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Abstract
Land surface temperature(LST) is an important indicator to study climate change and test the performance of regional climate 
model simulation. RegCM4.6 is the representative version of regional climate model RegCM, which is coupled with advanced 
third-generation land surface model NCAR CLM4.5. Currently, RegCM4.6 has become an important tool to study regional 
climate change in China. However, its ability to simulate land surface temperature in mainland China and the reasons for 
its deviation have not been systematically studied, and targeted improvement work is lacking. The present study is the first 
to employ LST data collected from 809 Chinese meteorological stations from the last 30 years to comprehensively assess 
the ability of CLM4.5 to simulate LST. Sensitivity tests of soil thermal conductivity (STC) were carried out to improve the 
model. Although the coupled regional climate model could accurately simulate the temporal and spatial variation of LST, a 
cold bias of 2~8 °C existed for all of mainland China, which was larger in seasons with more precipitation and greater soil 
moisture than other seasons. Deviation increased from southeast to northwest. which was caused by the incoming long-
wave radiation, sensible heat, and latent heat simulated. There was a significant linear relationship between the observed 
and simulated LSTs, with correlation coefficients for all the stations ranged from 0.75 to 0.9 (P < 0.001). The observed LST 
increased at a rate of 0.58 °C/decade, but the simulated LST increased at a lower rate. Assessment of three different STC 
schemes showed that the Lu-Ren scheme was the most suitable for LST simulation in mainland China. Developing a new 
STC scheme that considers the role of water vapor can effectively improve the model when used in mainland China.

1  Introduction

Changes in land surface temperature (LST) can alter the bal-
ance of energy and material between the land and atmos-
phere, and cause major changes in precipitation, tempera-
ture, vegetation, and ecological processes (Wilson et al. 
2003; Zhong et al. 2011). Thus, LST is an important indi-
cator used for studying global climate change (Wan and Li 
1997; Coll et al. 2016; Duan et al. 2017; Jones and Trewin 
2015). LST is calculated by a land surface model (LSM) of 

a coupled climate model. The accuracy of those calculations 
has a direct impact on the process of simulating conditions 
in soil water, heat, and in simulating ecological processes. 
Therefore, LST is also one of the main indicators used to 
assess regional climate model (RCM) performance.

The RegCM is a regional climate model established by 
Dickinson and Giorgi in the late 1980s through expansion 
and modification of the radiation scheme, convection 
parameterization scheme, and land surface physical processes in 
a mesoscale model MM4 (Dickinson et al. 1989). Giorgi et al. 
(1993) subsequently produced RegCM2, RegCM3, and RegCM4 
by improving the physical process scheme and mesoscale 
model. The latest mature version is RegCM4.6. In this version, 
a mesoscale model MM5 non-static dynamic frame option was 
added, which improves the model spatial resolution to 10 km and 
updates the radiation and convection parameterization schemes. 
The most widely used regional climate model in China, RegCM, 
is not only used for climate simulation and diagnosis but is also 
used as supporting tools in climate prediction.

The Community Land Model (CLM) (Zeng et al. 2002), 
developed by the National Center for Atmospheric Research 
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(NCAR) in the USA and based on 2nd-generation LSMs such 
as BATS, IAP94, and NCAR-LSM, is a typical 3rd-generation 
LSM. It has ten uneven soil layers, five snowfall layers, and 
one vegetation layer. The data of land surface cover include 
soil color, soil texture, percent coverage of plant functional 
types (PFTs) per grid, as well as leaf and stem area indices. 
A CLM classifies surface vegetation into 17 PFTs. Each grid 
point can contain 17 different PFTs, which are treated as the 
percentage of each PFT area to the grid area. This includes 
physical, chemical, hydrological, and biochemical processes 
such as biogeophysical processes, the hydrologic cycle, 
biogeochemistry, and dynamic vegetation related to climate 
change (Hoffman et al. 2004). This model has developed rapidly 
across several versions including CLM2.0, CLM3.0, CLM3.5, 
and CLM4.0. Version CLM4.5 revises the photosynthesis 
scheme, improves hydrologic process modeling, includes the 
distribution of wetlands in cold regions, and includes new 
parameterization schemes for snow cover, lake modeling, crop 
modeling, and the modeling of various city types. In addition, 
a nitrogen fixation mechanism and methane emission model in 
the soil vertical direction have been introduced into CLM4.5. 
Since the release of this LSM, CLM4.5 has been widely applied 
in the fields of ecology (Tang et al. 2015; Duarte et al. 2017; 
Bilionis et al. 2014; Chen et al. 2018; Peng et al. 2018; Brunke 
et al. 2016; Wu and Dickinson 2004), climate change (Umair 
et al. 2018; Lawrence et al. 2012), assessment of the role of 
greenhouse gases (Zhang et al. 2016; Zhang and Wang 1997; 
Akkermans et al. 2014), and hydrology (Fu et al. 2016; Liu et al. 
2017; Hack et al. 2006). As a result, CLM4.5 is considered one 
of the most well-developed and potentially useful LSMs in the 
world (Lai et al. 2014). Versions of the CLM model group have 
also been used in studies on the simulation and assessment of 
LST in mainland China (Meng et al. 2017a; Wang et al. 2015; 
Wang et al. 2015). Sun et al. (2017) drove CLM3.5 based on the 
China Land Data Assimilation System with atmospheric driving 
data, using LST from ground observation stations to assess the 
quality of the model. The results show that the bias and root-
mean-square error (RMSE) of simulated LST vs. observed data 
varied seasonally. Further, the bias and RMSE of simulated 
LST vs. observed data were smaller in eastern China than in 
its west. Meng et al. (2017b) found that the CLM3.5 model had 
the greatest difference between simulated and observed LSTs 
in Xinjiang, with a maximum difference of ~5 K in July each 
year. Guo et al. (2017) used NCEP atmospheric forcing data 
to drive CLM4.5 for simulating changes in soil temperature 
on the Tibetan Plateau over the past century. The simulation 
results were validated by observational data of soil temperature 
from meteorological stations and field borehole monitoring 
stations. The results show that CLM4.5 could reasonably 
simulate observed changes in soil temperature on the plateau. 
Chen et al. (2010) used CLM3.0 and global atmospheric near-
surface forcing data from Princeton University to conduct offline 
simulation experiments on soil temperature in China from 1948 

