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Abstract
With the increased occurrence of hot spells in recent years, there is growing interest in quantifying the recurrence of extreme 
temperature events. However, pronounced temperature anomalies occur all year round, and a reliable classification in terms 
of the time of occurrence in the year is needed. In this study, we present a novel approach to classifying daily air temperatures 
that take into account the seasonal cycle and climate change. We model the distribution of the daily Swiss temperatures 
using the skewed generalized error distribution with four time-varying parameters, thereby accounting for non-Gaussianity 
in daily air temperature, while the climatic trend is modeled linearly with smoothed northern hemisphere temperature as an 
explanatory variable. The daily observations are then transformed into a standard normal distribution. The resultant stand-
ardized temperature anomalies are comparable within a year and between years and are used for quantile-based empirical 
classification. The approach is suitable to classify historical and current extreme temperatures with respect to the temperature 
range expected at the time of the event. For example, a heat wave occurring at the end of June is classified as less likely to 
occur than a heat wave of similar intensity occurring in mid-July, as is shown for the two 7-day heat waves that struck Swit-
zerland in the summer of 2019. Furthermore, climate change has increased the probability of hot events and decreased the 
probability of cold events in recent years. The presented approach thus allows a fair classification of extreme temperatures 
within a year and between years and offers new possibilities to analyze daily air temperature.

1 Introduction

Near-surface air temperature is one of the most important 
climatological variables. In its roughest traits, it defines cli-
mate zones, reflects altitude, and summarizes climatic evo-
lution. To a great extent, it also determines humans’ and 
other living beings’ way of life. Information on its statistical 
characteristics is essential in a wide range of fields. To cite 
only a few, environmental research and planning such as 
agriculture (e.g., Wheeler et al. 2000; Asseng et al. 2011), 
health (Pascual et al. 2006; Kjellstrom et al. 2009), and cli-
mate impact research in general require knowledge of its sea-
sonal and interannual variability (e.g., Legates and Willmott 
1990; Luterbacher et al. 2004), past and future evolution 

(Easterling et al. 1997; IPCC 2013), extremes (Kharin and 
Zwiers 2005), and other characteristics. Depending on the 
application, near-surface air temperature can often be mod-
eled quite satisfactorily with a normal distribution. Yet, 
based on station observations, Harmel et al. (2002) and 
Ruff and Neelin (2012) provide evidence that the distribu-
tion of daily temperature data is skewed and that the skew-
ness depends on the season. Perron and Sura (2013) examine 
reanalysis data and show that not only skewness but also 
kurtosis should be considered, that differs in summer and 
winter. Evin et al. (2019) successfully modeled surface air 
temperature in Switzerland for a weather generator using a 
distribution with seasonally dependent location, variance, 
skewness, and kurtosis.

The seasonal cycle is of course not the only non-station-
arity of air temperature that needs to be addressed. Air tem-
perature in Switzerland has increased strongly over the last 
decades, with a more pronounced increase in later decades 
(Brönnimann et al. 2014; Begert and Frei 2018; Isotta et al. 
2019). This temperature increase varies from one season 
to the other; as for instance, higher temperature trends are 
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observed in summer and spring than in winter and fall in 
recent decades (Rebetez and Reinhard 2008; Brönnimann 
et al. 2014; Begert and Frei 2018; Isotta et al. 2019). Thus, 
we can expect modeling daily surface air temperature at a 
particular location, in a region with complex terrain such as 
Switzerland, to require a model with at least four parameters 
to describe higher-order behavior with some accuracy. These 
should be dependent on the year on the one hand to represent 
long-term climatic change and depend on the Julian day on 
the other hand. Thereby, we accommodate seasonal varia-
tions not only of the parameters themselves but also of the 
long-term trend.

Informing the public about extreme climatic events is an 
important task of the national meteorological and hydro-
logical services (NMHS). In particular, they must provide 
some quantitative measure for the degree to which they are 
extreme. This is generally formulated as a return period T, 
the event’s recurrence probability in the long-term average, 
given an assumed climate. In earlier years, MeteoSwiss, for 
instance, relied on an empirical estimator, Weibull’s formula 
(Table 18.3.1 of Stedinger et al. 1993), which is based on 
the rank of observation with respect to the period of obser-
vation. This method is simple and yields acceptable results 
for events that are sufficiently frequent, but becomes inad-
equate for events that occur on average only a few times in 
the period considered or less often. Using the framework 
of extreme value statistics has become more common, as it 
allows an estimation of the frequency of events beyond the 
range of observation if sufficiently long periods of obser-
vation are available. The most common estimation proce-
dures (Coles 2001) are either to divide the data into blocks 
of equal size and fit the generalized extreme value (GEV) 
distribution to the block maxima (BM) or define a threshold 
and fit the generalized Pareto distribution (GPD) to threshold 
excesses (Peaks-over-Threshold, or POT). A return period 
is then simply the inverse of the probability that a value 
will be exceeded. In their basic form, both methods are only 
meaningful in a stationary climate.

However, the climate is known to undergo long-term 
changes (IPCC 2013 and references therein), with higher 
temperatures in the current climate than in the past. Indeed, 
hot spells have occurred more frequently in recent years 
(e.g., Schär et al. 2004; Klein Tank and Können 2003; Fur-
rer et al. 2010; Perkins et al. 2012), and new temperature 
records have emerged. In a transient climate, the classifica-
tion of temperature extremes (e.g., Wigley 2009; Katz 2013; 
Cooley 2013) must be addressed differently. Rusticucci 
and Tencer (2008) and Kharin et al. (2013), for instance, 
chose to fit the GEV over different periods and compare 
the respective return periods. Another approach consists of 
introducing yearly varying parameters in the GEV distribu-
tion (e.g., Kharin and Zwiers 2005; Kharin et al. 2013; Wang 
et al. 2014; Cheng et al. 2014). Since these studies aim at 

quantifying long-term changes in climatic characteristics, 
they only consider the annual maxima of a temperature vari-
able of interest.

Considering only the yearly maxima distorts the estima-
tion of return periods and ignores deviations from the usual 
seasonal cycle that may have heavy socio-economic conse-
quences. Unusually high temperatures in mid-summer tend 
to attract attention because they challenge known tempera-
ture records. Yet, the same relative increase in temperature 
occurring at another time of the year, while resulting in an 
unimpressive absolute temperature, may be just as relevant. 
For instance, it is known that unusually high temperatures 
at the beginning of summer can have a greater effect on 
human well-being and mortality rates than later in the season 
(e.g., Hajat et al. 2002; Gasparrini et al. 2016; Ragettli et al. 
2017), even if the temperature is, in effect, less high. Fur-
thermore, unusually high temperatures in winter affect snow 
coverage (Beniston 2005), the economy of ski tourism, espe-
cially at the more vulnerable low-lying ski locations (Steiger 
2011), water availability in spring and summer (Beniston 
and Stoffel 2014), or can result in a welcome reduction in 
traffic accidents (Norrman et al. 2000) and road maintenance 
costs (Lorentzen 2020). During the transition seasons, high 
temperatures can lead to early plant and pollen development 
(Gehrig and Clot 2021), while extremely cold conditions in 
late spring as they occurred in April 2017 in Switzerland 
(Vitasse and Rebetez 2018) can have devastating effects 
on the crops in their developing phase. For the estimation 
of return periods, seasonal non-stationarity has often been 
addressed by considering summer and winter months sepa-
rately (Nogaj et al. 2006; Abaurrea et al. 2007) or by using 
a threshold that follows temperature’s seasonal variation in 
the POT approach (Coelho et al. 2008).

None of these studies, however, address the convergence 
properties of the maxima of the Gaussian variables. Fisher 
and Tippett (1928) mention that “From the normal distribu-
tion, the limiting distribution is approached with extreme 
slowness.” In other words, for the maxima to converge 
towards a GEV, the blocks must contain a very large num-
ber of observations. Hall (1979) quantifies the rate of con-
vergence, finding it to be bounded by 3∕ln(n) , while Davis 
(1982) indicates and Gasull et al. (2015) show that this upper 
bound of the convergence rate can be reduced to 1∕ln(n) . For 
temperature observations, this problem is compounded by 
the strong serial correlation, which further limits the num-
ber of independent values in a block. Thus, we can assume 
a large systematic error in the estimation of the GEV that 
cannot be quantified. In principle, it is possible to pool con-
secutive years into larger blocks in the hope of ensuring 
asymptotic behavior, but this reduces the number of blocks 
available and increases the estimation uncertainty. Also, the 
number of years necessary in a block to ensure asymptotic 
behavior is unknown.
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In this study, we take a novel approach to classifying 
daily air temperatures that take into account both long-
term changes and the seasonal cycle. We first model tem-
perature’s inherent complexity, allowing for four time-
varying parameters, then transform the observations to a 
standard normal distribution. To avoid uncertainties due 
to convergence issues, rather than estimating a GEV with 
the now stationary yearly maxima, we classify unusually 
warm or cold standardized temperatures by means of their 
empirical quantile. This approach dissociates “extreme-
ness” from seasonal and long-term variations and allows 
us to compare the severity of events in their local intensity 
and spatial extension from season to season and year to 
year. Thus, we provide.

• a detailed probabilistic description of the daily tempera-
ture distribution as a function of the year and of the day 
in the year, and

• a method to classify individual events in their prevailing 
climate at a given time (for each day of the year and each 
year) and thereby estimate recurrence values.

As a case study area, we consider meteorological obser-
vations from Switzerland, a mid-latitude region where the 
temperature is subject to a pronounced seasonal cycle, high 
variability in space due to dominating alpine topographic 

features, and a strong anthropogenic warming signal in 
recent decades.

The paper is structured as follows. Section 2 gives a brief 
description of the study area and the data, while the tem-
perature model and the classification method are detailed 
in Section 3. The model is validated in Section 4.1, and the 
seasonal cycle of the model parameters is examined in Sec-
tion 4.2. Section 4.3 presents the results of a Switzerland-
wide classification of warm and cold events and illustrates 
how it brings to light the relative extremeness with respect to 
the seasons or the change of the prevailing climate between 
the beginning and the end of the analyzed period. Finally, 
the way events are distributed over seasons and years since 
1965 is discussed in Sections 4.4 and 4.5. The results are 
discussed in Section 5, and finally, some conclusions are 
drawn in Section 6.

