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Abstract
Current theoretically based Earth system models (ESMs) produce Effective Climate Sensitivities (EffCS) that range over a 
factor of three, with 80% of those models producing stronger global warming trends for 1970–2021 than do observations. 
To make a more observationally based estimate of EffCS, a 1D time-dependent forcing-feedback model of temperature 
departures from energy equilibrium is used to match measured ranges of global-average surface and sub-surface land and 
ocean temperature trends during 1970–2021. In response to two different radiative forcing scenarios, a full range of three 
model free parameters are evaluated to produce fits to a range of observed surface temperature trends (± 2σ) from four dif-
ferent land datasets and three ocean datasets, as well as deep-ocean temperature trends and borehole-based trend retrievals 
over land. Land-derived EffCS are larger than over the ocean, and EffCS is lower using the newer Shared Socioeconomic 
Pathways (SSP245, 1.86 °C global EffCS, ± 34% range 1.48–2.15 °C) than the older Representative Concentration Pathway 
forcing (RCP6, 2.49 °C global average EffCS, ± 34% range 2.04–2.87 °C). The strongest dependence of the EffCS results is 
on the assumed radiative forcing dataset, underscoring the role of radiative forcing uncertainty in determining the sensitivity 
of the climate system to increasing greenhouse gas concentrations from observations alone. The results are consistent with 
previous observation-based studies that concluded EffCS during the observational period is on the low end of the range 
produced by current ESMs.

1 Introduction

The determination of the sensitivity of the climate system 
to increasing greenhouse gas concentrations, usually stated 
in terms of the surface temperature change in response to 
a doubling of pre-industrial levels of atmospheric  CO2 
(2XCO2), has remained elusive. In the forcing-feedback 
paradigm of climate change departures from global energy 
balance, the top-of-atmosphere (TOA) radiative energy 
imbalance N is the sum of an imposed radiative forcing F 
and a feedback response -λΔT,

where the net feedback factor λ determines the climate 
sensitivity and ΔT is the global average surface tempera-
ture departure from the normal equilibrium state (National 

Research Council 1979). For example, the radiative forcing 
from a doubling of atmospheric  CO2 is generally accepted 
to be 3.7 W  m−2 (Forster et al. 2021) and as the system 
warms over many centuries, the TOA energy imbalance N is 
removed, and a final equilibrium climate sensitivity change 
in temperature ΔT is achieved at F/λ.

For over 30 years, the range of equilibrium climate sensi-
tivities (ECS) diagnosed either from theory (3D Earth Sys-
tem Models, ESMs) or from observations has persisted over 
a broad range between 1.5 and 4.5 deg. C, with a few outlier 
estimates (Meehl et al. 2020, and references therein). The 
most recent estimates from ESMs participating in the sixth 
Coupled Model Intercomparison Project (CMIP6, Eyring 
et al. 2016) cover the widest range yet (1.8 to 5.7 deg. C) 
although the CMIP6 expert evaluation of the most likely 
range has narrowed to 2.5 to 4.0 deg. C, with a best estimate 
of 3.0 deg. C (IPCC 2021a). Due to the long time scale 
(centuries) required for the deep ocean to reach a new equi-
librium state, the possibility that feedbacks can change on 
multi-century time scales, and the differences in efficacy of 
various forcing agents (e.g., aerosols vs.  CO2), a shorter-
term “effective” climate sensitivity (EffCS, e.g., Gregory 

(1)N = F − �ΔT ,
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et al. 2020) is usually preferred over ECS as a more prac-
tical measure for energy policy decisions and mitigation 
planning.

The EffCS uncertainty on a theoretical level arises from 
the complexity of the feedback responses of the climate sys-
tem to a radiative imbalance, such as how clouds change 
to either amplify or dampen warming. On an observational 
basis, EffCS uncertainty comes from a lack of accurate 
knowledge of both the radiative forcing and the tempera-
ture response of the system to that forcing over the last 50 to 
100 years or more. Gregory et al. (2020) addressed reasons 
why such estimates can produce biased results, for example 
due to the influence of major volcanic eruptions. Scafetta 
(2022) and references therein provide a range of generally 
low EffCS values diagnosed from the observational record.