to 2001, further assessing the ability of CLM3.0 to simulate soil 
temperature at different levels. The results show that the model 
could simulate the spatial distribution of multiyear average 
soil temperature in China. The simulated soil temperature was 
generally lower than observed data except for in some areas. 
The model could well-reflect the interannual variation of soil 
temperature in China. Moreover, the model could basically 
grasp the trend of temperature changes, but the simulated trend 
was weaker than the observed data. Xie et al. (2017) used 
observation data from Nagqu Station of the Plateau Climate 
and Environment of the Chinese Academy of Sciences to 
assess the performance of model simulation for surface energy 
exchange in the underlying surface of an alpine meadow on 
the Tibetan Plateau. The results showed that CLM4.5 could 
effectively simulate seasonal variations and diurnal cycles of 
surface longwave, reflected radiation, and net radiation as well 
as sensible and latent heat fluxes; CLM4.5 could also simulate 
surface soil heat fluxes during non-freezing periods in spring, 
summer, and autumn on the Tibetan Plateau. However, the 
simulation of LST during the winter freezing period gave values 
smaller than that of observed data.

The vast Chinese mainland features land surface charac-
teristics that vary substantially by region. Due to the lack 
of long-series national site data, most studies involving 
evaluations only employed a few LSM stations with short 
observation periods. In addition, land–atmosphere interac-
tion feedback has a major impact on the calculation of LSTs. 
Most assessments considered only the forcing effect of the 
atmosphere on the land surface, neglecting the transport of 
energy and mass from that surface. Therefore, it is difficult 
to fully evaluate the performance of CLM4.5 for a real cli-
mate simulation. All of these factors will limit the develop-
ment of CLM4.5 for mainland China. The regional climate 
model RegCM was fully coupled with CLM4.5. Therefore, 
it is of great significance to promote the development of 
RegCM by carrying out the LST simulation assessment and 
improvment of CLM45 in mainland China. So we designed 
a long-term (31 years) numerical simulation test of LST for 
mainland China based on long-term observational LST data 
by using the model RegCM-CLM4.5. Finally, the experi-
ment of improving a soil thermal conductivity model was 
carried out. The results will promote the development and 
use of the coupled regional model in mainland China.

2 � Materials and methods

2.1 � Data

Land surface temperature is one of the main factors of sur-
face meteorological observation in China. Observed LST 
data in mainland China were collected from the daily cli-
mate dataset of 809 Chinese ground international exchange 
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stations compiled by the China Meteorological Adminis-
tration (Fig. 1). The dataset contains daily data of mete-
orological conditions from China reference and basic mete-
orological stations recorded since January 1951. To ensure 
data reliability, we used daily observed LST data from the 
30-year study period (January 1, 1988 to December 31, 
2017).

