarios (RCPs, expressed in W/m2) used 
for the AR5 (Taylor et al. 2012). The SSPs represent several 
possible evolutions of society, considering investments in 
education, health, and energy development. SSP 1 and SSP 
5 project a positive development of society, but while the 
latter devise an economy based on fossil fuel, the former 
conceives a sustainable economy. The SSP 2 scenario depicts 
a continuation of the historical trend (business-as-usual), 
while the SSP 3 and SSP 4 foresee a negative (climate-wise) 
development of societal dynamics worldwide. Four SSP sce-
narios were used in this study, based on RCP 2.6, 4.5, and 
8.5 scenarios, namely, SSP1.2.6, SSP2 4.5, SSP5 8.5, and an 
intermediate SSP3 7.0 scenario (O’Neill et al. 2016).

3.2 � Downscaling procedure

The GCM outputs come with a ∼100 km cell resolution, 
much coarser than the resolution of a typical hydrologi-
cal model (such as Poli-Hydro). For this reason, stochastic 
downscaling is necessary to make the output of the GCM 
usable at the resolution of the local data or at the resolution 
of the model (here, 1 km × 1 km2).

Downscaling of precipitation was pursued through the 
stochastic space random cascade method (e.g., Groppelli 
et al. 2011a), applied here in time (e.g., Bocchiola and Rosso 
2006) to reproduce the observed precipitation variability 
(e.g., Groppelli et al. 2011b). The control run CR period 
2002–2014 was defined to compare the historical series of 
GCMs against observed data of precipitation. If one defines 
Rd

GAO as the observed average daily precipitation in a given 
day d, at a given AWS, while Rd

GCM is the daily precipita-
tion simulated by the GCM (in the cell including the AWAs 
site), the goal of downscaling can be defined as matching 
(statistically, in terms of mean and variance) the (corrected) 
value of Rd

GCM,corr to the value of Rd
GAO.

With

BiasGAO, p0, and 𝜎𝑤0
2 are model parameters to be tuned 

based on observational data. BGAO is, in practice, a calcu-
lated bias, forcing the RGCM average to coincide with the 
RGAO average. B0 is a β model generator and represents the 
probability that RGAO is null, conditioned to a positive value 
of RGCM. W0 is a positive parameter that gives variability 
to precipitation. Temperature is downscaled by applying a 
monthly average temperature Bias (ΔT) (Groppelli et al. 
2011b). An offset is calculated at the monthly scale between 
GCM and observed temperature.

Here, Td,iGCM is the temperature of day d in month i, given 
by the GCM. TiGCM and Tiobs are the average temperature in 
month i, given by the GCM and the station, respectively. 
Td,iGCM,corr is then the corrected temperature of day d, based 
on the mean temperature shift between the given GCM and 
observed temperature.

After this procedure, a total of 40 precipitation and tem-
perature scenarios (4 SSPs × 10 GCMs) were used to feed 
Poli-Hydro for the assessment of hydrological scenarios.

3.3 � Hydrological model

We used here the physically based, semi-distributed hydro-
logical model Poli-Hydro (Soncini et al. 2017; Aili et al. 
2019; Fuso et al. 2021). The model simulates in each grid 
cell the main physical processes, including (i) snow and ice 
melt using a mixed degree-day approach based on average 
daily temperature and short-wave radiation (Aili et al. 2019) 
and (ii) potential evapotranspiration using Hargreaves’ for-
mula, and subsequently actual evapotranspiration, evaluated 

(1)Rd
GCM,corr = Rd

GCM∕BiasGAO B0W0

(2)BiasGAO = E
[

RGAO

]

∕E
[

RGCM

]

(3)P
(

B0 = 1∕p0
)

= p0

(4)P
(

B0 = 0
)

= 1 − p0

(5)W0 = exp
(

w0 − σw0
2∕2

)

E
[

B0

]

= p0 1∕p0 + 0
(

1 − p0
)

= 1

E
[

W0

]

= 1

w0 ∼ N
(

0, �w0
2
)

(6)Td,i
GCM,corr = Td,i

GCM − Ti
GCM − Ti

obs
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based on soil water content, assessed via water budget. The 
results of model tuning for the involved catchment in terms 
of the Bias obs/mod are reported in Table 1 for the period 
BP 2002–2021.