Alternatively, one can instead examine shorter-term inter-
annual co-variations between TOA radiative flux and tem-
perature to estimate λ, but non-feedback variations in TOA 
radiative flux de-correlate those variations leading to under-
estimates of λ made through standard least-squares linear 
regression (e.g., Spencer and Braswell 2011). Additionally, 
uncertainty in diagnosing EffCS from observations arises 
from multi-decadal time scale internal fluctuations in the cli-
mate system which can cause 10–20 year periods with either 
strong warming or no warming unrelated to the system’s 
long-term response to anthropogenic forcing (e.g., Meehl 
et al. 2013). Further complicating observational diagnosis 
of sensitivity are uncertain changes in the large heat storing 
capacity of the ocean which cause a delay in surface warm-
ing compared to if there was no sub-surface energy storage.

The diagnosis of EffCS from climate models is hindered 
by the tendency of ESMs to not conserve energy, either in 
the ocean or top-of-atmosphere, a feature which has per-
sisted from CMIP3 (Spencer and Braswell 2014), CMIP5 
(Hobbs et al. 2016), to CMIP6 (Irving et al. 2021). This 
is a fundamental concern since global warming is first and 
foremost an issue of energy conservation. While heat storage 
by the landmass is usually ignored in such evaluations, here 
we include an estimate of its impact on diagnosed climate 
sensitivity. Finally, we note that the global average surface 
warming since 1970 — the 50 + year period with the largest 
anthropogenic radiative forcing of the climate system — has 
been weaker in observations than in 80% of 36 CMIP6 cli-
mate models (Fig. 1).

The complexity of the wide range of processes which 
determine climate sensitivity, combined with the rather wide 
range of sensitivities exhibited by climate models, the non-
closure of the energy budgets in those models, and the ten-
dency for recent warming to be weaker in observations than 
in models, leads to a need for simple alternative methods 
for examining what range of sensitivities are implied by the 
observed rates of global warming. Since long-term warming 
represents the accumulation of heat energy in the climate 

system resulting from a net top-of-atmosphere radiative 
energy imbalance, which in turn is the sum of an imposed 
radiative forcing and a climate feedback response to warm-
ing, it is straightforward to estimate the effective climate 
sensitivity during the observational record given estimates 
of warming and global radiative forcing using a 1D time-
dependent model. Again, such an estimate is limited to the 
historical period, and how well it applies to future climate 
change is unknown.

The 1D result should not be expected to agree with the 
average of those ESM results since it has not yet been dem-
onstrated that ESMs produce an unbiased distribution of 
warming trends (Fig. 1) and because of the tendency for 
models to not conserve energy during their time integration. 
Until the model state of the art reaches that point, it is useful 
to employ simple model frameworks that conserve energy, 
produce no model temperature drift, and can help answer 
the question, “What effective climate sensitivity is implied 
by observed rates of warming?”.

Here we use a 1D time-dependent model of temperature 
departures from assumed energy equilibrium in 1765, over 
land and ocean separately, to diagnose EffCS for a range of 
observed temperature trends over land and ocean, utilizing 
two significantly different radiative forcing datasets (SSP245 
and RCP6.0). The model could be considered the simplest 
approximation of ESMs where time-dependent equations 
are used to compute temperature tendencies in response to 
sources and sinks of energy. The simplicity of the model (1D 
rather than 3D, and only three ocean layers rather than up 
to 30) allows rapid computation of the sensitivity of EffCS 

Fig. 1  Global average surface temperature trends in 36 CMIP6 mod-
els versus the average of four land and three ocean observational 
datasets (described in text) for the 52-year period 1970–2021
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to choices of assumed TOA radiative forcing and tempera-
ture datasets. Here we include deep-ocean (below 2000 m) 
storage of heat as well as deep-land storage to 200 m depth, 
based upon borehole temperature measurements. The stor-
age of heat in the global landmass is still not well handled 
by ESMs, which contain Land Surface Models (LSMs) with 
bottom boundary condition placement (BBCP) at only 2 to 
10 m in depth (Cuesta-Valero et al. 2016; Burke et al. 2020; 
MacDougall et al. 2008, 2010), despite borehole evidence 
of warming to 200 m depth over recent centuries (National 
Research Council 2006; Harris and Chapman 2001).