2  Study area and data

2.1  Study area

Switzerland is a small country in Central Europe, and 
approximately 60% of its area is part of the European Alps 
(Fig. 1). With their high peaks (some exceeding 4000 m 
a.s.l.) and deep valleys (some below 1000 m a.s.l.), the Alps 
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Fig. 1  Map of Switzerland with the location of the analyzed stations 
(black crosses and dots) and five main climatological regions (Jura, 
Plateau, Prealps, Alps, and South). The colored dots indicate eleven 

stations representing typical flavors of the Swiss temperature climate. 
For these stations, detailed analyses of the parameter distribution are 
shown in Fig. 5
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separate the hilly Swiss Plateau and the Jura mountains 
(peaks up to 1600 m a.s.l.) in the north from the Ticino and 
other regions in the south. The Plateau and Jura are mainly 
exposed to air masses from the Atlantic Ocean and, to a 
lesser extent, to continental air masses from Eastern Europe. 
The climate south of the main divide is predominantly 
influenced by Mediterranean air masses (CH2018 2018). 
The interaction of the atmospheric flow with the complex 
topography can lead to small-scale horizontal temperature 
contrasts, which deviate considerably from a simple linear 
vertical dependence (Frei 2014; Scherrer et al. 2021). In par-
ticular, this can result in cold-air pools that form frequently 
in mountain valleys (Whiteman 1982; Barry 2008) and on 
the Swiss Plateau in the winter half-year, often in conjunc-
tion with fog situations (Salzmann et al. 2015; Scherrer and 
Appenzeller 2014; Wanner and Kunz 1983). In summer, 
considerable thermal contrasts can develop between the 
mountainous foreland and the inner Alpine valleys (Stein-
acker 1984; Whiteman 1990). In addition, regional wind 
systems can influence the spatial temperature structure con-
siderably. For example, the foehn, a warm downslope wind, 
can lead to complex temperature patterns, sometimes pen-
etrating into the adjacent flatland (Hoinka 1985; Gutermann 
et al. 2012).

2.2  Data

The data used for this study stems from the MeteoSwiss 
observational network. Three daily temperature variables 
measured at 2 m from the ground are available for many 
decades: the daily maximum, daily minimum, and daily 
mean temperature, henceforth denominated by Tmin , Tmax , 
and Tmean . When not further specified, “daily temperature” 
denotes any of these three temperatures. Temperature aggre-
gates over several days can be of particular interest for clas-
sifying prolonged cold or warm periods. In agreement with 
the literature (Wehner et al. 2018), we analyze 3-, 5-, 7-, 10-, 
and 15-day means of Tmin , Tmax , and Tmean . The procedures 
described in Section 3 are applied separately, at each station, 
to each of the three daily temperature variables, and to each 
of the temporal aggregates.

To avoid artificial trends and shifts in the data due to 
changes in instrument or location, only homogenized tem-
perature data is used for estimating the temperature distri-
bution (Begert et al. 2003; 2005). The number of stations 
available in a given year depends on the temperature vari-
able. The period of the analysis is 1965 to 2020, as it was 
found to yield the largest number of available stations: 38 
stations for Tmax , 41 for Tmin , and 56 for Tmean (crosses and 
circles in Fig. 1). The selected stations cover the entire study 
area and range from elevations of 203 m a.s.l. in Cadenazzo 
close to Bellinzona in southern Switzerland to 3571 m a.s.l. 
at Jungfraujoch. Eleven stations (colored dots in Fig. 1), 

which were previously found to be highly representative of 
the Swiss temperature climatology (Begert 2008), are ana-
lyzed in more detail in Section 4.1.

The annual average northern hemispheric temperature 
anomaly over land areas from the CRUTEM4 dataset by 
MetOffice (Jones et al. 2012) is used as a predictor variable 
to model the long-term temperature changes in Switzerland. 
It is based on station records, many of them homogenized. 
The anomaly was smoothed using a locally weighted polyno-
mial regression implemented in the lowess R-function with 
default settings (Becker et al. 1988; Cleveland 1979, 1981). 
This smoothed yearly northern hemispheric temperature 
anomaly is denoted by TCRU,y , with y denoting the year. The 
temperature anomaly TCRU,2018 in the year 2018 was set to 
zero, and the other values adapted accordingly.

3  Methods

The classification procedure adopted in this study is to first 
transform the temperature data to a standard normal distri-
bution and then determine the return periods as empirical 
quantiles. These estimates will only have some degree of 
reliability if the distribution chosen to model temperature 
is sufficiently accurate. The complex behavior of surface air 
temperature in a mountainous area requires a distribution 
with four parameters and the flexibility to model non-sta-
tionarities explicitly. The skewed generalized error distribu-
tion (SGED) lends itself well to this task. Developed in the 
context of financial applications (Nelson 1991; Fernández 
and Steel 1998; Theodossiou 2015), it was successfully used 
by Evin et al. (2019) to model temperature. Note that the dis-
tribution is also known as the skew exponential power (SEP) 
distribution. The explicit modeling of the daily temperature 
distribution under consideration of seasonality and climate 
change is described in Section 3.1. The conversion of the 
data to standard normal and the subsequent classification 
can be found in Section 3.2.

3.1  Temperature model

As mentioned above, there is evidence that surface air tem-
perature cannot be modeled with a normal distribution and 
that not only its mean and variance but also its higher-order 
moments have a seasonal cycle. Long-term changes, on 
the other hand, only seem to affect the mean behavior of 
temperature. Indeed, Scherrer et al. (2005) found temporal 
trends in the variance of daily temperatures from 1961 to 
2004 to be mostly insignificant. A preliminary analysis of 
our selected data confirmed this: the estimated linear trends 
in standard deviation turned out to be both weakly positive 
and negative, depending on the station. Therefore, a statis-
tical model for surface air temperature needs not to include 
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a year-to-year variation of the standard deviation or of the 
parameters that describe the behavior of higher moments.

To model daily surface air temperature, we use the 
skewed generalized error distribution (SGED), which has 
the four parameters, location, scale, skewness, and kurto-
sis, with the following features:

(a) location, scale, skewness, and kurtosis have a seasonal 
cycle and thus change from day to day,

(b) the seasonal behavior of scale, skewness, and kurtosis 
is the same for all years, and

(c) the location parameter is expressed as a linear function 
of TCRU,y with seasonally dependent coefficients.

Let Xd,TCRU,y
 refers to the temperature on day d of year y , 

(i.e., daily maximum, minimum, or mean temperature or 
aggregates thereof). Then,

The location parameter is denoted by �d,TCRU,y
 ; 𝜎d > 0 is 

the scale parameter, �d describes the skewness, and pd the 
kurtosis, with values depending on the day of the year d as 
illustrated in Eq. (3) below. The SGED is a parametric dis-
tribution function that presents similarities with a normal 
distribution but allows modeling moderate discrepancies 
therefrom, including skewness and short-/long-tail behavior 
(see Fig. 2 for a simple graphic representation of the role 
played by skewness and kurtosis). The expected value of the 
distribution is � and its variance is �2 . Note that the skew-
ness and kurtosis parameters are non-dimensional. Here, 
positive values of � result in right-skewed and negative val-
ues in a left-skewed distribution, while a kurtosis parameter 
p > 2 results in a short-tailed (platykurtic), and p < 2 in a 
long-tailed (leptokurtic) distribution.

Rather than explicitly modeling the dependence of the 
location parameter both on the year (long-term trend) and 

(1)Xd,TCRU,y
∼ SGED

(

�d,TCRU,y
, �d, �d, pd

)

on the day of the year (seasonal cycle), we make use of 
CRUTEM4’s northern hemispheric mean temperature anom-
aly over land, i.e., TCRU,y . We express the long-term depend-
ence of the location parameter as a linear function of TCRU,y , 
the coefficients of which are day-dependent. In this way, the 
dependence on the year is implicit, while the seasonal cycle 
of this dependence is explicit.

As mentioned in Section  2.2, TCRU,2018 = 0 and thus 
�0(d) = �

(

TCRU,2018, d
)

 is the location parameter in the year 
2018. A residual analysis (not shown) indicated that the 
assumption of normal and i.i.d. residuals is satisfied.

The seasonality in the parameters �0,d , �1,d , �d , �d , and pd 
is modeled as a 2nd-order harmonic function of the day of 
the year d . As the same approach is applied for all param-
eters, the model is only shown for the scale parameter �d:

where d = 1,… , n = 366 refers to the calendar day includ-
ing February 29th and bi,j are the Fourier coefficients. The 
Fourier transforms ensure continuity between the last day of 
1 year and the first day of the next. In accordance with the 
assumptions in the previous section, the three parameters 
� , �, and p vary only from day to day, and not from year to 
year. Thus, for example, the estimated scale parameter on 3 
February 1981 is the same as on 3 February 2017 but differs 
from that on 3 July 1981.

All the Fourier coefficients were simultaneously esti-
mated using maximum likelihood estimation (MLE) by 
applying the R-function optim (R Core Team 2018). The 
estimation of the Fourier coefficients was done at each sta-
tion and for each variable and temporal aggregate indepen-
dently. The start values for optimization were obtained in a 
two-step approach. In the first step, daily estimates of the lin-
ear trend and the SGED parameters were determined inde-
pendently from each other. The daily temperature data was 
separated into long-term time series for each day of the year. 
These daily long-term time series were subsequently used 
to obtain, for each day of the year, the trend parameters on 
the one hand, by regressing them on TCRU,y , and the SGED 
parameters on the other hand, by applying the R-function 
sgedFit from R-package fGarch (Wuertz et al. 2019). In the 
second step, for each parameter, a Fourier transformation 
was applied to the resulting series of daily estimates. Then, 
the Fourier coefficients were randomly disturbed to generate 
30 differing sets of start coefficients for optimization. The 
best optimization, in terms of maximizing the likelihood 
function, determined the final Fourier coefficients for the 
model parameters as described in Eq. (3).

(2)�d,TCRU,y
∶= �

(

TCRU,y, d
)

= �0(d) + �1(d) ∙ TCRU,y

(3)

�d ∶= �(d) = b0 +

2
∑

j=1

[b1,jcos(
2�j

n
∙ d) + b2,jsin(

2�j

n
∙ d)]

λ
λ
λ
λ
λ
λ

Fig. 2  Probability densities of the skewed generalized error distribu-
tion (SGED) for different parameter values � and p . The location and 
scale parameters are kept fixed at � = 0 and � = 1
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The modeling was done univariately and at each station 
separately. The upper plot in Fig. 3 shows the estimated 
temperature distribution at Zürich/Fluntern (SMA) for the 
daily mean temperature for 1966 and 2016. The upward shift 
between the two curves illustrates a temperature change of 
approximately 2 °C in 50 years. Evidently, the long-term 
changes are stronger in summer than in winter and result in 
a slight change in the seasonal cycle of the location param-
eter from 1966 to 2016. The higher variance in winter than 
in summer leads to a wider distribution in winter. For both 
years, unusually cold or warm temperatures can be distin-
guished visually, lying outside the 1–99% quantiles of the 
SGED.