The Poli-Hydro model was tested within a large array 
of areas worldwide and climate conditions, starting from 
mountainous, ice/snow-fed catchments in Italy (e.g., Soncini 
et al. 2017), in South America (Bocchiola et al. 2018), the 
greater Himalayas (Soncini et al. 2015, 2016; Casale et al. 
2020), and Caucasus (Baldasso et al. 2019) to semi-arid 
areas of Europe (e.g., Capolongo et al. 2019) and central 
Asia (Akbari et al. 2018) and to tropical areas in the Carib-
beans (Bozza et al. 2016), Africa (Bombelli et al. 2021), and 
Indonesia (Stucchi and Bocchiola 2023). Poly-Hydro model 
performed well within all such climatic, topographic, and 
hydrological setups.

Notice further that the model has specifically been used 
for hydrological simulation in the area of interest in former 
contributions, with good outcomes, especially in Adda river 
and Como lake catchment (Casale et al. 2021), and also in 
Serio river (not considered here, bordering east of Brembo 
river in the DEM in Fig. 1; Fuso et al. 2023).

This is a substantially homogeneous area in terms of cli-
mate (temperate dry, with hot/warm summer Csa/b, to polar 
cold and glacial ET, EF at the highest altitudes; Peel et al. 
2007), topography (steep mountainous catchments high alti-
tude until ca. 4000 m slm, with large snow/ice feeding), and 
hydrology (bimodal regime with spring/fall flood season and 
dry summers; e.g., Bocchiola 2014).

Accordingly, and based on the results here presented for 
model calibration, we can assume that the Poli-Hydro model 
is flexible (i.e., in terms of parameters tuning) and portable 
(between catchments) enough that it can be confidently used 
here for our purpose of GCM–RCM evaluation and ranking 
(e.g., Dakhlaoui and Djebbi 2021).

3.4 � Back‑cast analysis

All GCMs provide climate projections with coarse (spatial) 
resolution, much lower with respect to the resolution of the 
hydrological model. To make the projections usable for the 
case study, a downscaling process was performed. The pro-
jected period, e.g., when the models start projecting forward 
future climate variables, starts in 2015 for CMIP6. Anyway, 
a window of 20 years during 2002–2021 BP was considered, 
and thus, a period of 13 years before the start of the future 
projections was taken as a historical validation period.

First, GCM validation is carried out via an ex-post 
analysis of the control data series. This analysis involves 
comparing the precipitation and temperature obtained from 
the GCMs (after downscaling) against the observed values 
for each year (2002–2014). This analysis has been carried 
out both in terms of climatic drivers, i.e., precipitation and 

temperature, and of hydrological discharges to test the accu-
racy of GCMs of the downscaling procedure and hydrologi-
cal modeling.

3.4.1 � Climate validation

To assess the suitability of each GCM to represent the 
local weather, some tests were carried out. A Student’s 
t-test (hypothesis H0, same mean value) was performed for 
the observed (Pobs, Tobs) and predicted values of the target 
variables (PGCM, TGCM), and furthermore, a Fisher’s F-test 
(hypothesis H0, same variance) was carried out for the vari-
ance of precipitation. Temperature variance was not tested 
because it was observed that (i) once Bias corrected, GCMs 
generally depict sufficiently well periodic changes in pre-
cipitation, and (ii) high-frequency (i.e., daily) changes of 
temperature do not generally affect hydrological behavior, 
more affected by seasonal patterns. The observed data of 
cumulated annual precipitation and mean annual temperature 
were assessed against the observed data at the scale of each 
catchment. To do so, we proceeded as follows. Within each 
basin of interest, we calculated for every day d, the spatially 
averaged value of precipitation, Pav,d, and of temperature Tav,d 
within the basin. The averaging was carried out by weighting 
values in each station (including the corrected values of the 
GCMs precipitation Rd