The energy budget approach to estimating EffCS is 
similar to that of Lewis and Curry (2018), which obtained 
EffCS values ranging from 1.5 to 1.8 deg. C by examining 
100 + year time scale changes in temperature and assumed 
forcing. In contrast to Lewis and Curry, we use a time-
dependent model, which allows us to examine features such 
as the acceleration of deep-ocean (0–2000 m) warming in 
recent decades (Cheng et al. 2019). The other difference 
is that we focus on the most recent 52 years (1970–2021) 
during which radiative forcing from greenhouse gas 
increases has been the largest and when observed deep-
ocean temperature changes are the largest and have the least 
measurement error. This hopefully maximizes the signal-
to-noise of the EffCS estimation, keeping in mind that the 
time period cannot be too short otherwise natural interannual 
climate variations can corrupt the diagnoses (e.g., Gregory 
et al. 2020). While the largest volcanic eruption in modern 
history occurred during this period (Mt. Pinatubo in 1991, 
e.g. Robock 2000), it was positioned near the middle of 
the period, hopefully reducing its impact on the computed 
temperature trends and associated uncertainties in volcanic 
radiative forcing (Gregory et al. 2020).

While the simplicity of the model allows simulations to 
be carried out quickly, it is at the expense of not knowing 
what specific feedback processes determine EffCS. Only 
their net effect on the TOA radiative flux and temperature 
are determined. To include the effect of uncertainty in the 
history of radiative forcing over that period (which is quite 
large, mostly due to sulfate aerosol forcing uncertainty, 
Smith and Forster 2021), two substantially different radia-
tive forcing histories are included. Thousands of simulations 
are carried out spanning the full range of observed tempera-
ture trends and potential range of model free parameters to 
produce frequency distributions of diagnosed EffCS for all 
model fits to the observational data and radiative forcing 
scenarios. Specifically, for each of the three model layers, 
an average (most likely) temperature trend is assumed, and 
model simulation trends ± 2 standard deviations around 
those means are weighted by normally distributed probabili-
ties to arrive at probability distributions of model diagnosed 
EffCS. This allows a probability-weighted “best estimate” of 
EffCS to be computed.

2  The 1D model and radiative forcing 
scenarios

The 1D time-dependent model roughly follows that of 
Spencer and Braswell (2014), but with a simplified verti-
cal heat transfer scheme. It computes monthly temperature 
departures from assumed energy equilibrium beginning in 
1765 in three layers over land and ocean separately (shown 
schematically Fig. 2), with adjustable heat transfer coef-
ficients between layers which act to reduce temperature 
departure gradients between layers. While the model could 
allow for land–ocean energy exchanges to be included, 
this will not be explored here due to a lack of accurate 
knowledge of changes in energy flows between land and 
ocean during warming. It should be kept in mind that if 
there is a change in the flows of energy between land and 
ocean through atmospheric transport, this would impact 
the diagnosed values of EffCS over land and ocean sepa-
rately, but should have little impact on the global average 
EffCS. The assumed layer depths over land and ocean are 
also shown in Fig. 2.

The layer thicknesses represent a configuration 
which captures temperature changes on interannual and 
longer time scales. The model equation for the first layer 

Fig. 2  Schematic of 1D forcing-feedback model, with heat transfer 
coefficients between layers; indicated layer depths are not to scale
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temperature (T1) departures from equilibrium (dΔT1/dt), 
for either land or ocean, is

where Cp1 is the bulk heat capacity of the first layer (land or 
ocean); F represents time-dependent radiative forcings; λ is 
the net feedback parameter (Forster and Taylor 2006; Forster 
and Gregory 2006) which is allowed to be different over 
land and ocean; and, h1 is the effective vertical heat transfer 
coefficient (W  m−2  K−1) between the first two model layers. 
Note that the heat transfer coefficients have the same units 
as the net feedback parameter (W  m−2  K−1).

The second and third model layer temperatures are gov-
erned respectively by

and

where h2 is the heat transfer coefficient between the second 
and third model layer. The Cp values are the product of the 
ocean or land volumetric heat capacity (4.186 MJ  m−3  K−1 
for seawater, and 2.4 MJ  m−3  K−1 over land (MacDougall 
et al. 2010; Legutke and Voss 1999) and the thickness of 
the layer. The model is tested by assuming a time-constant 
radiative forcing of 3.7 W  m−2  K−1 between 1765 and 2200, 
with reduced layer thicknesses and large heat transfer coef-
ficients, to ensure all three layers asymptotically approach 
1 deg. C of warming by 2200 (not shown). This ensures that 
the model conserves energy as intended.

