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Abstract
In the tropical-humid region, wet farming crops (e.g., paddy) are a common agricultural commodity with a high-water require-
ment. Usually planted in the Asia monsoon region with a high precipitation rate, these crops are divided into the wet cropping 
season and the dry cropping season. During the dry cropping season, they are particularly vulnerable to agricultural drought 
caused by the decrease in precipitation. This study used Indonesia as a case study and is aimed at assessing the agricultural 
drought risk on a wet farming crop during the dry cropping season by examining the correlation between the drought hazard 
and its risk. For hazard assessment, Standardized Precipitation Index (SPI) was used to assess the agricultural drought, by 
using the Global Satellite Mapping of Precipitation (GSMaP) which has 0.1° × 0.1° spatial resolution. The result of correla-
tion analysis between the SPI and drought-affected areas on a city scale showed that SPI-3 in August is the most suitable 
timescale to assess the agricultural drought in Indonesia. The agricultural drought risk assessment was conducted on the 
grid scale, where the crop yield estimation model was developed with the help of Normalized Difference Vegetation Index 
(NDVI). Based on the correlation analysis between SPI-3 and the detrended crop yield as drought risk indicators, the higher 
yield loss was found in the area above the threshold value (r-value ≤ 0.6) indicating that those areas were more vulnerable 
to drought, while the area below the threshold value has lower crop yield loss even in the area that was hit by the most severe 
drought, because the existing irrigation system was able to resist the drought’s impact on crop yield loss.

1 Introduction

The Intergovernmental Panel on Climate Change (IPCC) 
reported 2018 that the global temperature is expected to 
increase by 1.5° C by 2030. This warming trend, as noted 
by the National Center for Atmospheric Research (NCAR), 
will result in unevenly distributed changes in evaporation 
and precipitation rate, potentially leading to more frequent 
and severe floods in some areas and droughts in others (Leh-
ner et al. 2006; Trenberth 2005; Hirabayashi et al. 2008). 
Drought is one of the extreme climate events, and refer-
ring to Wilhite and Glantz (1985), there are four types of 
droughts, starting with meteorological droughts or when an 

area experiences a water deficiency compared to its nor-
mal condition. Over time, this lack of precipitation could 
lead to an agricultural drought or when there is depletion 
of soil moisture (Legesse 2010) that could cause impaired 
growth and crop yield reduction. If the deficiency of pre-
cipitation is still going, it can cause a low water supply on 
the surface (e.g., river, lake) and groundwater. And for the 
socioeconomic, drought occurs when there is a decrease in 
supply and an increase in demand for water that can affect 
the social, economic, and environmental conditions.

According to the Food and Agriculture Association 
(FAO), drought affected agriculture areas the most, absorb-
ing around 80% of direct impacts with multiple effects on 
agricultural production, food security, and rural livelihoods, 
especially in the developing countries. For the drought 
assessment study, a variety of drought indexes have been 
developed based on precipitation or well known as the mete-
orological drought index. One of such indexes is the Stand-
ardized Precipitation Index (SPI), which was founded by 
McKee et al,  1993, and can be used to assess drought using 
long-term precipitation data (minimum 20–30 years). The 
SPI uses probability density functions and normalization 
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to assess the wet and dry conditions in a given region. A 
description of the calculation of SPI can be found in the 
works of McKee et al. (1993), Angelidis et al. (2012), and 
many other literatures. Related with the determination of the 
probability density function (refer to the original document 
by McKee et al. (1993)), the two-parameter gamma distribu-
tion is utilized to fit the cumulative precipitation data while 
there is still ongoing debate within the literature about which 
distribution function is more suitable to use (Pieper et al. 
2020). Beside a simple gamma distribution which was used 
directly by many researchers on their drought assessment 
using SPI (Karavitis et al. 2011; Shah et al. 2015; Pramudya 
and Onishi 2018; Hendrawan et al. 2022), the Pearson type 
III distribution which was suggested by Guttman (1999) as 
the more appropriate to describe observed precipitation is 
also often used directly in the calculation algorithm for the 
SPI (Blain. 2011; Naresh et al. 2012; Ribeiro and Pires 2016; 
Ionita et al. 2021). Additionally, researchers have studied the 
influence of different probability distributions on the results 
of the SPI, as well as identifying the most suitable prob-
ability density function for their particular study (Angelidis 
et al. 2012; Stagge et al. 2015; Wang et al. 2019; Pieper et al. 
2020; Shiau 2020; Ying and Li 2020; Moccia et al. 2022).