ERA5(Hersbach et al., 2020), the latest generation of 
reanalysis data set from ECMWF (European Centre for 
Medium-Range Weather Forecasts), was used to analyze the 
causes of simulation biases. Adopting the advanced four-
dimensional assimilation system, the data could absorb high-
altitude and near-surface observations as much as possible. 
Compared with the fourth-generation reanalysis data set 
ERA-Interim, ERA5 has been greatly improved with respect 
to spatial-temporal resolution, dynamic framework, data 
utilization, number of variables, and deviation processing 
method (Table 1). It is currently one of the most advanced 
reanalysis data in the world and has become a powerful tool 
for weather forecast and climate change studies (Qing et al. 
2021; E M et al. 2021; Li et al. 2020; Xi et al. 2021). He 
(2021) evaluated the surface radiation data of ERA5, and the 
results show that it is very close to the observation of China, 
which provides a long series of substitute data for studying 
the change of surface energy balance.

2.2 � Methods

(1)	 Soil thermal conductivity (STC)

The calculation model of soil temperature used in 
CLM4.5 is as follows:

where T is the soil temperature (K), z is downward in the 
vertical direction (m), c is the snow/soil heat capacity (J 
m−3 K−1), t is time (s), and λ is the STC (W m−1 K−1). The 
results show that λ strongly influenced the calculation of soil 
temperature. In CLM4.5, the model proposed by Johansen 
(1975) was used for the calculation of λ (JH for short, same 
as below). This is a semi-theoretical and semi-empirical 
model for calculating λ. Its expression is

where λsat and λdry are the thermal conductivity for saturated 
and dry soil, respectively, and Ke is the Kersten function, 
whose expression in this model is
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)

∙ Ke + �dry

Fig. 1   The simulation area 
and the four natural regions of 
mainland China. The point is 
the location of 809 observation 
stations

Table 1   Comparison of ERA-
Interim and ERA5 data

Parameters ERA-Interim ERA5

Time span 1979–present 1950–present
Spatial resolution 79 km, 60 layers

0.1 hPa in top layer
31 km, 137 layers
0.01 hPa in top layer

Temporal resolution 6h 1h
Assimilation system IFS cycle 31r2 4D-Var IFS Cycle 41r2 4D-Var
Number of variables About 100 More than 240
Uncertainty estimation None Assimilation of 10 members
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where sr is the saturation of soil. Results have shown that 
Ke in the model is logarithmic, and the calculated λ was 
clearly smaller than the measured value (Su et al. 2016). To 
overcome this problem, Côté and Konrad (2005) proposed 
a new expression of Ke:

where k is a parameter related to soil texture (CK for short, 
same as below). To make the Johansen model more suitable 
for low soil moisture content, Lu and Ren (2006) proposed 
a new scheme:

where α is a parameter related to soil texture (LR for short, 
same as below).

In the original CLM4.5, Ke parameterization of JH was 
used. In this study, two new Ke parameterizations of CK 
and LR were added in CLM4.5. Then, three sets of 30-year 
simulation were conducted, and the result was evaluated.

(2)	 LST change equation

To analyze the major factors influencing LST, the fol-
lowing LST change Eq. (6) was derived from the surface 
radiation balance equation (Chen and Paul, 2018):

In Eq. (6), Ts is the LST, SWin is incoming shortwave 
radiation, LWin is incoming longwave radiation, σ is the 
Stephan–Boltzmann constant (with a value of 5.67 × 10−8W 
m−2 K−4), H is the sensible heat flux, LE is the latent heat 
flux, and G is the ground heat flux. On the left side of the 
equation, ∆Ts is the LST change. SWin∆αs is the reflected 
solar radiation change; this equation indicates that when the 
surface albedo increases, the surface temperature decreases. 
(1 − αs)∆SWin represents the variation in incident shortwave 
radiation, and the equation shows that when the incident 
shortwave radiation increases, the surface temperature 
also increases. ∆LWin represents the variation in incident 
longwave radiation related to the change of the atmospheric 
moisture and cloud, which is proportional to the change in 
LST. ∆LE is the change in latent heat, ∆H is the change in 
sensible heat, and ∆G is the change in surface heat flux. 
These three terms are inversely proportional to the change 
in LST. Surface emissivity is ignored in Eq. (6). In this 
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paper, the average data of annual, spring, summer, autumn, 
and winter of the model output were used to calculate the 
various factors of Eq. (6), and the principal factors causing 
the temperature changes were analyzed.

Equation (6) provides an effective way to diagnose 
the causes of simulation errors. However, physical 
variables such as albedo and surface radiation involved 
in Eq. (6) are all unconventional observation data, and 
there is no long series of site observation data in China 
at present. Therefore, the bilinear interpolation method 
was used in this paper to interpolate the LST from ERA5 
reanalysis data to the stations (Fig. 1), and then evaluate 
its effectiveness according to real LST. Then, the data such 
as surface albedo and surface incoming shortwave and 
longwave radiations in ERA5 reanalysis data were used 
as the real field, and the corresponding output variables 
from numerical test were used to calculate the contribution 
of each item to the LST simulation biases in Eq. (6), so 
as to find out the main factors causing the LST simulation 
biases.