GCM,corr and temperature Td,iGCM,corr, 
downscaled as reported with reference to the AWS stations’ 
sites), according to the corresponding Thiessen polygon, con-
sistently with the fact that Thiessen method is often adopted 
as a rapid interpolation method, especially for hydrological 
purposes, and Poli-hydro model also operates in this mode. 
Concerning temperature, to account for the altitudinal ther-
mal shift, we applied a proper lapse rate correction to the 
AWS temperature within each polygon (Soncini et al. 2017). 
At the AWS stations, snowfall was identified using snow 
gauges, and new snow included accounted for in precipitation 
assessment (with a fresh snow density of 125 kgm−3; e.g., 
Bocchiola and Rosso 2007). From the so-obtained spatially 
average daily values in each catchment, we could calculate 
several statistics to be tested.

The tests were performed on two different types of sam-
ples for each variable, i.e., (i) a sample of cumulated daily 
precipitation Sa(Pobs), Sa(PGCM) and mean daily tempera-
ture Sa(Tobs), Sa(TGCM) for each year (2002–2014) and (ii) a 
sample of cumulated daily precipitation Ss(Pobs), Ss(PGCM) 
and mean daily temperature Ss(Tobs), Ss(TGCM) over the four 
seasons, considering the entire historical period. The same 
tests were carried out, also considering monthly aggregation 
instead of daily aggregation, thus reducing the sample size. 
We also considered (iii) monthly cumulated precipitation 
Sca(PGCM) and mean monthly temperature Sas(TGCM) for each 
year and (iv) cumulated monthly precipitation Scs(PGCM) and 
mean monthly temperature Scs(TGCM) over the four seasons, 
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considering the entire historical period. Concerning precipi-
tation, we did not include a statistical analysis of zero rain-
fall days (dry spells). Zero rainfall days may reflect internal 
variability of the phenomenon in time and may influence 
droughts/flood dynamics and, in general, flow seasonality/
regime. However, we decided to test here the precipitation 
variability because we assume that this will affect more 
directly stream flow variability. Dry spells will be therein, 
somewhat reflected by low values of precipitation.

We carried out the tests for each GCMs control series 
downscaled, for a total of 140 t-tests for P and T and 140 
F-tests for P (10 GCMs × 14 years) and 40 t-tests for P and 
T and 40 F-tests for P (10 GCMs × 4 seasons) for each basin. 
These tests were performed considering both daily (i, ii) and 
monthly (iii, iv) aggregation. Yearly and seasonal p-values 
were obtained, measuring the goodness of fit of the (first 
and second for rainfall) statistics of the simulated variables 
against the observed ones.

3.4.2 � Hydrological validation

To validate the GCMs downstream of the modeling chain, 
a Student’s t-test was carried out to compare the modeled 
discharges from GCMs (QGCM) against the modeled dis-
charge from AWS data (Qmod). This comparison was made 
against the modeled discharges since the performance of 
the hydrological model was already assessed and deemed 
acceptable (“Hydrological model”) and to avoid including 
the comparison of the effect of the model’s noise. To assess 
the hydrological variations from GCM projections generally, 
we focused on the difference between mean discharges over 
10 years, i.e., at mid-century and mean discharges over 10 
years of the CR (Aili et al. 2019; Fuso et al. 2021; Bombelli 
et al. 2021; Casale et al. 2021). For this reason, we decided 
to test the hydrological performance of the GCMs consider-
ing 4 mobile windows of 10 years, i.e., 4 T-tests were per-
formed for each GCM (2002–2011, 2003–2012, 2004–2013, 
2005–2014), considering a sample of 3650 daily values. Like 
it was done for climate variables, we carried out the tests also 
considering the mean monthly discharges, thus reducing the 
sample size to 120 values.