Two time-varying histories of radiative forcing are used, 
one from CMIP5 and one from CMIP6. This is not meant 
to provide a full range of potential radiative forcing possi-
bilities, but to illustrate how revised estimates of radiative 
forcing over the historical period can impact diagnoses of 
EffCS. The CMIP5 forcing is the Representative Concentra-
tion Pathways (RCP) 6.0 scenario, for which Meinshausen 
et al. 2011 produced the yearly time resolution estimates, 
here linearly interpolated to monthly assuming the annual 
values apply to July. While crude, the resulting impact of 
interpolation errors on model 52-year temperature trends 
will be minimal. The SSP245 effective radiative forcing val-
ues come from the tables in Annex III of IPCC (2021b), and 
include the AR6 best estimates up to 2019, with the SSP245 
growth assumptions only included in the last three years of 
our model simulations (2019–2021). As such, there would 
be virtually no difference in the 1D model results if we used 
the SSP126, SSP370, or SSP585 ERF values for those final 
three years.

As seen in Fig. 3, these represent quite different radia-
tive forcing scenarios, especially in terms of the rate of 

(2)Cp1

[

dΔT1∕dt
]

= F(t) − λT1 − h1

[

ΔT1 − ΔT2

]

(3)Cp2

[

dΔT2∕dt
]

= h1

[

ΔT1 − ΔT2
]

− h2

[

ΔT2 − ΔT3
]

(4)Cp3

[

dΔT3∕dt
]

= h2

[

ΔT2 − ΔT3
]

,

growth during the period we will be addressing temperature 
trends (1970–2021). To obtain a yearly time series from the 
SSP245, best estimates of effective radiative forcing (ERF, 
dots in Fig. 3) piecewise-linear time-dependent adjustments 
to the yearly resolution RCP6 radiative forcing history are 
used to produce a yearly resolution SSP245 that includes the 
major volcanic eruptions seen in RCP6, and approximately 
matches the benchmark years in which the SSP245 values 
were tabulated.

3  Validation datasets

The ocean surface temperature trends (1970–2021), to 
which the 1D model simulations are matched, come from 
three datasets: HadCRUT5 (Morice et al. 2020), NOAA 
Global Temp (Menne et al. 2018); and Berkeley (Rohde 
and Hausfather 2020). For land surface air temperature, four 
datasets were used: the three just mentioned, and GISTEMP 
v4 (Lenssen et al. 2019). To qualify as a match to observa-
tions, the ocean model’s first layer temperature trend needs 
to match any trend within the range represented by the 
average of the four observational land surface temperature 
datasets (+ 0.2788 deg. C per decade) ± two standard devia-
tions (± 0.0436 deg. C per decade), while the sea surface 
temperature trends must fall within the range represented 
by the average of the three SST datasets (+ 0.143 deg. C per 
decade) ± 0.0509 deg. C per decade. Each model trend fall-
ing in that range is then weighted with normally distributed 
probabilities over the 2-sigma range, 1.0 at the mean trend 
value and 0.135 at the ± 2σ extremes.

The observed surface temperature trends during 
1970–2021 are on the low side of those produced by 36 
CMIP6 models (Fig. 4), especially for the ocean. The land/
ocean warming ratio (WR) based upon these trends aver-
ages 1.45 across all of the models, compared to 1.95 from 

Fig. 3  Radiative forcing scenarios used in the study
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the average of the observational datasets. Wallace and Joshi 
(2018) determined that this discrepancy was mostly due to 
incomplete spatial sampling of land areas by the thermom-
eter network.

The ocean 0–2000 m temperature trends of Cheng et al. 
(2017, + 0.143 deg. C/decade) must be matched by the model 
to within ± 20% of that value which covers the full range 
of trends in the datasets of Ishii et al. (2017), Dominigues 
et al. (2008), and Levitus et al. (2012). Similar to the surface 
layer matching described above, the ± 20% is assumed to 
be ± two standard deviations about the mean, with all 1D 
model trends falling in that range being weighted by nor-
mally distributed probabilities between 1.0 at the Cheng 
trend value and 0.135 at the ± 2σ trend values.

The bottom ocean layer in the model (2000 m to ocean 
bottom) is required to warm a total of 0.012 (± 40%) deg. 
C from 1990 to 2021 to agree with the Cheng et al. (2017, 
based upon Purkey and Johnson 2010 and von Schuckmann 
et al. 2020) estimate of 30 ZJ of warming below 2,000 m 
depth since 1990. This produces a 1970–2021 target trend 
of + 0.0031 deg. C/decade, with ± 40% assumed to cover 
the ± 2σ range of trend uncertainty.