(3)	 Major assessment indicators

BIAS, RMSE, and Pearson correlation coefficient (r) 
were used as major assessment indicators. Their defini-
tions are as follow.

In Eqs. (7)–(9), i represents time. yi is a simulated 
element (such as precipitation and temperature), and xi 
is the corresponding observed element. The BIAS can be 
used to test whether simulated values from the model are 
large or small as well as the corresponding magnitude. The 
RMSE reflects the deviation of simulated from observed 
data. The smaller the value, the greater the simulation 
accuracy and the better the performance of the model. 
And the Pearson correlation coefficient (r) is a statistical 
quantity reflecting the linear correlation of two variables 
x and y. The larger the absolute value, the stronger the 
correlation. It was used to evaluate the temporal variation 
of the simulation.
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1
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2.3 � Design of the numerical experiment

The simulation area covered 15.76–57.36°N and 
66.25–141.13°E (Fig.  1). This was divided into a grid 
with 160 grid points in latitude and 145 in longitude. The 
horizontal grid size was 30 km, and the vertical direction 
was divided into 23 layers. The study used ERA-Interim 
reanalysis data (Dee et al., 2011) acquired from January 
1987 to December 2017 for the lateral boundary. The data 
had a horizontal resolution of 0.75° × 0.75° (~80 km), 60 
layers in the vertical, and a temporal resolution of 6 h. Sea 
surface temperature data were monthly average Optimum 
Interpolation Sea Surface Temperature (OISST) data of 
NOAA from the same period. Model parameters are listed in 
Table 2. The simulated LST was interpolated to the stations 
in Fig. 1 based on the bilinear interpolation method, and 
each evaluation indicator was calculated according to Eqs. 
(7)–(9).

Mainland China was divided into four regions as shown 
in Fig. 1 (Huang 1989). (1) The northern region is the 
northern part of China with a monsoon climate. (2) The 
southern region is south of the Qinling-Huaihe River and 
east of the Tibetan Plateau. It faces southeast to the East 
China and South China seas including the middle and 
lower reaches of the Yangtze River, the southern coast and 
southwest provinces (cities and autonomous regions) of 
China, and is the southern part of China with a monsoon 
climate. (3) The northwestern region is generally west of 
the Great Khingan Range and north of the Great Wall and 
the Kunlun-Altun Mountain Range. It embraces the non-
monsoon climate portions of Inner Mongolia, Xinjiang, 
Ningxia, and northwestern Gansu. (4) The Tibetan Plateau 
forms the fourth region.

3 � Results

3.1 � Simulation of CLM4.5 for LST

3.1.1 � Bias

The analysis of annual average LST in mainland China 
showed that LST decreased gradually from the southeast-
ern coast to interior northwest. The annual average LST of 

the southeastern coast was > 20 °C and that between the 
Yangtze and Yellow rivers was about 15 °C. That of most 
other areas in North China was 5–10 °C. The LST of the 
Tibetan Plateau was the coolest, with most areas < 5 °C. The 
LST from northern Xinjiang to the southern Xinjiang Basin 
increased from 10 to 15 °C (Fig. 2a). The CLM4.5 showed 
favorable simulation performance in the spatial variation of 
annual average LST in China. The decrease in LST from the 
southeast coast to interior northwest was accurately simu-
lated (Fig. 2b). However, the simulated values were clearly 
smaller than observed values, with most regions having a 
cold bias > 2 °C. Specifically, a cold bias of ~2–4 °C was 
observed east of 105°E, 6–8 °C west of 105°E, and 4–6 °C 
in other regions (Fig. 2c).

The simulations of average LST in the four seasons were 
very similar to the observed temperatures, with a decreasing 
trend from southeast to northwest. The CLM4.5 showed 
good simulation performance for this spatial distribution, 
but the bias varied greatly seasonally (data not shown). In 
spring, the bias was smallest in southern China. There, a 
cold bias of 2–4 °C was most common, with some areas 
having a cold bias of 0–2 °C. In spring, there was a cold 
bias of 6–8 °C in most of northern and northwestern China 
and on the Tibetan Plateau (Fig. 3a). In summer, except 
for some parts of southwestern and southern China where 
there was a cold bias of 4–6 °C; the bias in other regions 
was large (> 6 °C). The Tibetan Plateau had a cold bias of 
> 8 °C (Fig. 3b). In autumn, there was a cold bias of 2–4 
°C east of 105°E, 6–8 °C west of that meridian, and 4–6 
°C in North China and some of the plateau (Fig. 3c). In 
winter, the simulated bias of all regions in China decreased 
considerably. An exception was observed for the simulated 
bias (~6 °C) in southwestern China, in that in most regions 
it was < 4 °C (Fig. 3d).