3.2  Assessment of events

The modeling described above is used to standardize the 
temperature data in order to make temperatures comparable 
within a year and between years. The standardization is done 
by first applying the probability integral transform of model 
(1) to convert X to a standard uniform random variable called 
Y  . Subsequently,Y  is transformed into a stationary standard 
normal distributed random variable referred to as Z . Note that 
the random variable Z is hereafter called standardized temper-
ature anomaly, or standardized anomaly for short. The annual 
maxima of the standardized temperature anomalies Z are then 
used to classify the extreme temperature anomalies. Since the 

annual maxima are determined from the standardized anoma-
lies, they can occur on any day of the year, and they have been 
stripped of the influence of the long-term trend. Thus, using 
their ordered distribution as a scale allows a “fair” comparison 
between temperatures across seasons and years.

The return period of a standardized temperature anomaly is 
determined by means of the empirical quantile with respect to 
the aforementioned annual maximum standardized anomaly. 
For instance, if the standardized anomaly of an event corre-
sponds to the 90% quantile of the yearly maxima, the probabil-
ity that such a temperature anomaly is reached or exceeded in 
a given year is 0.1. In other words, such an anomaly occurs or 
is exceeded on average once in 10 years. Note that an anomaly 
can refer to both directions, i.e., warm or cold anomalies. For 
cold anomalies, the ordered yearly minima of the standardized 
anomalies are used to determine the quantiles.

The lower plot in Fig. 3 shows the standardized anoma-
lies corresponding to the observations in 1966 and 2016. 
Since these are stationary, individual data points are com-
parable, both within each year and between the 2 years. 
Both datasets now have the same location and scale (and, 
if the model were perfect, they would have neither skew-
ness nor kurtosis), all year round. In particular, the data 
points huddled about their mean in summer in the upper 
plot are now stretched further apart and have thereby 
acquired a lower relative frequency of occurrence. Tem-
peratures that are unusually warm and cold for the time of 

Fig. 3  In the upper panel, the 
crosses indicate the mean daily 
temperature observations in 
the years 2016 (blue) and 1966 
(brown) at station Zürich/Flun-
tern (SMA). The lines show the 
expected value (or location) � . 
Shaded areas of the correspond-
ing hue highlight the respective 
swaths between the 1% and 99% 
quantiles of the fitted SGED. 
In the lower figure, the crosses 
show the same temperature 
observations, transformed 
into standardized anomalies. 
By construction, the observa-
tions in either year should now 
approximately follow a standard 
normal distribution. The shaded 
area between + 2.33 and − 2.33 
represents the swath between 
the 1% and 99% quantiles of the 
standard normal distribution
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year stand out on either side of the 1–99%-quantile swath. 
For instance, the warmest anomalies took place on Octo-
ber 3rd, 1966 (17.6 °C) and August 28th, 2016 (24.6 °C), 
and the coldest on January 16th, 1966 (-13.6 °C) and 
July 14th, 2016 (11.1 °C). Note that these are the yearly 
maxima/minima in 1966 and 2016 used for the assessment 
of the extreme temperature anomalies as described above.

4  Results

The described approach allows for various potentially 
insightful analyses of the characteristics of daily tem-
peratures in Switzerland. We validate model (1) in Sec-
tion 4.1 and illustrate the seasonal behavior of the esti-
mated parameters at eleven representative stations in 
Switzerland (Section 4.2). Then, Section 4.3 analyzes 
the influence of seasonality and climate change on the 
estimated return periods. Finally, some pronounced past 
warm and cold anomalies that have occurred since 1965 
are illustrated in Sections 4.4 and 4.5.

4.1  Model validation

Should the model describe the temperature distribution 
accurately, the transformed variable Z (the standardized 
anomalies) would be normally distributed. The Gaussian 

QQ-plots before (detrended daily temperature) and after 
transformation (standardized anomalies) are shown in 
Fig. 4 at four selected stations. The upper row brings to light 
the inadequacy of the normal distribution to describe the 
behavior of surface air temperature. Daily Tmean in January 
in Davos (DAV) are left-skewed (Fig. 4a), while the opposite 
is the case for Tmax in Altdorf (ALT) in December (Fig. 4b). 
Due to the foehn phenomenon, warm Tmin are more likely to 
occur in Altdorf in October than a normal distribution would 
suggest, as illustrated by the long tail on the right side of the 
distribution (Fig. 4c). In contrast, the distribution of Tmax at 
La Chaux-de-Fonds (CDF) in June is clearly short-tailed 
(Fig. 4d).

The QQ-plots of the standardized anomalies Z in the 
lower row of Fig. 4, on the contrary, show that the assump-
tion that the standardized anomalies follow a standard nor-
mal distribution holds reasonably well, supporting the choice 
of model (1) to describe surface air temperature. Generally, 
deviations from the diagonal are small for all quantiles. To 
formally test the validity of the normality assumption, we 
stratified the data by the month of the year and applied the 
Shapiro-Wilk test to the daily temperature month by month 
for each month between 1965 and 2020 at a confidence 
level of 1%. Analyzed for all three daily temperature vari-
ables, all stations, and each month separately, we find the 
normality assumption is rejected for 77–90% of the station 
months before the transformation. After transformation, the 
normality assumption is rejected in less than 15% of the 

Fig. 4  Selected Gaussian QQ-plots of detrended daily minimum, mean, or maximum temperature data T  for four selected months at different sta-
tions (top figures). The bottom figures illustrate the Gaussian QQ-plots of the corresponding transformed standardized anomalies Z
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station months. Differences exist, however, both between 
variables and regions. Generally, the model fits Tmax and 
Tmean slightly better than Tmin , which is very likely due to 
the stronger influence of localized microclimates on Tmin . 
Regionally, while in the Jura and the Plateau, the transfor-
mation works very well for Tmin , the normality assumption 
is rejected in almost 50% of the months in spring and fall at 
the prealpine and southern stations. This is likely due to the 
effect of foehn, with its extremely high minimum tempera-
tures resulting in heavy tails at the right side of the distri-
bution (cf. Altdorf, Fig. 4c). Applying model (2) generally 
leads to less heavy tails, but the problem is still recognizable 
(cf. Figure 4g). No effort was made to further address such 
particular behavior explicitly, as it would require a model 
that accounts for bimodality in the data, a complexity that is 
beyond the scope of this study.

In summary, the deviation from the normality of the 
original distribution is strongly reduced, and the presented 
model works reasonably well to describe daily tempera-
tures. This is even more the case for temperature aggregates 
because the more the data are aggregated, the closer they are 
to the normal distribution. Nevertheless, we should keep in 
mind that at stations affected by foehn, we will tend to over-
estimate the return period and thereby classify the events as 
rarer than they truly are.

4.2  Characteristics of daily temperatures

At eleven representative Swiss stations (Fig. 1), we illustrate 
the seasonal cycle of the estimated SGED parameters (i.e., 
mean, scale, skewness, and kurtosis) as well as the long-term 
changes in the mean (Fig. 5).

4.2.1  Location parameter �

The location parameter is modeled as a linear function of the 
smoothed northern hemisphere land temperature anomaly 
determined from the CRUTEM dataset, which is denoted 
by TCRU,y , i.e., �

(

d, TCRU,y
)

= �0(d) + �1(d) ∙ TCRU,y . We 
discuss the seasonal behavior of the intercept µ0 (Fig. 5a–c) 
and slope µ1 separately (Fig. 5d–f). The intercept �0 is given 
in degrees Celsius and shows the expected temperature in 
the year 2018. The slope �1 denotes a temperature trend at a 
station in °C per °C temperature change in TCRU,y.

4.2.2  Intercept �
0

The expected daily temperature �0 in Switzerland undergoes 
a pronounced seasonal cycle (Fig. 5a–c). It has an amplitude 
(defined as half the difference between the minimum and 
the maximum) ranging between 7.2 and 11.2 °C, depending 
on the station and temperature variable. The smaller ampli-
tudes are found at stations influenced by the free atmosphere 
(high mountain peaks), while higher amplitudes occur in the 
boundary layer. The date of the yearly minimum �0 shifts 
towards later dates at higher elevations. For instance, the 
yearly minima occur between the 5th and 18th of January at 
low-elevation stations and at the beginning of February at 
high-elevation stations. Annual maxima all occur in late July 
regardless of elevation. As might be expected, the yearly 
average �0 decreases with altitude, here roughly by 5 °C/km 
for Tmin and 6.2 °C/km for Tmax.

4.2.3  Slope �
1

The slope parameter denotes the temperature increase (i.e., 
the climate trend) at a station in °C per °C temperature 
increase of TCRU,y . Thus, a slope of 2 °C/°C indicates a tem-
perature increase twice as large as the increase in TCRU . For 
instance, in Basel, each increase of 0.1 °C of TCRU,y results 
in an average increase of 0.26 °C from 1965 to 2018. For 
the vast majority of variables, months, and stations, the local 
increases are larger than those of TCRU , but there is a large 
variability. The trends are generally strongest in spring and 
summer, and weaker in autumn and winter (Fig. 5d and 
e). For example, in Basel, the change in Tmin over the last 
54 years is equivalent to the change in TCRU in February, but 
is 3.5 times as large in June. In Geneva and in Altdorf, the 
winter changes in Tmin are even weaker than TCRU trends. 
Furthermore, especially at the high-elevation stations, the 
slopes are higher for Tmax than for Tmin in spring confirming 
the findings by Matiu et al. (2016) and Scherrer and Begert 
(2019).