Knowledge of sub-surface warming over land is not as 
well established as it is for the ocean. To provide a target 
for model sub-surface warming, the Northern Hemisphere 
mid-latitude borehole study of Harris and Chapman (2001) 
was used. In that work, a retrieved profile of sub-surface 
temperature changes over the last 100–200 years showed 

warming extending as deep as 200 m, with an approxima-
tion to their model fit to observations reproduced in Fig. 5.

We do not use the actual values of warming from Fig. 5, 
but instead assume the shape of land warming profile with 
depth during 1970–2021 is the same. Their retrieved pro-
file of warming showed that the surface (and thus our first 
model layer of depth 2 m of soil) has warmed at about 2.5 
times the rate of the uppermost 100 m, while the ratio of 
surface warming to 100–200 m layer warming is about 30. 
The target temperature trends using the average of the four 
land datasets is then 0.2788 deg. C/decade for the top land 
layer, with a 2σ range of 0.0436 deg. C/decade coming from 
the measured standard deviation of those four dataset trends. 
Using the warming ratio of 2.5 and 30 for the second and 
third land layers relative to the top layer, respectively, gives 
trend targets for those two layers, and we assume a 2σ range 
of ± 40% for those target trend values.

4  1D model experiments

The model is initialized in 1765, and each of the model’s 
three free parameters (λ and two inter-layer heat transfer 
coefficients) was changed independently with closely spaced 
values covering a range sufficient to encompass all 1D model 
temperature trend matches with observations (1970–2021), 
including their ± 2σ ranges. These ranges were λ = 0.4 to 
4.4 in intervals of 0.01 (covering EffCS = 0.84 – 9.25 deg. 
C); h1 = 0.01 to 0.51 in intervals of 0.004 and h2 = 0.001 to 
0.051 in intervals of 0.0004 for land; and h1 = 0.2 to 5.2 in 

Fig. 4  Surface temperature trends over global average land versus 
ocean during 1970–2021 for 36 CMIP6 models (dots) forced with 
the SSP245 emissions scenario versus the observational datasets (and 
their ranges) used here (triangle)

Fig. 5  Land borehole retrieved temperature change profile over the 
last 100–200  years adapted from Harris and Chapman (2001), used 
here to match 1D model inter-layer warming ratios, dashed lines indi-
cating layer boundaries
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intervals of 0.04 and h2 = 0.1 to 2.6 in intervals of 0.02 for 
ocean (all in W m-2 K-1).

The resulting frequency distributions of diagnosed EffCS 
values are shown in Fig. 6 for land and ocean separately, and 
for the two radiative forcing scenarios, separately.

The statistics from these distributions are shown in 
Table 1, including the ± 34% EffCS ranges, the distribution-
weighted averages, and the “most probable” (50% cumula-
tive distribution point) values.

The fits of the 1D model 0–2000 m ocean layer (distri-
bution-weighted average of all 1D model solutions) to the 
Cheng et al. (2017) dataset (Fig. 7) suggest more accelera-
tion of ocean heat storage since approximately 1990 with the 
SSP245 effective radiative forcing than the RCP6 radiative 
forcing, even though both have the same trends over the 
1970–2021 period.

The 1D model results here produce somewhat higher 
EffCS values than those reported by Lewis and Curry 
(2018), which ranged from 1.5 to 1.8 deg. C for the global 
average compared to 1.86 deg. C here using the SSP245 
effective radiative forcing estimates. This difference is not 
surprising given the difference in time periods addressed, 
and our inclusion of deep-ocean (below 2000 m) and deep-
land heat storage, both of which will act to increase the esti-
mate of EffCS. Also, the strong dependence of EffCS on 
which radiative forcing history is used is likely to also affect 
the results.

The 1D model-diagnosed EffCS and the average 
observed surface temperature trends from the four land 
and three ocean datasets can be compared with the cor-
responding metrics from 36 CMIP6 models (Fig.  8). 
It can be seen that the closest match of the 1D model 
result is to the two Russian models (INM-CM4 and 
INM-CM5).