Analyzing the climatic background, summer and autumn 
are the principal rainy seasons in China because they are 
strongly affected by the East Asian summer monsoon. 
Precipitation in most of mainland China was heavy during 
this season, which increased soil moisture. Winter and 
spring were controlled by a single westerly circulation 
system. Precipitation was weak ,and soil moisture decreased 
in most of mainland China. This indicates that the bias was 
closely related to soil moisture (Zhao et al.2021).

Table 2   Main simulation 
parameters

Dynamic structure Test scheme

Dynamic frame Mesoscale model (MM5) non-static frame
Large-scale precipitation scheme SUBEX (Subgrid explicit water vapor scheme)
Radiation transmission scheme National Center for Atmospheric Research CCM3
Sea surface flux scheme Zeng
Pressure gradient scheme Hydrostatic recursion
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3.1.2 � RMSE

The annual RMSE analysis showed that the RMSE in main-
land China increased gradually from southeast to northwest. 
The RMSE of most of the southern regions was 1–3 °C, 
with that of most of the northern regions at 5–7 °C. That 
of the eastern part of the northwestern region was 7–9 °C, 
and that of the southern Xinjiang Basin was 9–11 °C. That 
of the Tibetan Plateau was 3–11 °C (Fig. 4a). In spring, 

the RMSE in China was relatively large. There was again a 
decrease from southeast to northwest. The RMSE in most 
of the southern regions was < 5 °C, whereas that of other 
regions was 9–11 °C (Fig. 4b). Summer and autumn had the 
minimum RMSE among the four seasons. Except for the 
plateau region where the RMSE was 9–11 °C, other regions 
of China had an RMSE of 3–5 °C (Fig. 4c, d). The RMSE 
distribution in winter was similar to that of the entire year 
(Fig. 4e).

Fig. 2   The observed and simu-
lated land surface temperatures 
and the bias: (a) observations; 
(b) simulation and bias. (c) bias 
unit: °C

Fig. 3   LSTs bias for (a) spring, 
(b) summer, (c) autumn, and (d) 
winter; unit: °C
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The sparsity of stations on the Qinghai-Tibet Plateau 
may lead to large false errors in the region, but it cannot 
change the fact that stations are sparse in the short term. 
Earlier evaluation results based on observations from over 
2000 stations show that the surface temperature simulation 
error of the Qinghai-Tibet Plateau is larger than that of other 
regions in China. Therefore, the large deviation of surface 
temperature simulation on Qinghai-Tibet Plateau may be 
caused by the model itself, such as the scheme of soil ther-
mal conductivity.

3.1.3 � Correlation

Correlation coefficients between simulated and observed 
LST at all stations in China were between 0.75 and 0.9 
(reaching significance level of a=0.001). The largest cor-
relation coefficient was observed in summer, between 0.70 
and 0.85 (reaching significance level of a=0.001). The next 
largest correlation coefficient was in autumn (0.5–0.75, 
reaching significance level of a=0.001). The results in 
spring were similar to those in autumn, and the maximum 
correlation coefficient was 0.80 (reaching significance level 
of a=0.001). The coefficient was between 0.35 and 0.65 in 
winter (reaching significance level of a=0.05) (Fig. 5).

4 � Mechanism diagnosis of deviation

Compared with Fig. 2c, the annual mean LST bias of ERA5 
in northern China is significantly reduced, and the value 
is generally less than 4 °C, and most areas are below 2 °C. 
The regional bias of eastern China and the plateau also 
decreased significantly (Fig. 6a). Compared with Fig. 3a–d, 
the LST bias of the four seasons in ERA5 is similar to the 
annual average, and the overall bias is small. The regional 
deviation in northern China is the most significant, and most 
of the regional deviations in the Qinghai-Tibet Plateau are 

Fig. 4   Root mean square error 
in (a) all year, (b) spring, (c) 
summer, (d) autumn, and (e) 
winter. Unit: °C

Fig. 5   Correlation between observed and simulated LST. The dash 
line shows when the correlation became significant at α = 0.01
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also significantly reduced. Figure 7 showed the correla-
tion between ERA5 and the real mean LST in each region. 
ERA5 was quite close to the real LST in northern China, 
northwestern China, southern China, and the Qinghai-Tibet 
Plateau, and the biases were within 3 °C (Fig. 7), which was 
much lower than the biases of CLM4.5 (which was about 5 
°C). Most of the correlation coefficients in each region were 
above 0.84, which was much higher than the critical value 
(r=0.56) at 0.001 significance level.