4.2.4  Scale parameter �

For the daily mean temperature, the scale � (and accord-
ingly the variance) and location parameters have essentially 
opposed seasonal patterns. The scale is largest in winter and 
smallest in summer (Fig. 5g and h), as already shown in 
Fig. 3. It is mostly driven by Tmin , while Tmax appears to 
behave according to the local circumstances, with a general 
tendency to increase in spring and decrease in autumn. For 
Tmin , � undergoes a clear seasonal cycle at all stations except 
for the station Locarno-Monti (OTL) in southern Switzer-
land. The highest variances occur in winter at high-elevation 
stations, which are directly exposed to the large-scale flow 

Fig. 5  Seasonal behavior of the estimated SGED parameters, i.e., the 
location � = �0 + �1 ∙ TCRU , the scale σ, the skewness λ, and the kur-
tosis p (from top to bottom) for the three variables Tmin , Tmean , and 
Tmax(from left to right). The first two rows show the intercept �0 and 
the slope �1 of the location parameter. The colors indicate the eleven 
stations representing the temperature climate of Switzerland ordered 
by elevation (OTL is the lowest, JUN the highest; see also Fig. 1)

◂
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of the free atmosphere. Stations prone to the formation of 
cold-air pools (e.g., La Chaux-de-Fonds, CDF) have a very 
high variance in winter. In spring, � increases at stations 
with high foehn frequency (e.g., Locarno-Monti and Alt-
dorf). Tmax offers quite a different picture: the seasonal cycle 
is much less contrasted than for Tmin , and on average, the 
variance is approximately 0.8 °C higher. Again, Locarno-
Monti (OTL) stands out with a particularly low variance, 
except in spring. Evidently, the processes that give Tmin its 
form dominates the behavior of Tmean.

4.2.5  Skewness parameter �

Most high-elevation stations show a pronounced left skew 
( 𝜆 < 0 , i.e., a surplus of very cold events compared to very 
warm events) during the whole year for both Tmin and Tmax 
(Fig. 5j and l). An interesting case is Altdorf where Tmin 
shows two distinct peaks of right skew in spring and fall—
periods with a high frequency of foehn (cf. Gutermann et al. 
2012). A similar pattern can also be found in the Ticino in 
winter, potentially related to northern foehn. In the lowlands, 
the skew is mostly weak.

4.2.6  Kurtosis parameter p

Most stations except for some high-elevation stations show 
a bimodal behavior of the kurtosis parameter p over the 
year. For these stations, the temperature distribution is plat-
ykurtic (“flat”;p > 2 ) in spring (primary maximum) and 
fall (secondary maximum). This bimodal behavior is most 
pronounced for Tmax.

4.3  Examples of event assessment

The proposed classification approach offers the possibility 
not only of comparing the return periods of events at one 
selected station in different seasons and different years but 
also, since we use the same period for all stations, it yields 
a spatial “signature” of the event, bringing to light the rela-
tive rarity between one station and another. We first focus on 
the influence of seasonality using the example of two heat 
waves that occurred in 2019 and then consider the influence 
of long-term changes using the example of cold nighttime 
temperatures in 2017.

In the summer of 2019, two heat waves of comparable 
intensity and duration struck Switzerland: the first from June 
25 to July 1 and the second from July 20 to 26. We will refer 
to them as the June and July heat waves, respectively. While 
both heat waves had the same duration, they differed slightly 
in magnitude and regional distribution. In particular, maxi-
mum temperatures during the July heat wave were approxi-
mately 1 °C warmer (colder) in western (eastern) Switzer-
land than maximum temperatures during the June heat wave 

but were similar in the northern and southern parts of the 
country (MeteoSchweiz 2019a). Despite these small differ-
ences, these 2019 heat waves are particularly useful for com-
paring our newly proposed classification approach with the 
traditional one, as they took place during the same summer, 
thus leaving out differences due to the long-term tempera-
ture trend. The variable considered here is the 7-day mean 
temperatureTmean,7 , and its standardized anomaly Zmean,7 . 
The June heat wave’s standardized anomaly Zmean,7 yields 
empirical return periods ranging between 1.1 and 5 years 
around Lake Geneva and in the Ticino, for instance, and up 
to 10–25 years at a number of high alpine stations (Fig. 6, 
a1). In contrast, the anomalies incurred during the July heat 
wave occur at least once a year at more than 60% of the 
stations and barely reach a return period of 1.1–3 years at a 
third of the stations (Fig. 6, b1). Thus, the explicit modeling 
of the seasonal cycle allows a fair comparison between the 
two heat waves and shows that the June heat wave was far 
more exceptional than the July heat wave, despite similar 
absolute values.

To complement the previous analysis, we also classified 
the two events in the traditional manner by determining 
their return periods empirically based on an annual block 
maximum approach of the absolute 7-day mean temperatures 
Tmean,7 . The estimated return periods of the absolute tem-
peratures of the June heat wave (Fig. 6, a2) are comparable 
to those of the standardized anomalies (Fig. 6, a1). For the 
July heat wave, on the other hand, the absolute tempera-
tures (Fig. 6, b2) are classified as rarer than the standardized 
anomalies (Fig. 6, b1). The return periods range between 1.1 
and 3 years and 5 and 8 years in the Ticino and around Lake 
Neuchâtel. By construction, the difference in return periods 
between the two analyses results from the fact that the sec-
ond analysis accounts neither for seasonality nor for long-
term changes in air temperature. Both factors play a role. 
The warming trend implies that hot events are more frequent 
at the end of the period under consideration since it results 
in higher absolute values. Thus, the traditional approach 
to classifying the observed temperatures assigns too large 
return periods to events at the end of the time series, such 
as the 2019 event, for both the June and July heat waves. 
Similarly, since temperatures are higher on average in July 
than in June, classifying the absolute values will obviously 
yield higher return periods in July.

Cold events can be analyzed in the same way. In the 
spring of 2017, a devastating frost event with particularly 
cold night temperatures between April 19 and 21 severely 
affected the development of crops, especially grapes 
(Vitasse and Rebetez 2018). We examine the effect of cli-
matic change on the estimated return periods for this event 
by comparing the results with those obtained from a ficti-
tious frost event of the same amplitude exactly 40 years 
earlier. We choose to represent the frost event with the 
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minimum temperature averaged over three days, Tmean,3 , 
and its standardized anomaly, Zmean,3 . Again, since we 
standardize the values of air temperature, the obtained 
cold extremes (large negative anomalies) are not domi-
nated by the coldest values in winter and are mitigated or 
magnified by climate change. For the climate of 2017, the 
standardized anomaly corresponding to the 3-day mean 
minimum temperature during the event certainly does not 
occur every year at more than 85% of the investigated sta-
tions (Fig. 7a). At some, the return period is between 2 and 
15 years, and in Arosa, where the 3-day mean minimum 
temperature goes down to − 11 °C, it reaches 10–20 years. 
Should exactly the same frost event have occurred 40 years 
earlier between April 19 and 21 in 1977, it would be 

classified as an anomaly that occurs yearly or more fre-
quently at 80% of the stations, while at the remaining 20% 
of the stations, the anomaly is classified as a 1.1–3 year’s 
event (Fig. 7b). In other words, in 1977, the same event 
would have been nothing exceptional.

4.4  Catalogue of unusually warm events since 1965

In this section, the temporal distribution of all 1-day warm 
minimum and maximum temperature anomalies since 1965 
classified with a return period of 1.1 years or higher is illus-
trated at five stations representing different climates in Swit-
zerland. Figure 8 clearly shows that the detected high-temper-
ature anomalies are evenly distributed over the years and over 

Fig. 6  Classification of the 
averaged 7-day mean tempera-
tures observed during the two 
heat waves in summer 2019 
lasting from June 25 to July 1 
(left figures, denoted by a)) and 
from July 21–26 (right figures, 
denoted by b)). The first row 
(a1 and b1) illustrates the clas-
sification of the standardized 
anomalies as proposed in this 
publication. The second row 
(a2 and b2) shows the clas-
sification of the averaged 7-day 
mean daily temperatures with 
a traditional block maximum 
approach

Fig. 7  The left map (a) shows 
the empirically estimated return 
periods of the standardized 
anomalies corresponding to a 
three-day cold spell (minimum 
temperatures) from April 19 
to 21 in 2017. The right map 
(b) shows the hypothetical 
return periods if this event had 
occurred 40 years ago, i.e., 
between April 19 and 21 in 
1977
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all seasons since 1965. For instance, the largest dots (i.e., the 
largest standardized anomalies) are not always in the season 
one would expect them to be (i.e., in summer) as it would be 
the case if one had classified absolute temperatures. They are 
also not all at the end of the analyzed period, as one could 
expect under climate change. This is because the method 

highlights temperature episodes that are unusual with respect 
to the season and year during which they occurred and show 
that the time-dependent SGED captures the essential features 
of the temperature variables, including climate change.

For each of the stations and variables in Fig. 8, the circled 
numbers highlight five events (see also Table 1) selected 

Fig. 8  Return periods (RP) of warm anomalies of daily minimum 
(left column) and maximum (right column) temperatures at five sta-
tions in Switzerland, namely, la Chaux-de-Fonds (CDF), Zürich/Flun-
tern (SMA), Altdorf (ALT), Jungfraujoch (JUN), and Locarno-Monti 
(OTL). Each station is representative of a region, i.e., CDF for the 
Jura, SMA for the Plateau, ALT for the Prealps, JUN for the Alps, 
and OTL for southern Switzerland. The x-axis denotes the years, and 
the y-axis the months of the year. Each dot represents a temperature 

anomaly with an empirical return period that is strictly larger than 
1 year. The size of the dots increases with the return period, i.e., the 
bigger the dot, the rarer the anomaly. The color of each dot corre-
sponds to the absolute mean daily temperature measured at the time 
of the event. The five numbers indicate the standardized anomalies 
of the five events with the highest median daily temperature over the 
region the station belongs to (see Table 1)
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for their regional extension within the regions mentioned 
above. For each region, they correspond to the 5 days in 
the last 55 years with the largest median of the temperature 
anomalies in the region. This procedure was chosen in order 
to analyze events of regional relevance. For example, we 
observe that the 26th of June 2019, i.e., a day within the 
2019 June heat wave discussed above, appears as one of the 
five most extreme regional 1-day events in the Alpine region 
(Fig. 8i and j, number 3). Note that the standardized anoma-
lies appearing in Table 1 are those at the representative sta-
tion on the day of that regional event, and may, therefore, 
not be the most exceptional ones at that station. For instance, 
the dot for 7 July 2015 on Fig. 8f represents a maximum 
temperature of 34.6 °C recorded at Zürich/Fluntern (SMA). 
This value is among the 10 highest maximum temperatures 
reached at SMA and is classified as a 1.1–3 year’s event, as 
can be seen from the size of the dot and in Table 1. On that 
day, Geneva was hitting a new record of 39.7 °C. As by the 
median, this event is accounted for as the third most extreme 
event in the Plateau. On 31 July 1983, on the other hand, the 
maximum temperature at SMA was 35.8 °C, but the event 
only classifies as the 5th on record regarding the Plateau.