In this research, the category of SPI condition is referred 
to the threshold set by the World Meteorological Organiza-
tion (WMO) user guidelines, as shown in Table 1. Basically, 
the dry condition is identified when the SPI value is less than 
or equal to negative one (SPI ≤ − 1). One advantage of the 
SPI is its versatility in terms of timescales, as it can be cal-
culated for various periods of interest (ranging from 1 month 
to multiple months) according to the user’s interest (WMO 
2012) and using any month as a reference (from January to 
December). For example, the SPI-3 index is based on the 
cumulative precipitation over a 3-month period, with the 
reference month determining the specific months that are 
used in the calculation. If the reference month is August, the 
SPI-3 index would be based on the cumulative precipitation 
during June, July, and August.

Although the SPI was originally recommended to assess 
meteorological drought, numerous research studies have also 
used it to assess agricultural drought. For example, Geng et al. 
(2016) assessed the agricultural drought hazard on a global 

scale from 1980 to 2008. Umran in 1999 found that in Tur-
key, SPI-3 is sensitive to soil moisture, implying that there 
is a reduction in soil moisture that affects crop growth. But 
even though many studies have been conducted based on SPI, 
there is no general agreement reached to determine the most 
appropriate timescale for agricultural drought assessment. For 
example, in 2021, Kumar et al. found that SPI-1 has a strong 
correlation with the percentage of departure, a simple drought 
index that defined a percentage of precipitation deviation from 
normal condition. Additionally, in 2003, Ji and Peters stated 
that SPI-3 has a good correlation with the Normalized Differ-
ence Vegetation Index (NDVI), one of the vegetation indices 
in the U.S. Great Plains. Dutta et al. 2013, said that SPI-3 is 
a good indicator of anomalies for grain yields in the arid and 
semi-arid regions in India. Meanwhile Dai et al. 2020, found 
that the 4 months of SPI scale is suitable in monitoring agricul-
tural drought in the Pearl River Basin. And Iglesias and Quiroga 
2007 used SPI-12 as a climate indicator for measuring the cli-
matic risk to cereal production. But there is still less discussion 
on agricultural drought assessment on the wet farming crop.

According to FAO, the wet farming crop (e.g., paddy) is a 
common agriculture commodity in the tropical-humid region that 
needs a relatively large amount of water (450–700 mm/total grow-
ing period. This region is defined by a mean monthly temperature 
exceeding 18 °C, rainfall exceeding evapotranspiration for at least 
270 days in a year, and usually irrigated cropland (Salati and Vose 
(1983), Lugo and Brown 1992). In the tropical-humid region, wet 
farming crops have two primary planting periods: the wet plant-
ing period during the rainy season and the dry planting period 
during the dry season. The crop productivity is relatively higher 
during the dry cropping period as there is more sunlight available 
to support crop growth only if there is a sustained water supply.

In addition, to understand the risk of drought in agri-
culture, many studies also used vegetation indices obtained 
from satellite datasets. According to Xue and Su (2017), 
vegetation indices often rely on remote sensing over veg-
etation canopies to evaluate and quantify vegetation cover, 
vigor, and growth dynamics, as well as provide qualitative 
assessments. There are many kinds of vegetation indices; 
one of them is the NDVI, often used to quantify biomass 
or vegetation by measuring the difference between near-
infrared light (which vegetation strongly reflects) and red 
light (which vegetation absorbs). The values of the NDVI 
vary from − 1 that is highly likely water to + 1, which means 
dense green vegetation. Besides monitoring vegetation con-
ditions, many researchers have used NDVI for crop yield 
estimation; for example, Maselli and Rembold (2001) in 
the Mediterranean African countries used monthly global 
area coverage (GAC) NDVI, Mkhabela et al. (2005) gener-
ated corn yield estimation in Swaziland using decadal aver-
age NDVI data, Balaghi et al. (2008) used NDVI to predict 
wheat in Morocco, and Son et al. (2014) used NDVI to gen-
erate estimation for rice in South Vietnam.