3.5 � Projections of future climate and hydrology

After the GCM validation, we averaged among the four SSPs 
of the outputs from the 10 GCMs, and we assessed the good-
ness of climate and hydrological projections by verifying 
whether the observed (in the future) data are within the range 
of the projected variables during the years 2015–2021. The 
range of each SSP is represented by the confidence interval 
at 95%. For precipitation and temperature, the compari-
son is carried out between the GCM projections properly 
downscaled against the observed AWS data, while for the 

discharges, we compared the modeled discharges with Poli-
hydro using the inputted AWS data vs. the climate projec-
tions downscaled. In doing so, one may (i) assess changes in 
future vs. future stream flows by offsetting the hydrological 
model’s error, only considering the effects of the climate, 
and (ii), specifically here, assess the dependability of outputs 
from each GCM, independently of the hydrological model 
interference. Another reason for not using observed stream 
flows is indeed the potential presence of regulation. Hydro-
logical models generally do not include regulation, and the 
obtained streamflow series are solely driven by climate vari-
ability. Accordingly, when assessing the credibility of future 
projected streamflow series (against observations), potential 
differences against the observations may actually depend 
upon the presence of (even slight) river regulation, which, 
however, has little to do with the dependability of the tested 
GCMs. Such potential issues may be actually bypassed 
using simulated series, both in the control run and in the 
future. Thereby, any potential effect of regulation would be 
bypassed, and one would observe only changes/differences 
as given by the climate input.

4 � Results

4.1 � Back‑cast analysis

4.1.1 � Climate models validation

Figures 2 and 3 represent the mean annual temperature and 
the cumulated annual precipitation observed and modeled 
for each GCM and over each basin during 2002–2014.

The mean observed annual temperature in the Adda catch-
ment during 2007–2009 is generally underestimated by all 
GCMs, and none of the models successfully reproduce the 
lowest observed temperature observed in the year 2010 across 
all basins. Notice, however, that GCM models, working at 
the global scale, are expected to represent acceptably gen-
eral (mean) climate conditions over large scales while being 
less accurate in depicting more variable (and local) behavior. 
However, despite such flaws, the historical trend of the GCMs 
reproduces acceptably well the observed values (Fig. 2).

The observed precipitation displays a similar fluctuating 
pattern in all basins, with different absolute values, the Adda 
catchment being the less rainy one (Fig. 3). The historical 
trend of GCMs is smoother with respect to the observed pre-
cipitation, and both overestimation and underestimation can 
be observed, the former during 2004–2007 for Adda basin and 
during 2003–2007 for the other catchments, namely, after 2012 
for Adda and Brembo and after 2013 for Lambro and Olona.

To aggregate these results, for each model, the number 
of years (out of 14) when the p-value was significant (i.e., 
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p-value ≥0.05) was lumped (Table 2). We report here the 
number of years considering both the daily and monthly 
values. The results show that considering the daily values 
may result in lower p-values and so into a smaller number 
of years when we can consider the mean and variance of 
the climate variables from GCMs to be consistent with the 
observed values.

When considering a monthly aggregation, all GCMs pre-
sent acceptable performance in reproducing the observed 
climate patterns in all catchments. On the other hand, by 
increasing the temporal resolution at a daily scale, the mod-
els show different results. For temperature overall, the best 
models seem to be the MPI-ESM, the MIROC6, and the 
IPSL. The mean value of precipitation is well represented 

Fig. 2   Mean annual temperature 
over each basin from 2002 to 
2014 for each GCM. The points 
represent the mean value over 
each GCM (colored), and the 
black line represents the mean 
observed temperature from 
AWS
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overall by MPI-ESM and CNRM, whereas in terms of vari-
ability, the results are less satisfactory.

Beyond average annual values, one wants to assess the 
changing seasonal patterns of climate variables since their 
seasonal behavior directly impacts hydrological response. In 
Table 3, the mean seasonal error between the temperature 
from the GCMs and the observed values is reported for each 
basin. For each GCM and basin, we performed 4 Student’s 

T-tests, one for each season for all the historical periods 
2002–2014, considering both the daily and the monthly 
aggregation. The results are shown in Table 3. For the mean 
daily temperature, the results of the T-tests were significant 
for all the GCMs for all the basins, except for the Adda catch-
ment, where all the GCMs gave poor performances in spring 
and summer (Table 3). This is possibly caused by many miss-
ing (no-data) temperature values in the AWSs of the Adda 

Fig. 3   Cumulated annual pre-
cipitation over each basin from 
2002 to 2014 for each GCM. 
The points represent the mean 
value over each GCM (colored), 
and the black line represents the 
mean observed value from AWS

1350 F. Fuso et al.
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basin in the summer and spring months, which were not 
filled. However, considering the mean monthly temperature, 
such an issue is masked since the use of the monthly scale 
seemingly hides the issue of the daily no-data records.