On the Plateau, the top-ranking anomaly for the regional 
Tmax was observed during the very hot summer of 2003 
on August 13. Temperatures reached 36  °C in Zürich/
Fluntern (SMA), the highest in  situ Tmax on record for 
SMA, corresponding to a deviation of 12.3 °C from the 
expected absolute temperature (defined as the value of the 
location parameter on that day). This regional event was 
highly anomalous on the Plateau, the Prealps, and the 
Jura. In contrast, at Alpine stations such as Jungfraujoch, 
the deviation from the expected value reached only 4 °C. 
On the Plateau, the 2003 event is followed by a warm 
anomaly that occurred in April 1968 with a Tmax of 26.5 °C 
in Zürich/Fluntern (SMA) that corresponds to a deviation 
of 13.1  °C from the expected temperature. This event 
affected large parts of Switzerland and was due to an 
Eastern European high-pressure system extending to Central 
Europe (MeteoSchweiz 1968). In the Jura, the top regional 
event occurred on 31 July 1983, registering 33.8 °C in La 
Chaux-de-Fonds, a deviation of 12.8 °C from the expected 
temperature on that day, followed by an extremely warm 
December day in 1989 with a deviation from the expected 
value of 15.3°. In the Prealps, the top event occurred in 
mid-May 1969 in Altdorf, where the daily Tmax went up to 
31.1 °C during a very sunny period caused by a shallow high 
over Central and Southern Europe (MeteoSchweiz 1969). 
In the Alps, the strongest anomalies are 31 July 1983, 13 
and 14 May 1969, and the last day of the heat wave in mid-
July 2019 described in Section 4.3 and Fig. 6. These events 
resulted in the strongest anomalies at high altitudes for both 
Tmax and Tmin . In Ticino, the top regional event occurred on 
24 October 2018 at 30.5 °C in Lugano. It was attributed to 

the north foehn and was the first hot day (Tmax ≥ 30 °C) ever 
recorded in Switzerland in October (MeteoSchweiz 2019b).

Similar analyses can be performed for warm Tmin 
(Table 1). For instance, we observe that the five most pro-
nounced regional warm Tmin events occurred during south 
foehn in Altdorf.1 The warmest night anomalies in the 
Ticino, such as 6 January 2013, are related to foehn, illus-
trating its importance with regard to warm Tmin at foehn loca-
tions (MeteoSchweiz 2014).

4.5  Catalogue of unusually cold events since 1965

Cold anomalies since 1965 with return periods of 1.1 years 
or higher are depicted in Fig. 9. As for the warm anomalies, 
they are evenly distributed across seasons and years. Fig-
ure 9 and Table 1 show that the cold anomalies occurring 
on 6 March 1971, 3 December 1973, 5–9 January 1985, 10 
February 1986, and 12 January 1987 affected all regions, 
even if not always with the same ranking. On 6 March 
1971 for instance, Tmin went down to − 36.6 °C at Jungfrau-
joch, corresponding to a deviation of − 20.1 °C from the 
expected Tmin , and down to − 15 °C in Basel, and − 6.8 °C 
in Lugano. On 3 December 1973, Tmin in Basel and Alt-
dorf went below − 15 °C, and reached − 6.5 °C in Lugano, 
and − 28.1 °C at Jungfraujoch. From 5 to 9 January 1985, a 
strong Bise led to a 5-day cold anomaly affecting all of Swit-
zerland, with Tmax of − 14.7 °C on 8 January in Zürich/Flun-
tern and − 4.3 °C in Locarno-Monti, and Tmin of − 19.6 °C on 
9 January in Zürich/Fluntern and of − 29.5 °C at La Chaux-
de-Fonds. In contrast to the warmest events and with a few 
exceptions, the most severe cold events occurred in winter-
time and are spatially consistent over all regions.

5  Discussion

The results bring to light the complexity of the daily tem-
perature distribution, regardless of whether mean, minimum, 
or maximum. Seasonality not only affects all parameters of 
the distribution in a given year, but also the long-term shifts 
in the location parameter. The pronounced seasonal cycle 
of temperatures in mid-latitudes is well represented by the 
location parameter with amplitudes ranging from 7 to 11 °C. 
Differences in the estimated location parameter � between 
individual stations mainly stem from altitude, resulting in 
lapse rates of 5 °C/km ( Tmin ) to 6.2 °C/km ( Tmax ) on average. 
The observed weaker lapse rates for Tmin can be linked to 
cold-air pooling and fog situations in winter (c.f., Scherrer 

1 This information can be found in the «Climate Reports» by Mete-
oSwiss available at: https:// www. meteo swiss. admin. ch/ weath er/ weath 
er- and- clima te- from-a- to-z/ weath er- archi ve- of- switz erland. html

https://www.meteoswiss.admin.ch/weather/weather-and-climate-from-a-to-z/weather-archive-of-switzerland.html
https://www.meteoswiss.admin.ch/weather/weather-and-climate-from-a-to-z/weather-archive-of-switzerland.html
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and Appenzeller 2014), affecting Tmin rather than Tmax . These 
can also lead to weaker temperature decreases with eleva-
tion in winter than in summer (e.g., Kunz et al. 2007), as 
observed here. With regard to trends in the location param-
eter � , they are known to be stronger in summer than in 
winter (e.g.,Rebetez and Reinhard 2008; Ceppi et al. 2012).

Unlike the location, the scale (variance) is largest in the 
cold season, as already noted by Evin et al. (2019), with 
the greatest amplitudes at higher elevations, where the sta-
tions are exposed to the large-scale flow. The temperature is 
predominantly left-skewed. This means that unusually cold 

events happen more often than would be expected for a nor-
mal distribution (e.g., Underwood 2013). Stations affected 
by foehn are an exception: the temperature is right-skewed 
in spring and fall for Tmin and Tmax , and from September 
to February for Tmax . Geographically, Southern Switzerland 
stands out as a region with a different temperature regime 
characterized by distinctly warmer temperatures and a small 
variance reaching its maximum in spring.

The results have shown that the explicit modeling of 
seasonality in the temperature distribution parameters is 
critical to compare the severity of temperature anomalies 

Fig. 9  Same as Fig. 8 but for anomalously low minimum and maximum temperatures. The five numbers indicate the standardized anomalies of 
the five events with the lowest median daily temperature over the region the station belongs to
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regardless of the season or year in which they occurred. As 
we have seen, not only the location parameter, but also the 
higher-order parameters display a pronounced seasonal cycle 
(Fig. 5). Thus, we argue that the presented approach is more 
accurate than classifying “ordinary” temperature anomalies, 
defined as the difference from the expected value, or adopt-
ing a semi-annual approach (e.g., Nogaj et al. 2006; Abaur-
rea et al. 2007). Because of the seasonal cycle in the higher 
moments, ordinary temperature anomalies are not compa-
rable across or even within individual seasons. To give a 
specific example, the variance of Tmin is almost twice as high 
in winter than in summer at high-elevation stations, resulting 
in larger ordinary temperature anomalies in winter. Thus, 
only winter events would be classified as exceptional when 
classifying ordinary temperature anomalies. Furthermore, 
the scale parameter can change significantly even within one 
season. At Locarno-Monti, for instance, the scale parameter 
of the Tmax distribution decreases by around one-third from 
April to August. Neglecting seasonality in the distributions’ 
parameters can thus lead to an “unfair” comparison of events 
and a misleading classification.

By explicitly modeling the temperature trend, the pre-
sented approach accounts for climate change. Indeed, we 
show that cold events are classified as more unusual today 
than if they had occurred a few decades ago, while the 
reverse is the case for hot events. The catalogue of unusu-
ally cold and warm events over the entire period since 1965 
indicates that these unusual events are evenly distributed, 
indicating that the presented method works well with respect 
to its intended purpose, i.e., the comparability of tempera-
tures within the year and between years. Nevertheless, the 
five most anomalous and spatially consistent cold events all 
occurred during the winter and during the first 22 years of 
analysis (e.g., in 1971 1973 1985 1986 1987). Whether this 
is systematically related to the chosen approach remains, 
however, an open question because the inherent rarity makes 
it difficult to analyze the statistical behavior of the largest 
anomalies. In addition, small temperature differences can 
lead to significant changes in the estimated return periods 
due to the negative shape of the temperature maxima distri-
bution (e.g., Cooley 2009; Kharin and Zwiers 2005).

Similar modeling approaches have been implemented 
in a few previous studies. For instance, Evin et al. (2019) 
aimed at stochastically generating temperature series at 26 
stations in Switzerland. In contrast to the present study, they 
separately estimate the linear temperature trend, the monthly 
mean, and the standard deviation (which are smoothed in a 
second step), and finally model the residuals based on the 
SGED. A visual comparison of the results of the two studies 
reveals high agreement between the estimated parameters. A 
benefit of the present study is the simultaneous estimation 
of all parameters, potentially reducing biases and uncertain-
ties. Furthermore, Underwood (2013) analyzed the summary 

statistics characterizing the daily temperature at de Bilt, 
Holland, for two periods 1904–1984 and 1985–2009 based 
on a GEV-distribution with seasonally smoothed param-
eters. They find that the moments of the distribution change 
slightly from one period to the other, a finding that could 
put in question the assumption of constant (with regard to 
different years) higher-order moments adopted here.

6  Conclusion

This study presents a novel approach to modeling daily air 
temperatures and classifying unusually warm or cold events. 
The skewed generalized error distribution (SGED) selected 
for this purpose can model skewness and long/short tails. By 
letting parameters vary daily and assuming a linear depend-
ence of the location parameter on the smoothed northern 
hemisphere land temperature, non-Gaussianity, seasonality, 
and global warming can be accounted for all in one. The 
daily variation of all model parameters is modeled as sec-
ond-order Fourier series that are estimated simultaneously. 
Analyses of the yearly cycle and the long-term changes of 
the model parameters both provide new insights and confirm 
well-known characteristics of daily air temperatures in Swit-
zerland, supporting the appropriateness of the applied model.