Table 1  The category of SPI values

2.0+ Extremely wet

1.5 to 1.99 Very wet
1.0 to 1.49 Moderately wet
− 0.99 to 0.99 Near normal
− 1.0 to − 1.49 Moderately dry
− 1.5 to − 1.99 Severely dry
− 2 and less Extremely dry
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This study was aimed at addressing the gap in agricul-
tural drought discussions concerning wet farming crops, 
particularly in the tropical-humid region. This research was 
conducted to assess the agricultural drought on wet farm-
ing crops during the dry cropping season with objectives as 
follows: (i) to identify the most suitable SPI for agricultural 
drought assessment in the tropical-humid region and (ii) to 
examine the spatial response of the wet farming crop during 
the dry cropping season to agricultural drought on a grid 
scale. The study findings will provide insight into the effect 
of agricultural drought on wet farming crops.

2  Study location

Indonesia is a major producer of agricultural products (FAO 
2003), with 31.46% of its land being agricultural land (World 
Bank, 2016). This study was conducted in one of the provinces 
in Indonesia, West Java, which refers to its Planning Board’s 
official website and is located between 5° 50′–7° 50′ south lati-
tude and 104° 48′–108° 48′ east longitude with the mountainous 
area encompassing the middle and south area, while the lowland 
is in the north area. The province is in the tropical-humid region 
and experiences a monsoon climate with annual precipitation 
ranging from 2000 to 4000 mm. West Java has a wet season 
from October to March and a dry season from April to Septem-
ber. Figure A.1 in the Appendix shows the precipitation distribu-
tion in West Java, and during the dry season, the average pre-
cipitation is around 100–150 mm, while the lowest precipitation 
occurred in August with less than 50 mm. Maryati et al. (2018) 
reported that 50.2% of West Java’s total area (35.377,76  km2) 

is agricultural land, mainly comprising paddy fields. With the 
supportive weather condition, the farming activity is intensive, 
with double to triple crop rotations per year, and it contributes 
approximately 17.8% to the national rice stock.

Figure 1 shows the location of the agricultural area in West 
Java. The agriculture areas are very dispersed but mainly con-
centrated in the northern part. The study area is shown in green 
color, while the red color represents the agriculture area that 
was excluded from this study because it was an expansion in 
2018 located in Banjar and Pangandaran Regency. Meanwhile, 
the orange color indicated the agriculture area located in Bogor 
Regency, which is not included in this study because the prelimi-
nary analysis resulted in a low correlation between observed pre-
cipitation data and satellite-based precipitation data used in this 
research. As for the historical drought event, Surmaini and Faqih 
(2016) compared the impact of climate extreme on paddy fields 
in Indonesia from 1999 to 2015 and found that drought affected 
a larger area of paddy fields than floods. They also reported that 
during the El Niño event, the dry cropping season was affected 
by a lack of water supply, leading to an increased change of crop 
failure. D’Arrigo and Wilson (2008) found that during El Niño 
in 1997/1998, paddy production in Java alone decreased by up to 
three million tons compared to the previous year.

3  Materials and method

3.1  Study framework

The flowchart in Fig. 2 outlines the two main parts of this 
research, represented in blue and green colors. The blue 

Fig. 1  The map of agriculture 
area in West Java, Indonesia
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section focuses on temporal assessment, which begins with 
drought assessment using SPI. SPI was calculated for 60 sce-
narios from various SPI aggregation timescales (SPI-1, SPI-
3, SPI-6, SPI-9, and SPI-12) and various month references 
from January until December. Then, the correlation analysis 
was assessed between the SPI and drought-affected areas 
(Dai et al. 2020) to determine the most suitable SPI which 
has the highest correlation. The green section is dedicated 
to spatial assessment, where the dry crop yield on a grid 
scale was estimated using multiple linear regression method 
between the NDVI and subround crop yield data during the 
dry cropping season. Finally, the correlation between the 
selected SPI and detrended crop yield value is analyzed to 
assess the spatial response of the wet farming crop during 
the dry cropping season to agricultural drought.

3.2  Materials

3.2.1  Precipitation data

The precipitation data were obtained from the Global Sat-
ellite Mapping of Precipitation (GSMaP), a near real-time 
rainfall data provided by the Japan Aerospace Exploration 
Agency (JAXA), and retrieved from the following link: 

https:// shara ku. eorc. jaxa. jp/ GSMaP/. The daily precipitation 
data, covering the period from April 2000 to March 2021, 
were retrieved across West Java with a resolution of 0.1° × 
0.1°. Prior to using the GSMaP data for SPI calculation, a 
preliminary analysis was conducted to examine the agree-
ment between the observed precipitation data and satellite-
based precipitation data (Mourtzinis et al. 2017).