For precipitation, Student’s T-tests and F-tests were car-
ried out for each season for the years 2002–2014, and the 
mean error for the cumulated seasonal precipitation from 
GCMs against the cumulated seasonal observed values is 
reported in Table 4. The GCMs depict well the mean sea-
sonal variability of precipitation, but they fail to represent 
its changes as quantified by variance, and the noise therein 
is the highest. By looking at Table 4, T-tests are significant 
for all the basins, considering both the daily and the monthly 
aggregation. F-tests, contrarily, are not significant for the 
daily samples but improve at the monthly scale. However, 
in spring and autumn, the GCMs still poorly represent the 
variance of precipitation. This occurs mostly in the raini-
est months when the intrinsic variability of the precipita-
tion pattern is higher, thus making it more challenging its 
representation.

Overall, the best GCMs in representing the seasonal 
variability of our target climate variables are the CESM2, 
CMCC, UKESM2, and IPSL.

4.1.2 � Hydrological validation

The uncertainty associated with hydrological modeling was 
also detected, and the benchmarking of hydrological dis-
charges is reported in Fig. 4. We compared the projected 
discharges from each GCM against the discharges modeled 
by Poli-Hydro using the observed AWS weather data.

Since the main driver of the hydrological model (and 
of the hydrological cycle) is precipitation, the annual dis-
charge trend is correlated with precipitation patterns. Thus, 
GCM discharges overestimated AWS discharges during 
2003/2004–2007 and during the most recent years of the 
historical period.

In Table  5, the mean errors in hydrological mode-
ling using the GCMs for the 4 decades, i.e., 2002–2011, 
2003–2012, 2004–2013, and 2005-2014, are assessed. The 
lowest errors are found in the Adda catchment, while the 
highest are in the Brembo basin. Overall, the errors are quite 
small in all decades, except for the most recent one, since in 
2014, precipitation was higher than the average value, result-
ing in very high modeled discharges when using AWS data 
(Figs. 4 and 5). The significance of the t-tests is investigated 
in Table 5, where the results are like those previously shown 
for the climate variables. By reducing the sample size, i.e., 
from daily to monthly aggregation, the p-values increase.

However, it is interesting that small mean errors in the 
order of 2–3% are considered large in the tests when using 
daily samples, likely representing an effect of the large St
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sample size (3652 ca. values). To extend the analysis, we 
combined the results of all t-tests of the basins by repre-
senting the relation between p-values and the mean errors 
(Fig. 5). The graph shows that the acceptable limit here for 
p-value (≥0.05) does not visibly identify a threshold in the 
mean error, and even p-values of the order of 2% gave rela-
tively small errors. The choice of p-values <0.05 (for test 

failure) is quite customary, and it was taken here as a refer-
ence. However, Fig. 5 seems to demonstrate that, below the 
p-value ≤0.01 or so, considerably higher noise would be 
seen. Accordingly, one may hypothesize that a more dis-
criminating power (i.e., to highlight projections displaying 
large inaccuracy) may be obtained by setting a threshold of 
p-value ≤0.01. Such a topic may deserve further verification.

Fig. 4   Mean annual discharge 
over each basin from 2002 to 
2014 for each GCM. The points 
represent the mean value over 
each GCM (colored), and the 
red line represents the mean 
modeled values from AWS

1356 F. Fuso et al.
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4.2 � Projected scenarios

We used the GCMs previously tested to project forward 
climate variables during 2015–2021 to further assess the 
goodness of the different SSP scenario projections. We cal-
culated the average value and confidence limit for the 10 
GCMs for each SSP, and we evaluated whether the observed 
data of climatic variables and modeled data of hydrological 
variables were within the confidence intervals of the GCM 
projections. We represented the mean observed values and 
the mean value averaged on the 10 GCMs for each SSP with 
their interval of confidence at 95%.