Once the SGED parameters are estimated, they are used 
to transform the temperature observations into standardized 
temperature anomalies. These are stationary, i.e., compara-
ble within a year and between years. Yearly return periods 
are then determined empirically from the annual maxima 
of the standardized anomalies. Through standardization, 
each event is classified in terms of the climate prevalent in 
the year and the day of the year on which it occurred. The 
proposed method works well, as shown by the cataloging 
of past extreme events, which are evenly distributed across 
years and months. For instance, a heat wave in early summer 
is classified as less frequent than a heat wave of compara-
ble intensity in mid-summer. This is appropriate because 
lower temperatures are expected in early summer than in 
mid-summer. In addition, the approach classifies unusually 
warm events as more frequent in recent years than a few dec-
ades ago, while the opposite is the case for cold anomalies. 
The approach can thus be used to illustrate differences in the 
frequency of extremes due to both seasonality and climate 
change. It is further capable of identifying the largest cold 
and warm anomalies.

We conclude that the presented approach is appropriate to 
accurately model daily air temperatures to gain insights into 
diverse climatological characteristics, including the classi-
fication of extreme temperatures. Considering the complex 
topography in which the approach has been tested, it should 
be applicable worldwide, requiring solely a daily time series 
of high-quality temperature observations.



1289On the statistical distribution of temperature and the classification of extreme events…

1 3

Acknowledgements We are very grateful to Christoph Frei and Sven 
Kotlarski (both at MeteoSwiss) for their advice and support in devel-
oping the method and editing this manuscript. All computations were 
performed at the Swiss National Supercomputing Centre (CSCS).

Author contribution All authors contributed to the study’s conception 
and design. Material preparation, the development of the method, and 
analysis were performed by Stefanie Gubler. Sophie Fukutome and 
Simon C. Scherrer supported Stefanie Gubler in the development of 
the method and the analyses of the results. The first draft of the manu-
script was written by Stefanie Gubler, and all authors commented on 
previous versions of the manuscript. All authors read and approved 
the final manuscript.

Funding This work was funded by the Federal Office of Meteorology 
and Climatology MeteoSwiss, Switzerland.

Data availability The datasets used, generated, and analyzed dur-
ing the current study are not publicly available due to federal law in 
Switzerland.

Code availability The developed code is not publicly available due to 
internal regulations of the Federal Office of Meteorology and Climatol-
ogy MeteoSwiss, Switzerland.

Declarations 

Ethics approval The authors are aware of their ethical responsibility.

Consent to participate All authors gave their consent to participate in 
the development of the manuscript.

Consent for publication All authors are aware of the submission of 
the manuscript and gave explicit consent and obtained consent from 
the Federal Office of Meteorology and Climatology MeteoSwiss to 
submit the manuscript.

Competing interests The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abaurrea J, Asín J, Cebrián AC, Centelles A (2007) Modeling and 
forecasting extreme hot events in the central Ebro valley, a con-
tinental-Mediterranean area. Global Planet Change 57:43–58. 
https:// doi. org/ 10. 1016/j. glopl acha. 2006. 11. 005

Asseng S, Foster I, Turner NC (2011) The impact of temperature varia-
bility on wheat yields. Glob Change Biol 17(2):997–1012. https:// 
doi. org/ 10. 1111/j. 1365- 2486. 2010. 02262.x

Barry RG (2008) Mountain weather and climate. Cambridge University 
Press, Cambridge, p 512p

Becker RA, Chambers JM, Wilks AR (1988) The new S language. 
Wadsworth & Brooks/Cole

Begert M, Frei D (2018) Long-term area-mean temperature series for Swit-
zerland—combining homogenized station data and high resolution grid 
data. Int J Climatol 38:2792–2807. https:// doi. org/ 10. 1002/ joc. 5460

Begert M, Schlegel T, Kirchhofer W (2005) Homogeneous temperature 
and precipitation series of Switzerland from 1864 to 2000. Int J 
Climatol 25:65–80. https:// doi. org/ 10. 1002/ joc. 1118

Begert M, Seiz G, Schlegel T, Musa M, Baudraz G, Moesch M (2003) 
Homogenisierung von Klimamessreihen der Schweiz und Bestim-
mung der Normwerte 1961–1990, Schlussbericht des Projekts 
NORM90, Veröffentlichung der MeteoSchweiz, 67 p 170

Begert M (2008) Die Repräsentativität der Stationen im Swiss National 
Basic Climatological Network (Swiss NBCN). Arbeitsberichte der 
MeteoSchweiz, 217, p 40

Beniston M (2005) Warm winter spells in the Swiss Alps: strong heat 
waves in a cold season? A study focusing on climate observations 
at the Saentis high mountain site. Geophys Res Lett 32:L01812. 
https:// doi. org/ 10. 1029/ 2004G L0214 78

Beniston M, Stoffel M (2014) Assessing the impacts of climatic change 
on mountain water resources. Sci Total Environ 493:1129–1137. 
https:// doi. org/ 10. 1016/j. scito tenv. 2013. 11. 122

Brönnimann S, Appenzeller C-M, Fuhrer J, Grosjean M, Hohmann R, 
Ingold K, Knutti R, Liniger MA, Raible CC, Röthlisberger R, Schär 
C, Scherrer SC, Strassmann K, Thalmann P (2014) Climate change in 
Switzerland: a review of physical, institutional, and political aspects. 
Wires Clim Change 5:461–481. https:// doi. org/ 10. 1002/ wcc. 280

Ceppi P, Scherrer SC, Fischer EM, Appenzeller C (2012) Revisiting 
Swiss temperature trends 1959–2008. Int J Climatol 32:203–213. 
https:// doi. org/ 10. 1002/ joc. 2260

CH2018 (2018) CH2018 – Climate scenarios for Switzerland, techni-
cal report, National Centre for Climate Services, Zurich 271 pp. 
ISBN: 978–3–9525031–4–0

Cheng L, AghaKouchak A, Gilleland E, Katz R (2014) Non-station-
ary extreme value analysis in a changing climate. Clim Change 
127:353–369. https:// doi. org/ 10. 1007/ s10584- 014- 1254-5

Cleveland WS (1981) LOWESS: a program for smoothing scatterplots 
by robust locally weighted regression. Am Stat 35:54. https:// doi. 
org/ 10. 2307/ 26835 91

Cleveland WS (1979) Robust locally weighted regression and smooth-
ing scatterplots. J Am Stat Assoc 74:829–836. https:// www. tandf 
online. com/ doi/ abs/ 10. 1080/ 01621 459. 1979. 10481 038

Coelho CAS, Ferro CAT, Stephenson DB, Steinskog DJ (2008) Meth-
ods for exploring spatial and temporal variability of extreme 
events in climate data. J Clim 21:2072–2092. https:// doi. org/ 10. 
1175/ 2007J CLI17 81.1

Coles S (2001) An introduction to statistical modeling of extreme val-
ues, Springer, ISBN: 978–1–4471–3675–0

Cooley D (2009) Extreme value analysis and the study of climate 
change, a commentary on Wigley 1988. Clim Change 97:77–83. 
https:// doi. org/ 10. 1007/ s10584- 009- 9627-x

Cooley D (2013) Return periods and return levels under climate 
change, Extremes in a changing climate, Springer Netherlands. 
https:// doi. org/ 10. 1007/ 978- 94- 007- 4479-0_4

Davis RA (1982) The rate of convergence in distribution of the max-
ima. Statist Neerland 36:31–35. https:// doi. org/ 10. 1111/j. 1467- 
9574. 1982. tb007 72.x

Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker 
DE, Salinger MJ, Razuvayev V, Plummer N, Jamason P, Folland 
CK (1997) Maximum and minimum temperature trends for the 
globe. Science 277(5324):364–367. https:// doi. org/ 10. 1126/ scien 
ce. 277. 5324. 364

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.gloplacha.2006.11.005
https://doi.org/10.1111/j.1365-2486.2010.02262.x
https://doi.org/10.1111/j.1365-2486.2010.02262.x
https://doi.org/10.1002/joc.5460
https://doi.org/10.1002/joc.1118
https://doi.org/10.1029/2004GL021478
https://doi.org/10.1016/j.scitotenv.2013.11.122
https://doi.org/10.1002/wcc.280
https://doi.org/10.1002/joc.2260
https://doi.org/10.1007/s10584-014-1254-5
https://doi.org/10.2307/2683591
https://doi.org/10.2307/2683591
https://www.tandfonline.com/doi/abs/10.1080/01621459.1979.10481038
https://www.tandfonline.com/doi/abs/10.1080/01621459.1979.10481038
https://doi.org/10.1175/2007JCLI1781.1
https://doi.org/10.1175/2007JCLI1781.1
https://doi.org/10.1007/s10584-009-9627-x
https://doi.org/10.1007/978-94-007-4479-0_4
https://doi.org/10.1111/j.1467-9574.1982.tb00772.x
https://doi.org/10.1111/j.1467-9574.1982.tb00772.x
https://doi.org/10.1126/science.277.5324.364
https://doi.org/10.1126/science.277.5324.364


1290 S. Gubler et al.

1 3

Evin G, Favre A-C, Hingray B (2019) Stochastic generators of 
multi-site daily temperature: comparison. Theor Appl Climatol 
135:811–824. https:// doi. org/ 10. 1007/ s00704- 018- 2404-x

Fernández C, Steel MFJ (1998) On Bayesian modeling of fat tails 
and skewness. J Am Stat Assoc 93(441):359–371. https:// doi. 
org/ 10. 1080/ 01621 459. 1998. 10474 117

Fisher RA, Tippett LHC (1928) Limiting forms of the frequency 
distribution of the largest or smallest members of a sample. 
Proc Cambridge Philos Soc 24:180–190. https:// doi. org/ 10. 
1017/ S0305 00410 00156 81

Frei C (2014) Interpolation of temperature in a mountainous region 
using nonlinear profiles and non-Euclidean distances. Int J Cli-
matol 34(5):1585–1605. https:// doi. org/ 10. 1002/ joc. 3786

Furrer EM, Katz RW, Walter MD, Furrer R (2010) Statistical mod-
eling of hot spells and heat waves. Climate Res 43:191–205. 
https:// doi. org/ 10. 3354/ cr009 24

Gasparrini A, Guo Y, Hashizume M, Lavigne E, Tobias A, Zanobetti 
A, Schwartz JD, Leone M, Michelozzi P, Kan H, Tong S, Honda 
Y, Kim H, Armstrong BG (2016) Changes in susceptibility to 
heat during the summer: a multicountry analysis. Am J Epide-
miol 183:1027–1036. https:// doi. org/ 10. 1093/ aje/ kwv260