This preliminary analysis utilized observed precipitation 
data from the Meteorology, Climatology, and Geophysical 
Agency in Indonesia spanning from January 1981 to March 
2013. There were 52 stations across 16 regencies with aver-
age area coverage reaching 680.38  km2 per station. Since the 
observed precipitation data were provided on a point scale, 
the inverse distance weighted (IDW) method was applied to 
estimate the precipitation in unmeasured locations and to 
produce the precipitation distribution in West Java. Mean-
while, for the satellite-based precipitation data, the GSMaP 
data was used, which is available from March 2000 to the 
present date. Finally, the coefficient of determination or 
R-square (R2) was examined by using the precipitation data 
within the available period from both datasets spanning from 
April 2000 to March 2013.

The distribution of R-square value result is shown in 
Fig. 3, where the greenish color indicated a high agreement 

Fig. 2  Research framework

Fig. 3  Map of monthly R-square 
value distribution in West Java
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while the reddish color indicated a low agreement between 
the GSMaP and observed precipitation data. Tashima et al. 
(2020) noted that the GSMaP dataset frequently underesti-
mates precipitation data and it was caused by the location of 
Indonesia that is located in the equator where land and sea 
coexist, which can lead to greater relative error in GSMaP 
observations. However, they also mentioned that this con-
dition is not a problem for drought assessment because the 
distribution was normalized during SPI calculation. But in 
this research, the area with a low agreement (R-square < 0.5) 
was excluded to avoid uncertainty in the drought assessment 
process due to insufficient data accuracy.

3.2.2  Agricultural statistical dataset

As previously mentioned, West Java has two cropping sea-
sons: the wet cropping season from October to March and 
the dry cropping season from April to September. The Min-
istry of Agriculture provided data on the agricultural areas 
affected by drought during the dry cropping season, while 
the Statistical Bureau of West Java provided annual data on 
crop production and harvested area from 2000 to 2021, with-
out separating the data by cropping season. Additionally, 
the monthly dataset of crop production and crop harvested 
area is available for a limited time or from 2018 to 2019 and 
was used to generate the grid-scale crop yield estimation 
model. In this study, the crop yield was calculated using the 
equation below:

3.2.3  Vegetation index data

Normalized Difference Vegetation Index analysis was con-
ducted to quantify vegetation biomass by measuring the dif-
ference between near-infrared light (NIR), which vegetation 
strongly reflects, and red light, which vegetation absorbs. 
The values vary from − 1 that is highly likely water; 0, 
which means an urban area; and + 1, which means dense 
green vegetation. NDVI value was calculated following this 
equation:

In this study, the NDVI was retrieved from Moderate 
Resolution Imaging Spectroradiometer or MODIS-Terra 
(MOD13Q1) version 6. The data were downloaded from 
https:// lpdaac. usgs. gov/ produ cts/ mod13 q1v006/ specifically 
the h28v09 tile, which covers the West Java area. The dataset 
has a 250-m resolution and 16-day interval, with 23 images 
available annually from March 2001 to the present. The 

(1)CropYield
(

Ton
/

Ha

)

=
CropProduction(Ton)

HarvestedArea(Ha)

(2)NDVI =
(NIR − RedLight)

(NIR + RedLight)

details of each image and the retrieval date for each cropping 
season can be seen in Table 2. Although the study focuses 
on the wet farming crops during the dry cropping season, 
the complete images were needed for the NDVI time-series 
reconstruction process; thus, the wet farming cropping sea-
son was included at the beginning.

3.3  Method

3.3.1  Drought assessment

Drought assessment was conducted using the SPI as one 
of the meteorological-based indices using the GSMaP pre-
cipitation dataset. SPI was founded by McKee et al. 1993 
and recommended by WMO as an indicator of wet and dry 
conditions in certain regions. The SPI value is calculated 
basically by using long-term precipitation data and fitted 
to a probability distribution, which is then transformed into 
a normal distribution such that the mean SPI is zero for a 
specific location and desired period. However, the determi-
nation of an appropriate probability density function to be 
utilized is beyond the scope of this study. Therefore, adher-
ing to the original research by McKee et al. (1993) and the 
recommendation from WMO, this study used the gamma 
distribution to obtain the SPI value. For the result, positive 
SPI values indicate above-average precipitation, whereas 
negative values indicate below-average precipitation.