Supplementary Figs. A3 and A4 represent the average 
annual temperature and the cumulated annual precipitation 
over each of the four basins, calculated as the mean value 
for each SSP, averaged on the GCMs vs. the mean values 
assessed from ARPA weather stations. The results show that 
the mean observed temperature in all basins is well repre-
sented by the average value of GCMs for each SSP scenario. 
The observed precipitation presents a similar fluctuating pat-
tern in all the basins with different absolute values, with the 
Adda catchment being the less rainy catchment. Similarly 
to temperature, the observed precipitation falls within the 
interval confidence of each SSP, but with a slight differ-
ence between the catchments and the year due to the erratic 
behavior of precipitation.

The uncertainty associated with the hydrological projec-
tions is reported in Supplementary Fig. A5. We compare 
the modeled projected discharges for each GCM with the 
modeled discharges with Poli-Hydro using the observed 
AWS weather data. Since the main driver of the hydrological 
model is clearly precipitation (Casale et al. 2021), the annual 
discharge trend is somewhat correlated with the precipitation 
pattern presented in each basin, and obviously, the lowest, 
least snowy watersheds display a stricter correlation.

5 � Discussion

In this study, we provided a validation of the ability of 
GCMs to capture local climate and hydrological variabil-
ity. Although several studies have attempted to evaluate 
the goodness of GCMs in representing climate change at 
a regional scale (Ruane and McDermid 2017; Prein et al. 
2019), there are still concerns on how to classify whether a 
model is adequate or not (Knutti and Knutti 2010; Palmer 
et al. 2022). We used here an objective statistical approach 
to validate the control data series of GCMs (Groppelli et al. 
2011a). The results of the statistical tests are aligned with 
previous studies, where a large number of values may result 
in considerably low p-values, leading, therefore, to possibly 
less statistically significant results. Indeed, by reducing the 
sample size, i.e., with monthly aggregation, most of the tests Ta
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gave acceptable results. This seems legitimate, given the 
small noise that was generally found here. For climate vari-
ables, this is true more in terms of average value, whereas 
the variance of the precipitation is harder to reproduce.

Compared to other recent studies (Eyring et al. 2019; 
Brunner et al. 2019), we tried to take a step forward from the 
analysis of models’ climatic outputs to also validate hydro-
logical projections, widely used in future water resource 
management (Ravazzani et al. 2016; Gianinetto et al. 2017; 
Bombelli et al. 2019; Stucchi et al. 2019; Aili et al. 2019).

Our results show that the goodness of GCMs in represent-
ing the local climate variability will not always reflect in 
a good representation of hydrology variables of the catch-
ment area (using the same hydrological model as here). The 
analysis of climate patterns may give poor results, i.e., with 
a poor capacity of representing the water cycle of an area. 
When assessing hydrological projections, a seasonal valida-
tion of climate patterns is crucial since changes in the sea-
sonality of precipitation have a paramount effect on stream 
flow discharge (Christensen and Lettenmaier 2007). Our 
results, both in terms of seasonality of climate patterns and 
hydrological projections, showed that the GCMs outputs are 
consistent with the observed data.

One may discuss whether the forcing scenarios adopted 
here in the control period (2002–2014) were coherent with 
actual environmental conditions as observed therein, which 
may (partly) explain the observed differences in Figs. 2 and 
3. The GCM projections are, in practice, based on assump-
tions of GHG concentration (normally a bulk value valid 
overall on the earth’s surface), evolving in time according 
to the hypothesized SSP scenarios. Considering that Figs. 2 
and 3 refer to the recent past, the GCMs most likely assumed 
levels of GHGs fairly equivalent to those now (e.g., for CO2, 
ca. 400 ppm, and so on for other gasses). Accordingly, one 

may assume that the reference (environmental) conditions 
as set out within the different SSPs would overlap in practice 
these values in the control period (however, with more and 
more different values moving toward the end of the century).