Gasull A, Jolis M, Utzet F (2015) On the norming constants for 
normal maxima. J Math Anal Appl 422(1):376–396. https:// doi. 
org/ 10. 1016/j. jmaa. 2014. 08. 025

Gehrig R, Clot B (2021) 50 years of pollen monitoring in basel 
(Switzerland) demonstrate the influence of climate change on 
airborne pollen. Front Allergy 2:18. https:// doi. org/ 10. 3389/ 
falgy. 2021. 677159

Gutermann T, Dürr B, Richner H, Bader S (2012) Föhnklimatologie 
Altdorf: die lange Reihe (1864–2008) und ihre Weiterführung, 
Vergleich mit anderen Stationen, Fachbericht MeteoSchweiz 
241, pp 53

Hajat S, Kovats RS, Atkinson RW, Haines A (2002) Impact of hot 
temperatures on death in London: a time series approach. J Epi-
demiol Community Health 56:367–372. https:// doi. org/ 10. 1136/ 
jech. 56.5. 367

Hall P (1979) On the rate of convergence of normal extremes. J Appl 
Probab 433–439. https:// doi. org/ 10. 2307/ 32129 12

Harmel RD, Richardson CW, Hanson CL, Johnson GL (2002) Evalu-
ating the adequacy of simulating maximum and minimum daily 
air temperature with the normal distribution. J Appl Meteorol 
41(7):744–753. https:// doi. org/ 10. 1175/ 1520- 0450(2002) 041% 
3c0744: ETAOSM% 3e2.0. CO;2

Hoinka KP (1985) Observations of the airflow over the Alps during 
a föhn event. Q J R Meteorol Soc 111:199–224. https:// doi. org/ 
10. 1002/ qj. 49711 146709

IPCC (2013) Climate change 2013: the physical science basis. Con-
tribution of Working Group I to the Fifth Assessment Report of 
the Intergovernmental Panel on Climate Change [Stocker, T.F., 
D. Qin,G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. 
Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge 
University Press, Cambridge, United Kingdom and New York, 
NY, USA pp 1535

Isotta F, Begert M, Frei C (2019) Long-term consistent monthly tem-
perature and precipitation grid data sets for Switzerland over the 
past 150 years. J Geophys Res: Atmospheres 124:3783–3799. 
https:// doi. org/ 10. 1029/ 2018J D0299 10

Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP 
(2012) Hemispheric and large-scale land surface air temperature 
variations: an extensive revision and an update to 2010. J Geo-
phys Res 117:D05127. https:// doi. org/ 10. 1029/ 2011J D0171 39

Katz R (2013) Chapter 2 - statistical methods for nonstationary 
extremes, in extremes in a changing climate, detection, analysis 
and uncertainty. Springer

Kharin VV, Zwiers FW (2005) Estimating extremes in transient cli-
mate change simulations. J Clim 18:1156–1173. https:// doi. org/ 
10. 1175/ JCLI3 320.1

Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in 
temperature and precipitation extremes in the CMIP5 ensem-
ble. Clim Change 119:345–357. https:// doi. org/ 10. 1007/ 
s10584- 013- 0705-8

Kjellstrom T, Holmer I, Lemke B (2009) Workplace heat stress, health 
and productivity – an increasing challenge for low and middle-
income countries during climate change. Glob Health Action 
2:1–3. https:// doi. org/ 10. 3402/ gha. v2i0. 2047

Klein Tank AMG, Können GP (2003) Trends in indices of daily tem-
perature and precipitation extremes in Europe 1946–99. J Climate 
16:3665–3680. https:// doi. org/ 10. 1175/ 1520- 0442(2003) 016% 
3c3665: TIIODT% 3e2.0. CO;2

Kunz H, Scherrer SC, Liniger MA, Appenzeller C (2007) The evolu-
tion of ERA-40 surface temperatures and total ozone compared to 
observed Swiss time series. Meteorol Z 16:171–181. https:// doi. 
org/ 10. 1127/ 0941- 2948/ 2007/ 0183

Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability 
in global surface air temperature. Theor Appl Climatol 41:11–21. 
https:// doi. org/ 10. 1007/ BF008 66198

Lorentzen T (2020) Climate change and winter road mainte-
nance. Clim Change 161:225–242. https:// doi. org/ 10. 1007/ 
s10584- 020- 02662-0

Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) 
European seasonal and annual temperature variability, trends, and 
extremes since 1500. Science 303(5663):1499–1503. https:// doi. 
org/ 10. 1126/ scien ce. 10938 77

Matiu M, Ankerst DP, Menzel A (2016) Asymmetric trends in seasonal 
temperature variability in instrumental records from ten stations 
in Switzerland, Germany and the UK from 1864 to 2012. Int J 
Climatol 36:13–27. https:// doi. org/ 10. 1002/ joc. 4326

MeteoSchweiz (2014): Klimabulletin Jahr 2013. Zürich, available at: 
https:// www. meteo schwe iz. admin. ch/ servi ce- und- publi katio nen/ 
publi katio nen/ beric hte- und- bulle tins/ 2014/ klima bulle tin- jahr- 
2013. html. [accessed 27.01.2023]

MeteoSchweiz (2016): Witterungsberichte Schweiz 1960 – 1969, 
available at: https:// www. meteo schwe iz. admin. ch/ wetter/ wetter- 
und- klima- von-a- bis-z/ wette rarch iv- der- schwe iz. html. [accessed 
27.01.2023]

MeteoSchweiz (2019a): Klimabulletin Sommer 2019a. Zürich, avail-
able at: https:// www. meteo swiss. admin. ch/ servi ces- and- publi catio 
ns/ publi catio ns/ repor ts- and- bulle tins/ 2019a/ klima bulle tin- som-
mer- 2019a. html. [accessed 27.01.2023]

MeteoSchweiz (2019b): Klimabulletin Oktober 2019b. Zürich, avail-
able at: https:// www. meteo schwe iz. admin. ch/ servi ce- und- publi 
katio nen/ publi katio nen/ beric hte- und- bulle tins/ 2019b/ klima bulle 
tin- oktob er- 2019b. html. [accessed: 27.01.2023]

Nelson DB (1991) Conditional heteroscedasticity in asset returns: a 
new approach. Econometrics 59:347–370. https:// doi. org/ 10. 2307/ 
29382 60

Nogaj M, Yiou P, Parey S, Malek F, Naveau P (2006) Amplitude and 
frequency of temperature extremes over the North Atlantic region. 
Geophys Res Lett 33:L10801. https:// doi. org/ 10. 1029/ 2005G 
L0242 51

Norrman J, Eriksson M, Lindqvist S (2000) Relationships between 
road slipperiness, traffic accident risk and winter road mainte-
nance activity. Climate Res 15:185–193. https:// doi. org/ 10. 3354/ 
cr015 185

Pascual M, Ahumada JA, Chaves LF, Rodó X, Bouma M (2006) 
Malaria resurgence in the East African highlands: temperature 
trends revisited, PNAS, April 11 103 (15):5829–5834. https:// doi. 
org/ 10. 1073/ pnas. 05089 29103

https://doi.org/10.1007/s00704-018-2404-x
https://doi.org/10.1080/01621459.1998.10474117
https://doi.org/10.1080/01621459.1998.10474117
https://doi.org/10.1017/S0305004100015681
https://doi.org/10.1017/S0305004100015681
https://doi.org/10.1002/joc.3786
https://doi.org/10.3354/cr00924
https://doi.org/10.1093/aje/kwv260
https://doi.org/10.1016/j.jmaa.2014.08.025
https://doi.org/10.1016/j.jmaa.2014.08.025
https://doi.org/10.3389/falgy.2021.677159
https://doi.org/10.3389/falgy.2021.677159
https://doi.org/10.1136/jech.56.5.367
https://doi.org/10.1136/jech.56.5.367
https://doi.org/10.2307/3212912
https://doi.org/10.1175/1520-0450(2002)041%3c0744:ETAOSM%3e2.0.CO;2
https://doi.org/10.1175/1520-0450(2002)041%3c0744:ETAOSM%3e2.0.CO;2
https://doi.org/10.1002/qj.49711146709
https://doi.org/10.1002/qj.49711146709
https://doi.org/10.1029/2018JD029910
https://doi.org/10.1029/2011JD017139
https://doi.org/10.1175/JCLI3320.1
https://doi.org/10.1175/JCLI3320.1
https://doi.org/10.1007/s10584-013-0705-8
https://doi.org/10.1007/s10584-013-0705-8
https://doi.org/10.3402/gha.v2i0.2047
https://doi.org/10.1175/1520-0442(2003)016%3c3665:TIIODT%3e2.0.CO;2
https://doi.org/10.1175/1520-0442(2003)016%3c3665:TIIODT%3e2.0.CO;2
https://doi.org/10.1127/0941-2948/2007/0183
https://doi.org/10.1127/0941-2948/2007/0183
https://doi.org/10.1007/BF00866198
https://doi.org/10.1007/s10584-020-02662-0
https://doi.org/10.1007/s10584-020-02662-0
https://doi.org/10.1126/science.1093877
https://doi.org/10.1126/science.1093877
https://doi.org/10.1002/joc.4326
https://www.meteoschweiz.admin.ch/service-und-publikationen/publikationen/berichte-und-bulletins/2014/klimabulletin-jahr-2013.html
https://www.meteoschweiz.admin.ch/service-und-publikationen/publikationen/berichte-und-bulletins/2014/klimabulletin-jahr-2013.html
https://www.meteoschweiz.admin.ch/service-und-publikationen/publikationen/berichte-und-bulletins/2014/klimabulletin-jahr-2013.html
https://www.meteoschweiz.admin.ch/wetter/wetter-und-klima-von-a-bis-z/wetterarchiv-der-schweiz.html
https://www.meteoschweiz.admin.ch/wetter/wetter-und-klima-von-a-bis-z/wetterarchiv-der-schweiz.html
https://www.meteoswiss.admin.ch/services-and-publications/publications/reports-and-bulletins/2019a/klimabulletin-sommer-2019a.html
https://www.meteoswiss.admin.ch/services-and-publications/publications/reports-and-bulletins/2019a/klimabulletin-sommer-2019a.html
https://www.meteoswiss.admin.ch/services-and-publications/publications/reports-and-bulletins/2019a/klimabulletin-sommer-2019a.html
https://www.meteoschweiz.admin.ch/service-und-publikationen/publikationen/berichte-und-bulletins/2019b/klimabulletin-oktober-2019b.html
https://www.meteoschweiz.admin.ch/service-und-publikationen/publikationen/berichte-und-bulletins/2019b/klimabulletin-oktober-2019b.html
https://www.meteoschweiz.admin.ch/service-und-publikationen/publikationen/berichte-und-bulletins/2019b/klimabulletin-oktober-2019b.html
https://doi.org/10.2307/2938260
https://doi.org/10.2307/2938260
https://doi.org/10.1029/2005GL024251
https://doi.org/10.1029/2005GL024251
https://doi.org/10.3354/cr015185
https://doi.org/10.3354/cr015185
https://doi.org/10.1073/pnas.0508929103
https://doi.org/10.1073/pnas.0508929103