In SPI analysis, the aggregation timescale can be 
adjusted based on the user’s interest. For example, to eval-
uate short-term drought conditions, SPI-1 or SPI-3 can 
be used, which utilize the cumulative rainfall for 1 month 

Table 2  The details of NDVI image retrieval date

Cropping season Detail of NDVI images and retrieval dates

Dry cropping season NDVI-7: 7 April NDVI-13: 12 July
NDVI-8: 23 April NDVI-14: 28 July
NDVI-9: 9 May NDVI-15: 13 August
NDVI-10: 25 May NDVI-16: 29 August
NDVI-11: 10 June NDVI-17: 14 Sep-

tember
NDVI-12: 26 June NDVI-18: 30 Sep-

tember
Wet cropping season NDVI-19: 16 October NDVI-1: 1 January

NDVI-20: 1 Novem-
ber

NDVI-2: 17 January

NDVI-21: 17 Novem-
ber

NDVI-3: 2 February

NDVI-22: 3 Decem-
ber

NDVI-4: 18 February

NDVI-23: 19 Decem-
ber

NDVI-5: 6 March

NDVI-6: 22 March

https://lpdaac.usgs.gov/products/mod13q1v006/
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and 3 months respectively. The procedures for calculating 
SPI can be found in several references, such as McKee 
et al. (1993), Guttman (1999), Vicente-Serrano and López-
Moreno (2005), and the WMO user guidelines (2012).

Because this study is conducted to assess the agricul-
tural drought on the wet farming crop, the SPI analysis will 
be limited on agricultural areas in West Java. Furthermore, 
the first objective of this study is to determine the most 
correlated SPI aggregation timescale to assess agricultural 
drought on the wet farming crop. To achieve this, the SPI 
will be calculated for various aggregation timescales: SPI-
1, SPI-3, SPI-6, SPI-9, and SPI-12, with various month 
references from January to December, resulting in a total 
of 60 SPI. These indices will be correlated with NDVI 
and agriculture statistical datasets. Then, the SPI will be 
interpolated using a linear method to the same resolution 
as NDVI or 250-m resolutions. The interpolated SPI will 
be used for spatial analysis on a grid scale.

3.3.2  Crop yield model

The NDVI time-series reconstruction was used to gener-
ate the crop yield estimation model (Huang et al. 2014) 
on the grid scale. This process was limited to the agri-
cultural areas in West Java, so the dataset was masked by 
the agriculture area shapefile obtained from Indonesia’s 
Geospatial Information Agency. Prior to analysis, the 
images underwent pre-processing to remove the unfavora-
ble atmospheric condition (Pan et al. 2015). This included 
image mosaicking to ensure the study location coverage, 
layer stacking of all the NDVI images to construct a time 
series, and smoothing of the NDVI time series. For the 
smoothing, the Savitzky-Golay filtering was applied to the 
NDVI time series (Chen et al. 2004) from 2001 to 2021. 
Then, to eliminate non-significant variables, the stepwise 
multiple linear regression model was used (Freund and 
Litell 1991), generating a crop yield model on each grid 
following this equation:

where Y  is dry season crop yield (ton/Ha), α intercept, �
i
 

slope for X
i
 , and X

i
 smoothed NDVI (dry cropping season).

Due to the limited data availability, which were only 
available from 2018 to 2019 among 15 regencies, the data-
set was divided into 70% training data for model develop-
ment based on the above equation and 30% for model vali-
dation. The crop yield estimation model was constructed 
using NDVI as the predictor variable and crop productivity 
data during the dry cropping season, which means it will 
only include the NDVI-7 until NDVI-18 into consideration. 

(3)Y = � + �
1
X
1
+ �

2
X
2
+…+ �

i
X
i

Once the model is validated, it will be used to predict the dry 
season crop yield values at the grid level from 2000 to 2020.

3.3.3  Temporal and spatial scale analysis

The temporal analysis was intended to determine the most 
suitable aggregation timescale for drought assessment in 
West Java. This goal was achieved by assessing the Pear-
son correlation between the SPI obtained from the drought 
assessment process and the drought-affected areas. Because 
this research was limited to the dry cropping season, the 
SPI were selected from the dry season precipitation only. 
Finally, the SPI with the highest correlation was chosen as 
the most suitable.