This result supports a variety of other studies that have 
noted observed warming trends in recent decades are 
generally lower than what are produced by most CMIP6 
models (Scafetta 2022 and references therein). Due to 
short-term internal climate variability, several models in 
Fig. 8 are seen to produce lower surface temperature trends 
during 1970–2021 than in observations, but the 1D model-
diagnosed best-estimate of EffCS in Fig. 8 is not incon-
sistent with the observed surface trend. Again, it should 
be kept in mind that the 1D model EffCS is based upon 
the 52-year (1970–2021) historical period, whereas the 
CMIP6 model EffCS values were diagnosed from the first 
150 years of 4XCO2 model experiments where the evolv-
ing model TOA radiative imbalance is regressed against 
surface warming, and extrapolating that relationship to 
zero TOA radiative imbalance.

Fig. 6  Frequency distributions of 1D model-diagnosed EffCS for land 
and ocean, separately, and for two radiative forcing scenarios, RCP6 
and SSP245. Indicated averages are for the full distributions; “most 
probable” (50% cumulative distribution point) values are somewhat 
lower (see Table 1)

Table 1  1D model EffCS distribution statistics (deg. C) from the dis-
tributions shown in Fig. 6

Note that the newer SSP245 effective radiative forcing estimates pro-
duce considerably lower EffCS values than do the RCP6 estimates, 
with a probability distribution-weighted average of 2.03  deg. C for 
land and 1.78 deg. C for ocean, for a global average of 1.86 deg. C 
(range 1.48 to 2.15). The RCP6 radiative forcing scenario produces 
3.01  deg. C for land, 2.26  deg. C for ocean, with a global average 
EffCS of 2.49 deg. C (range 2.04 to 2.87). The “most probable” (50% 
cumulative distribution point) EffCS values in Table 1 are somewhat 
lower than the distribution-weighted average values
Note the ranges of diagnosed EffCS in Fig. 6 and Table 1 are rather 
large, a reflection of the uncertainties in the variety of observational 
dataset temperature trends over land and ocean, but also the chang-
ing estimates of historical radiative forcing between the CMIP5 and 
CMIP6 model assessments. The EffCS diagnosed from SSP245 here 
(1.86  deg. C) is qualitatively consistent with the somewhat lower 
observed surface temperature trend in Fig. 1 compared to the CMIP6 
models, keeping in mind that deep-ocean (and land) heat storage dif-
ferences with the CMIP6 models will also affect the comparison. 
Only 2 of the 36 CMIP6 models in Figs. 1 and 4 have ECS lower than 
2.0 deg. C, INM-CM4-8 and INM-CM5-0 (Meehl et al. 2020)

 ± 34% range Distribution-
weighted 
average

Most probable

SSP245 Ocean 1.35° – 2.13° 1.78° 1.61°
SSP245 Land 1.79° – 2.18° 2.03° 1.95°
SSP245 Global 1.48° – 2.15° 1.86° 1.71°
RCP6 Ocean 1.76° – 2.70° 2.26° 2.14°
RCP6 Land 2.68° – 3.25° 3.01° 2.94°
RCP6 Global 2.04° – 2.87° 2.49° 2.38°
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5  Summary and discussion

We attempt to answer the question, What effective climate 
sensitivity is consistent with the observed rates of land 
and deep-ocean warming over the last 50 + years? The 
observed rate of surface warming during that time is less 
than produced by 80% of 36 CMIP6 climate models, and 
the CMIP6 models still have documented problems with 
energy conservation and produce future warming rates 
that vary by a factor of three. To address this question, a 
1D time-dependent model of global monthly average tem-
perature departures from energy equilibrium was forced 
with the newer SSP245 and older RCP6 radiative forcing 
scenarios. The primary model adjustable parameters are 
the net radiative feedback parameter (which determines the 
effective climate sensitivity) and two heat transfer coef-
ficients which determine the rate of heat transfer between 
the three model layers, land or ocean.

When the model is run with a full range of potential 
values of the three free parameters, the model-produced 
temperature trends during 1970–2021 match the assumed 
range of observed trends (within 2σ error bounds), produc-
ing frequency distributions of EffCS over land and ocean, 
separately. Diagnosed best-estimate (probability distribu-
tion-weighted) EffCS is higher over land than over ocean, 
consistent with greater observed warming trends there. 
Global average EffCS is 1.86 deg. C. for the SSP245 ERF 
scenario, and 2.49 deg. C for the RCP6 scenario. These 
are near the lower end of the most recent climate sensi-
tivity estimates from IPCC (2021a) of 2.5 to 4.0 deg. C, 
although the possibility of EffCS increasing in the future 
cannot be addressed from the historical data analyzed here. 
It should also be kept in mind that the 1D EffCS diagnosis 
is based upon observations during the historical period 
(1970–2021), while the CMIP6 diagnoses are from 150-
year simulations forced with abrupt quadrupling of the 
atmospheric  CO2 concentration (4XCO2).