Based on the above evaluation, this paper study the 
causes of CLM4.5 simulation biases by calculating the 
percentage of biases of surface incoming short-wave and 
long-wave radiations, sensible heat and latent heat between 
ERA5 and simulated value from CLM (Fig. 8). The results 
showed that compared with ERA5, the annual mean surface 
albedo simulated by CLM was about 20% higher, and 
the value was 30% higher in autumn and winter. Surface 
incoming shortwave radiation was 20% higher, and it was 
close to 80% in winter. However, the surface incoming long-
wave radiation was about 20% lower, and the largest bias 
was showed in autumn. The sensible heat was 20% lower 
in the north of mainland China and 40% higher in the north 
of mainland China. The value was higher over the whole 
region, and the largest bias was approximate 80% in winter. 
Latent heat showed overestimation, which was 40% higher 
in the north of Mainland China, and was overestimated by 
2 times in winter.

Biases of LST compared with ERA5 caused by vari-
ous factors in Eq. (6) simulated by CLM were calculated 
(Fig. 9). The results show that the surface incoming short-
wave radiation simulated by CLM4.5 was overestimated, 
which made the average LST of the regions 5 °C higher 
than that of ERA5. This was more significant in the southern 
region, which was about 7 °C higher on average, and showed 
the greatest effect in all regions in spring and winter. Sur-
face albedo, long-wave radiation, sensible, and latent heat 
all contributed negatively to the increase of LST. Due to the 
small incoming long-wave radiation term, the LST in each 
region was −5 °C lower than ERA5, and the largest under-
estimation was in the southern region. The difference of LST 
caused by sensible heat and latent heat was close to each 
other, which was within 5 °C. The above analysis showed 
that the incoming long-wave radiation, sensible heat, and 
latent heat simulated by CLM4.5 were smaller than ERA5, 
which was the reason for the low simulation of LST.

5 � Improvement of LST simulation

The above research revealed the factors and their contribu-
tion values of the cold deviation caused by the atmospheric 
model coupled with CLM4.5, which provides a meaning-
ful reference for the improvement of the regional land-
atmosphere coupled climate model. On the other hand, the 

Fig. 6   ERA5 LST bias for (a) 
annual, (b) spring, (c) summer, 
(d) autumn, and (e) winter; 
unit: °C 
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physical model for calculating the surface temperature was 
the root cause of the deviation. Perhaps the model of the 
thermal conductivity in CLM4.5 is the main reason for this 
bias. To study the effects of STC (λ) on the simulation of 
LST, two long-term (31-year) simulation tests were con-
ducted for two schemes. The results shows that the LST 
in most of northern China simulated by the Côté-Konrad 
scheme was higher by 0.5–1.0 °C when compared with 
that of the Johansen scheme, whereas that temperature in 
most other regions was reduced by 0–0.5 °C (Fig. 10a, 
b). In the Lu-Ren scheme, the LST increased by 0.5–1.0 
°C over that of Johansen scheme in most regions except 
for on the Tibetan Plateau and in the regions of Guang-
dong and Guangxi, where that temperature was reduced by 
0–0.5 °C. The LST in most of northern China increased by 
1–1.5 °C, with the increase in some areas reaching 3 °C 
(Fig. 10c, d). According to the bias of the three schemes, 
little difference was observed between the Johansen and 
the Côté-Konrad schemes. Meanwhile, the Lu-Ren scheme 
can significantly reduce the cold bias in most regions. 
Therefore, it is more suitable for the simulation of LSTs 
on the Chinese mainland.

In order to further evaluate the improvement effect of 
LR scheme on model performance, four LST series JH, 

CK, LR, and ERA5 were compared with the observa-
tional LST in each region. The results (Fig. 11) showed 
that ERA5 and LR had the smallest bias. The biases were 
−2.5 °C (ERA5) and −3.0 °C (LR) in the northern region. 
JH showed the largest bias, with a value of −3.5 °C. The 
bias of each product was larger in summer and autumn, 
but the bias of ERA5 and LR was still the smallest. The 
bias characteristics were similar between the northwest-
ern region and the southern region; the bias of ERA5 and 
LR was the smallest among the four series. LST change 
showed (Fig. 12) that LST in each region increased signifi-
cantly in the past 30 years. The four series can reflect this 
rising trend, but LR was the closest to the observational, 
with correlation coefficient r=0.89, reaching significance 
level of a=0.001. Compared with other regions, the simu-
lation errors of annual average LST in the Qinghai-Tibet 
Plateau were larger by all series, and the LR showed the 
smallest bias and the most significant correlation (corre-
lation coefficient r=0.72, reaching significance level of 
a=0.001). The Tibetan Plateau is a special region com-
pared with other regions. The glacier has a large area, and 
much areas are covered with snow in winter and spring. 
CLM4.5 calculated snow temperature using the formula 
convection model, but the calculation scheme of snow 

Fig. 7   Comparison between 
ERA5 and real average surface 
temperature in each region, a, 
north, b, northwest, c, South, d, 
Qinghai Tibet Plateau