Accordingly, such an aspect would not largely affect the 
results of the simulation if not for the model’s inherent noise.

To broaden our knowledge of the uncertainty range, more 
hydrological models could be employed (Krysanova et al. 
2020). However, a recent study in the same area demon-
strated that uncertainty in flow projection is likely to be 
affected more by climate projections and internal variabil-
ity than by the choice of the hydrological model (Casale 
et al. 2021). This result is coherent with other research that 
identifies the largest source of uncertainty in the short term, 
the choice of a given GCM rather than the choice of any 
hydrological models (Aryal et al. 2019).

The GCMs provide global projections; thus, to determine 
their validity in representing local climate, a downscaling 
procedure is most often needed. We used here a statistical 
downscaling method widely used in this area with accept-
able results (Aili et al. 2019; Fuso et al. 2021; Bombelli 
et al. 2021). The methodology proposed here is space-inde-
pendent, but the main findings are strictly correlated to the 
study area, underlying the importance of a local analysis in 
the evaluation of climate change effects. In the future, more 
downscaling procedures may be tested.

6 � Conclusion

The study here presented demonstrates that the climate pro-
jections provided by models within the CMIP6 of the IPCC 
are (i) acceptably consistent, spatially, and temporally with 
observed data collected from AWSs in the study area of the 

Fig. 5   Mean annual discharges. Representation of p-value vs. mean error, calculated for the t-tests carried out with a daily resolution for each 
combination of GCM and year. The results for each basin are highlighted with different colors
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Lombardy region and (ii) amenable to provide acceptable 
hydrological conjectures in the area.

Our comparison here was carried out for a period of 20 
years, where 14 years covered a control period (it is there-
fore assessed the reliability of the GCM against historical 
observations available already in the simulation phase), and 
7 covered a projection period (thus, ex-post validation was 
pursued). In both cases, the reliability of the GCMs (all sub-
jected to an equivalent downscaling process) was evaluated. 
Subsequently, to introduce an additional measure of uncer-
tainty and to also validate the results from a hydrological 
point of view, stream flows were also compared. The elabo-
rations carried out aimed at assessing the general consist-
ency of the GCM climate and hydrological scenarios on a 
wide spatial scale. It is clear that these scenarios represent 
projections valid in a purely statistical sense, which are use-
ful to provide an array of potential conditions for planning 
and management at a region/basin scale. Moreover, the 
projection horizon considered here, of 7 years, is particu-
larly short. Therefore, a statistical validation such as the one 
investigated here can be carried out in the years to come as 
new observed data become available. Given, however, the 
evidently very difficult (if even possible) task of project-
ing the future of climate and hydrology acceptably beyond 
short (e.g., seasonal) time scales, we provide here at least 
an indication that GCMs outputs, whatsoever noisy, could 
be at least considered acceptably accurate in a broad aver-
age sense and used for (whatsoever uncertain) water policy-
making, which hitherto was rarely (if ever) demonstrated.

One may wonder whether outputs of CMPI6 models, as a 
new generation of GCMs, may/will bring improvements in 
model adequacy when using stochastic downscaling. Such 
a question may point seemingly to a specific comparison 
between CMIP5 (and former) and CMIP6 models. This 
was not the scope of our work, and indeed, we focused on 
CMIP6, given that, likely, in the future, most projection 
studies will be based on such models.

In the personal experience of the authors that have worked 
in the recent past in the field of hydrological modeling and 
projections using outputs from CMIP4-5-6, the latter GCM 
outputs from CMIP6 seemingly provide an improving depic-
tion of climate and especially of precipitation cycle (likely 
the most critical, and yet important variable when dealing 
with hydrological conjectures), in terms of amount and tim-
ing. However, such qualitative perception is not backed up 
by specific testing.

Notice that stochastic downscaling provides a certain 
(noticeable) degree of (mathematical) manipulation of the 
GCM data, especially in order to provide a proper (time/
space) variability of the precipitation process. Accordingly, 
after such modifications, the initial (GCM) data’s accuracy/
credibility may be less relevant in terms of the final result. 
Such a topic seems worth some investigation in the future.
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