The 1D model results produce higher EffCS values than 
those reported by Lewis and Curry (2018), which ranged 
from 1.5 to 1.8 deg. C, despite some similarities in meth-
odology. This difference could be from our inclusion of 
land heat storage to match borehole measurements and 
ocean heat storage below 2000 m depth, both of which will 
increase EffCS diagnoses. Also, we use temperature trends 
over the recent period (1970–2021) instead of differences 
over a 100 + year time scale to focus on a time period 
with the greatest radiative forcing change and the most 
accurate observational data. One large difference could 
be the uncertain magnitude of shortwave aerosol radiative 
forcing. Our results support previous observation-based 
studies (reviewed by Scafetta 2022) that EffCS during the 
historical period is in the lower range of those diagnosed 

Fig. 7  Fit of the 1D model distribution-weighted average temperature 
solutions to the Cheng et al. (2017) 0–2000 m temperature observa-
tions (black line, with uncertainty bars) when using SSP245 (blue) or 
RCP6.0 (red) radiative forcing histories, matching the linear trends 
during 1970–2021; the vertical scale applies to the SSP245 simula-
tion, while the other two time series have been vertically offset for 
alignment

Fig. 8  CMIP6 model EffCS values as compiled by Zelinka et  al. 
(2020) and other sources versus the 1970–2021 global average sur-
face temperature trends from those models (dots), and the 1D model 
result from the present study (triangle)
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from CMIP6 models, specifically matching only the two 
Russian models, INM-CM4 and INM-CM5.

Our results suggest large uncertainty in diagnosing 
EffCS from historical land and ocean temperature data 
due primarily to uncertainty in real-world radiative forcing. 
Given that ERF from increasing  CO2 is well established, 
the uncertainty is likely to be in the aerosol radiative forc-
ing over the last 50 + years.

EffCS diagnosed over land is uniformly higher than that 
over the ocean, which is consistent with long-term integra-
tions from ESMs that show, irrespective of radiative forc-
ing scenario, ~ 50% greater warming over land than ocean, 
for a land–ocean warming ratio (WR) of approximately 
1.5 (Wallace and Joshi 2018 and references therein). For 
the time period addressed here (1970–2021), the observed 
land rate of warming is approximately twice that of the 
ocean, for a WR of 1.95, but Wallace and Joshi (2018) 
point out that the discrepancy is largely due to incomplete 
spatial coverage of global land masses by the thermom-
eter record. The warming ratio of the 1D model-diagnosed 
EffCS is smaller than 1.5: 1.14 for the SSP245 forcing 
scenario and 1.33 for the RCP6 radiative forcing scenario. 
The 1D model presented here offers a simple yet ener-
getically consistent method for establishing what range of 
effective climate sensitivities is represented by the vari-
ety of observational datasets of temperature trends to date 
over land and ocean, at the surface and in the sub-surface. 
Consistent with the fact that observed surface warming 
trends during 1970–2021 are weaker than in 80% of the 
CMIP6 models, the diagnosed EffCS is correspondingly 
smaller (~ 1.9 deg. C), consistent with only 2 of 36 mod-
els. The 1D model can provide a baseline for comparison 
to ESMs and permit evaluation of how dependent climate 
sensitivity estimates are to both observational datasets and 
to assumed radiative forcing histories. Unfortunately, for 
the reasons stated above, both model and observational 
energy-based estimates of EffCS cover a rather wide 
range, consistent with the conclusions of Gregory et al. 
(2020) that a longer period of time (e.g., into the 2030s) 
without a major volcanic eruption might be required to 
reduce the uncertainty in EffCS diagnoses.

Finally, given that global warming is first and foremost 
a global energy budget problem, more detailed conclusions 
regarding the 1D model EffCS diagnosis being lower than that 
diagnosed from almost all of the CMIP6 models are difficult 
as long as many of those models continue to have issues con-
serving energy (Hobbs et al. 2016; Irving et al. 2021).
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