1316	 Y. Ren et al.

1 3

Fig. 8   Deviation rate of surface 
energy balance factors of CLM 
relative to ERA5, A. albedo, 
B. surface net incident short 
wave radiation, C. surface net 
incident long wave radiation, D. 
sensible heat, E. latent heat

Fig. 9   LST changes caused by 
biases from albedo (a), surface 
shortwave radiation (sr), surface 
longwave radiation (lr), sensible 
heat (sh), and latent heat (le) in 
different regions of mainland 
China (a Northern China, b 
northwestern China, c Southern 
China, d Qinghai-Tibet Plateau)
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thermal conductivity was different from John‘s scheme, 
which should be in the soil, so Jodan (1991) model was 
adopted. Xie (2017) evaluated the simulation performance 
of CLM4.5 on the underlying surface of alpine meadow 
on the Tibetan Plateau (hereinafter referred to as the 
Plateau) by using a whole year‘s observation data from 
Nagqu Alpine Climate and Environment Observation and 
Research Station of the Chinese Academy of Sciences. The 
results showed that CLM4.5 can well simulate the seasonal 
variation and diurnal cycle characteristics of surface long 

wave, reflected radiation, net radiation, sensible and latent 
heat flux, and surface soil heat flux in spring, summer, and 
non-freezing period in autumn. However, the simulation 
of surface temperature and sensible heat flux is lower due 
to the high surface albedo caused by snow cover. There-
fore, parameterization scheme of plateau snow cover and 
albedo parameterization schemes related to snow cover 
need further improvement.

The Theil-Sen (Lavagnini et al. 2011) method was used 
to analyze the trend of annual average LST in China over 

Fig. 10   Biases between obser-
vations and parameterized land 
surface temperatures. (a) Côté-
Konrad scheme versus observa-
tions; (b) Côté-Konrad scheme 
versus Johansen scheme; (c) 
the Lu-Ren scheme versus 
observations, and (d) Lu-Ren 
scheme versus Johansen scheme 
(Unit:°C)

Fig. 11   Bias in (a) all areas, 
(b) northwest China, (c) north 
China, (d) south China, and 
(e) on the Tibetan Plateau; 
see Fig. 2 for a map of these 
regions. Unit: °C
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Fig. 12   Bias in (a) all areas, 
(b) northwest China, (c) north 
China, (d) south China, and 
(e) on the Tibetan Plateau; 
see Fig. 2 for a map of these 
regions. Unit: °C

Table 3   Trend in five LSTs of 
mainland China in the last 30 
years (unit: °C/decade)

Period Product All areas Northwestern Northern Southern Plateau

Annual OB 0.58 0.71 0.33 0.50 0.77
LR 0.38 0.40 0.36 0.19 0.01
ERA5 0.31 0.53 0.30 0.25 0.06
JH 0.30 0.50 0.37 0.27 0.00
CK 0.23 0.40 0.36 0.19 -0.01

MAM OB 0.77 0.8 0.50 0.50 1.33
LR 0.18 0.29 0.38 0.20 -0.02
ERA5 0.31 0.54 0.42 0.13 0.07
JH 0.38 0.52 0.43 0.30 0.10
CK 0.24 0.38 0.38 0.20 -0.02

JJA OB 0.94 1.00 0.74 0.71 1.33
LR 0.24 0.53 0.45 0.17 -0.16
ERA5 0.38 0.74 0.60 0.19 -0.10
JH 0.22 0.47 0.50 0.17 0.15
CK 0.27 0.53 0.45 0.18 -0.11

SON OB 0.37 0.62 0.16 0.42 0.29
LR 0.17 0.37 0.25 0.25 -0.02
ERA5 0.25 0.44 0.20 0.33 0.14
JH 0.30 0.50 0.28 0.35 0.06
CK 0.22 0.33 0.27 0.25 -0.01

DJF OB 0.67 0.68 0.45 0.67 0.88
LR 0.28 0.34 0.38 0.29 0.24
ERA5 0.47 0.54 0.23 0.45 0.62
JH 0.26 0.23 0.43 0.29 0.21
CK 0.32 0.33 0.38 0.31 0.30
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the period of 1988–2017 (Table 3). The results show that 
this temperature increased at a rate of 0.58 °C/decade over 
that period. The Tibetan Plateau and northwestern regions 
of China had the maximum increases (0.77 and 0.71 °C/
decade respectively), while the northern region had less 
change (an increase of 0.33 °C/decade). The LST simu-
lated by CLM4.5 also increased, but the simulated increase 
was less than that of the observational data. In spring, the 
rate of increase of LST in China was 0.77 °C/decade, with 
that in the Tibetan Plateau region having the maximum 
increase (1.33 °C/decade), and other regions showing small 
increases. The CLM successfully simulated the increasing 
trend of LST in all regions during spring, but the simulated 