1291On the statistical distribution of temperature and the classification of extreme events…

1 3

Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency, inten-
sity and duration of observed global heatwaves and warm spells. 
Geophys Res Lett 39: https:// doi. org/ 10. 1029/ 2012G L0533 61

Perron M, Sura P (2013) Climatology of non-Gaussian atmos-
pheric statistics. J Clim 26:1063–1083. https:// doi. org/ 10. 1175/ 
JCLI-D- 11- 00504.1

R Core Team (2018) R: A language and environment for statistical 
computing, R Foundation for Statistical Computing, Vienna, Aus-
tria, https:// www.R- proje ct. org/

Ragettli MS, Vicedo-Cabrera AM, Schindler C, Röösli M (2017) 
Exploring the association between heat and mortality in Switzer-
land between 1995 and 2013. Environ Res 158:703–709. https:// 
doi. org/ 10. 1016/j. envres. 2017. 07. 021

Rebetez M, Reinhard M (2008) Monthly air temperature trends in 
Switzerland 1901–2000 and 1975–2004. Theor Appl Climatol 
91:27–34. https:// doi. org/ 10. 1007/ s00704- 007- 0296-2

Ruff TW, Neelin JD (2012) Long tails in regional surface temperature 
probability distributions with implications for extremes under 
global warming. Geophys Res Lett 39:4704. https:// doi. org/ 10. 
1029/ 2011G L0506 10

Rusticucci M, Tencer B (2008) Observed changes in return values of 
annual temperature extremes over Argentina. J Climate 21:5455–
5467. https:// doi. org/ 10. 1175/ 2008J CLI21 90.1

Salzmann N, Scherrer SC, Allen SK, Rohrer M (2015) Temperature, 
precipitation and related extremes. In book: The high-mountain 
cryosphere: environmental changes and human risks, Cambridge 
University Press, ISBN: 9781107065840, pp 28–50. https:// doi. 
org/ 10. 1017/ CBO97 81107 588653. 003

Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appen-
zeller C (2004) The role of increasing temperature variability in 
European summer heatwaves. Nature 427:332–336. https:// doi. 
org/ 10. 1038/ natur e02300

Scherrer SC, Appenzeller C (2014) Fog and low stratus over the Swiss 
Plateau − a climatological study. Int J Climatol 34:678–686. 
https:// doi. org/ 10. 1002/ joc. 3714

Scherrer SC, Begert M (2019) Effects of large-scale atmospheric flow 
and sunshine duration on the evolution of minimum and maximum 
temperature in Switzerland. Theor Appl Climatol 138:227–235. 
https:// doi. org/ 10. 1007/ s00704- 019- 02823-x

Scherrer SC, Appenzeller C, Liniger MA, Schär C (2005) European 
temperature distribution changes in observations and climate 
change scenarios. Geophys Res Lett 32:L19705. https:// doi. org/ 
10. 1029/ 2005G L0241 08

Scherrer SC, Gubler S, Wehrli K, Fischer AM, Kotlarski S (2021) The 
Swiss Alpine zero degree line: Methods, past evolution and sen-
sitivities. Int J Climatol 41:6785–6804. https:// doi. org/ 10. 1002/ 
joc. 7228

Stedinger JR, Vogel RM, Foufoula-Georgiou E (1993) Frequency anal-
ysis of extreme events, Maidment DR, Ed., Handbook of hydrol-
ogy, McGraw-Hill, New York

Steiger R (2011) The impact of snow scarcity on ski tourism: an analy-
sis of the record warm season 2006/2007 in Tyrol (Austria). Tour 
Rev 66(3):4–13. https:// doi. org/ 10. 1108/ 16605 37111 11752 85

Steinacker R (1984) Area-height distribution of a valley and its relation 
to the valley wind. Beiträge Zur Physik Der Atmosphäre 57:64–71

Theodossiou P (2015) Skewed generalized error distribution of finan-
cial assets and option pricing. Multinatl Finance J 19:223–266. 
https:// doi. org/ 10. 17578/ 19-4-1

Underwood FM (2013) Describing seasonal variability in the distri-
bution of daily effective temperatures for 1985–2009 compared 
to 1904–1984 for De Bilt, Holland. Meteorol Appl 20:394–404. 
https:// doi. org/ 10. 1002/ met. 1297

Vitasse Y, Rebetez M (2018) Unprecedented risk of spring frost dam-
age in Switzerland and Germany in 2017. Clim Change 149:233–
246. https:// doi. org/ 10. 1007/ s10584- 018- 2234-y

Wang XL, Feng Y, Vincent LA (2014) Observed changes in one-in-20 
year extremes of Canadian surface air temperatures. Atmos Ocean 
52(3):222–231. https:// doi. org/ 10. 1080/ 07055 900. 2013. 818526

Wanner H, Kunz S (1983) Klimatologie der Nebel- und Kaltluftkörper 
im Schweizerischen Alpenvorland mit Hilfe von Wettersatelliten-
bildern, Arch. Met. Geoph. Biocl. Ser B 33:31–56. https:// doi. org/ 
10. 1007/ BF022 73989

Wehner M, Stone D, Shiogama H, Wolski P, Ciavarella A, Christidis N, 
Krishnan H (2018) Early 21st century anthropogenic changes in 
extremely hot days as simulated by the C20C+ detection and attri-
bution multi-model ensemble. Weather Clim Extremes 20:1–8. 
https:// doi. org/ 10. 1016/j. wace. 2018. 03. 001

Wheeler TR, Craufurd PQ, Ellis RH, Porter JH, Prasad PV (2000) 
Temperature variability and the yield of annual crops. Agr Eco-
syst Environ 82(1–3):159–167. https:// doi. org/ 10. 1016/ S0167- 
8809(00) 00224-3

Whiteman CD (1982) Breakup of temperature inversions in deep 
mountain valleys: Part I. Observations. J Appl Meteorol 21:270–
289. https:// doi. org/ 10. 1175/ 1520- 0450(1982) 021% 3c0270: 
BOTIID% 3e2.0. CO;2

Whiteman CD (1990) Observations of thermally developed wind sys-
tems in mountainous terrain. In Atmospheric processes over com-
plex terrain, Meteorological Monographs 23, no. 45, W Blumen 
(ed). American Meteorological Society: Boston, 5–42, https:// doi. 
org/ 10. 1007/ 978-1- 935704- 25-6

Wigley TML (2009) The effect of changing climate on the frequency 
of absolute extreme events. Clim Change 97:67–76. https:// doi. 
org/ 10. 1007/ s10584- 009- 9654-7

Wuertz D, Setz T, Chalabi Y, Boudt C, Chausse P, Miklovac M (2019) 
fGarch: Rmetrics - autoregressive conditional heteroskedastic 
modelling. R package version 3042.83.1., https:// CRAN.R- proje 
ct. org/ packa ge= fGarch

Publisher's note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1029/2012GL053361
https://doi.org/10.1175/JCLI-D-11-00504.1
https://doi.org/10.1175/JCLI-D-11-00504.1
https://www.R-project.org/
https://doi.org/10.1016/j.envres.2017.07.021
https://doi.org/10.1016/j.envres.2017.07.021
https://doi.org/10.1007/s00704-007-0296-2
https://doi.org/10.1029/2011GL050610
https://doi.org/10.1029/2011GL050610
https://doi.org/10.1175/2008JCLI2190.1
https://doi.org/10.1017/CBO9781107588653.003
https://doi.org/10.1017/CBO9781107588653.003
https://doi.org/10.1038/nature02300
https://doi.org/10.1038/nature02300
https://doi.org/10.1002/joc.3714
https://doi.org/10.1007/s00704-019-02823-x
https://doi.org/10.1029/2005GL024108
https://doi.org/10.1029/2005GL024108
https://doi.org/10.1002/joc.7228
https://doi.org/10.1002/joc.7228
https://doi.org/10.1108/16605371111175285
https://doi.org/10.17578/19-4-1
https://doi.org/10.1002/met.1297
https://doi.org/10.1007/s10584-018-2234-y
https://doi.org/10.1080/07055900.2013.818526
https://doi.org/10.1007/BF02273989
https://doi.org/10.1007/BF02273989
https://doi.org/10.1016/j.wace.2018.03.001
https://doi.org/10.1016/S0167-8809(00)00224-3
https://doi.org/10.1016/S0167-8809(00)00224-3
https://doi.org/10.1175/1520-0450(1982)021%3c0270:BOTIID%3e2.0.CO;2
https://doi.org/10.1175/1520-0450(1982)021%3c0270:BOTIID%3e2.0.CO;2
https://doi.org/10.1007/978-1-935704-25-6
https://doi.org/10.1007/978-1-935704-25-6
https://doi.org/10.1007/s10584-009-9654-7
https://doi.org/10.1007/s10584-009-9654-7
https://CRAN.R-project.org/package=fGarch
https://CRAN.R-project.org/package=fGarch

	On the statistical distribution of temperature and the classification of extreme events considering season and climate change—an application in Switzerland
	Abstract
	1 Introduction
	2 Study area and data
	2.1 Study area
	2.2 Data

	3 Methods
	3.1 Temperature model
	3.2 Assessment of events

	4 Results
	4.1 Model validation
	4.2 Characteristics of daily temperatures
	4.2.1 Location parameter 
	4.2.2 Intercept 
	4.2.3 Slope 
	4.2.4 Scale parameter 
	4.2.5 Skewness parameter 
	4.2.6 Kurtosis parameter 

	4.3 Examples of event assessment
	4.4 Catalogue of unusually warm events since 1965
	4.5 Catalogue of unusually cold events since 1965

	5 Discussion
	6 Conclusion
	Acknowledgements 
	References