increase was smaller than that of the observational data. 
Notably, the actual rapid increase temperature in the Plateau 
region was not reproduced by the simulation. In summer, 
the LST in all of mainland China increased the fastest at 
0.94 °C/decade. However, the value simulated by CLM was 
0.72 °C/decade smaller than observed. The temperature on 
the Plateau also increased sharply, at 1.33 °C/decade, with 
the simulated value 1.48 °C/decade smaller than what was 
observed. Similar to spring and summer, the trend of LST 
increase in autumn and winter was accurately simulated, but 
the simulated increase was smaller than what was observed. 
A comparison of the simulated trend of the four LST series 
(Table 3) shows that their variations were all smaller than 

Fig. 13   Taylor diagrams of 
four LST series for all areas of 
China, northwest China, north 
China, south China, and on the 
Tibetan Plateau. (a) all year, (b) 
spring, (c) summer, (d) autumn, 
and (e) winter
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that based on observed data. The simulated LST trend of 
ERA5 and LR was much closer to the actual trend.

A Taylor (2001) diagram provides a visual framework for 
comparing a set of variables from one or more test datasets 
to one or more reference datasets. In the present work, the 
diagram was used to comprehensively assess the perfor-
mance of the three types of simulations of LST in mainland 
China (Fig. 13). The results show that ERA5 and LR were 
better than the other two types of simulations (blue solid 
circles closer to the REF).

From all we can see that the bias in summer and autumn 
was greater than that in other seasons, because the heavy 
rainfall occurred in these two seasons, the soil moisture was 
higher than that in other periods. Meanwhile, the change 
in soil moisture had an important effect on the simulation 
of LST, especially in arid and semiarid areas of northern 
China, where evaporation at the soil surface is intense. How-
ever, the isothermal model used in CLM4.5 did not consider 
the effects of a change in soil moisture on soil temperature, 
perhaps resulting in a large simulated bias in northern and 
northwestern regions of China that experience low soil 
moisture and large variations in soil moisture. Therefore, 
developing a new λ calculation scheme and considering the 
role of water vapor in the calculation of soil temperature can 
provide effective means for improving the performance of 
the model in simulating the LSTs of mainland China.

6 � Conclusions

We ran the CLM4.5 in a land–atmosphere coupling 
approach. The longest and latest observed LST dataset 
for mainland China was used for the first time to compre-
hensively assess LSTs in China as simulated by CLM4.5. 
The results show that CLM4.5 produced systematic cold 
deviations in the simulation of LSTs in mainland China. 
The RMSE in mainland China increased gradually from 
southeast to northwest, with the smallest value in the south 
(1–3 °C) and largest in the southern Xinjiang Basin (9–11 
°C). Summer and autumn had the smallest RMSEs for each 
region in a year. Correlation coefficients between simulated 
and observational data for all stations in China were between 
0.75 and 0.9 (P < 0.001). The strongest correlation was 
observed in summer, with the correlation coefficient from 
0.70 to 0.85 (P < 0.001). In winter, that coefficient was the 
smallest, 0.35 to 0.65 (P < 0.05). As a result, the observed 
annual and seasonal average LSTs in mainland China had 
strong linear relationships with those simulated by CLM4.5. 
In the past 30 years, the LST of mainland China increased at 
a rate of 0.058 °C/decade, with that of the Tibetan Plateau 
and northwestern regions increasing fastest (0.077 and 0.071 
°C/decade, respectively) and that in the northern region 
changing the least (0.033°C/decade). The LST simulated 

by CLM4.5 also increased, but that increase was smaller 
than that of observational data. Diagnose by using ERA5 
reanalysis data and LST variation equation showed that the 
negative bias caused by the incoming long-wave radiation, 
sensible heat, and latent heat simulated were the main factors 
causing the low LST simulation.

The STC sensitivity numerical tests show that STC had a 
major influence on the reduction of simulated LST. However, 
the simulated cold bias from the Lu-Ren scheme remained 
large, and an increasing trend of the bias was observed for 
the Tibetan Plateau. In addition, the bias in summer and 
autumn was greater than that in other seasons, which shows 
that a change in soil moisture had an important effect on 
the simulation of LST, especially in arid and semiarid areas 
of northern China where evaporation at the soil surface is 
intense. However, the isothermal model used in CLM4.5 did 
not consider the effect of a change in soil moisture on soil 
temperature, resulting in a large simulated bias in northern 
and northwestern regions with low soil moisture and a large 
variation in soil moisture. Therefore, developing a new λ cal-
culation scheme and considering the role of water vapor in 
the calculation model of soil temperature are effective means 
for improving the performance of the model in simulating 
LST in mainland China.
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