For the spatial analysis, it was conducted to examine the 
response of the wet farming crop during the dry cropping 
season to agricultural drought in each region on the grid 
scale. The response was determined by examine the decrease 
of crop yield, as agricultural drought risk indicator, during 
the drought period which is indicated by the SPI. Thus, this 
objective was achieved by assessing the correlation between 
the SPI and the agricultural drought risk indicator. Because 
of the characteristic of the agricultural area in West Java, 
which is very fragmented, a finer resolution was needed to 
examine the response on a local scale. To match the resolu-
tion of the crop yield model on a grid scale, using linear 
interpolation, the distribution of SPI around West Java was 
downscaled from 0.1° × 0.1° resolution to 250-m resolution.

Prior to conducting the correlation analysis, the LOWESS 
(locally weighted scatterplot smoothing) technique was used 
to eliminate the influence of technological advancements 
on crop yield trends. Then, the detrended crop yield was 
determined by dividing the actual crop yield by the trend. 
The result of this detrended method varies around 1, which 
means that crop yield with a value of 1 is indicated as the 
normal condition, crop yield value larger than one is indi-
cated as crop yield gain, and crop yield value lower than one 
is indicated as crop yield loss. Then, the Pearson correlation 
analysis was performed between the drought event (indicated 
by SPI ≤ − 1) and detrended crop yield values on the grid 
scale. To ensure the impact of drought on crop yield was cor-
rectly examined, the most severe drought year was selected 
as a target period for assessing the spatial response of wet 
farming crops during the dry cropping season. Additionally, 
only significant grids were included in the spatial response 
assessment.

Finally, the map of distribution will be generated to 
examine the response of the wet farming crops to agricul-
tural drought during the dry cropping season at each grid. 
Additionally, the grid scale will be categorized based on the 
presence of an irrigation system served by the dam obtained 
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from Sianturi et al. (2018) and the information provided by 
the Government of Indonesia. This process was conducted to 
examine the different responses between the agriculture area 
served by a dam (will be referred to as dam-irrigated areas) 
and the agriculture area where water supply is obtained 
from rivers and wells (will be referred to as local water 
resource–irrigated areas) to drought.

4  Result and discussion

4.1  Temporal assessment

The temporal assessment was started with a drought assess-
ment using SPI. As previously mentioned on the methodol-
ogy section, there were a total of 60 scenarios of SPI cal-
culated consisting of different SPI aggregation timescales: 
SPI-1, SPI-3, SPI-6, SPI-9, and SPI-12 based on the month 
reference in January, February, March, April, May, June, 
July, August, September, October, November, and Decem-
ber. This calculation used the monthly GSMaP dataset 
from 2000 to 2020 with 0.1° × 0.1° resolution. Appendix 1 
shows the monthly variability of precipitation distribution 
from January to December across West Java. And to obtain 
the target area, the result was masked with an agriculture 
area shapefile. For the temporal assessment, which was con-
ducted on city-scale analysis, the SPI on each regency was 
calculated using the average value of contributing grid cells.

After all 60 scenarios of the SPI on the city scale were 
calculated, the correlation analysis was assessed to deter-
mine the most suitable SPI aggregation timescale to be uti-
lized for agricultural drought assessment in West Java. For 
this analysis, the drought-affected area data was used as an 
agricultural drought risk indicator. This data was obtained 
from 2000 to 2018 on a city scale. Even though this data 
was limited in terms of spatial resolution, it was deemed 
suitable for characterizing agricultural drought risk as it 
was provided by the Ministry of Agriculture and repre-
sents the affected areas by drought during the dry cropping 
season. The Pearson correlation analysis was calculated 
separately between drought-affected areas and the SPI in 
15 regencies.

The outcome of this process was the r-value in each of the 
60 scenarios on a city level, with detailed results provided 
in the form of a table included in the Appendix. In order to 
help with the interpretation of the correlation result, Fig. 4 
shows the heatmap of the average correlation value. The 
vertical axis indicated the SPI aggregation timescale and 
the horizontal axis indicated the month reference. Please 
note that the black color in the heatmap involved only a 
wet season, which is not a target period of this study, so the 
result was excluded.

The heatmap analysis indicates that all scenarios of the 
SPI produced negative correlations, represented by the red 
color. This result can be interpreted that the decrease in 
SPI, or a dry condition, is associated with an increase of 
drought-affected areas in the agricultural region. In addi-
tion, the highest negative correlation was produced during 
the SPI-3 in August (r-value = − 0.59 and p-value < 0.05). 
Thus, it can be concluded that this index can be used to 
examine the impact of agricultural drought because in all the 
regencies, the drought condition that was represented by this 
index was corresponding with the drought-affected areas. 
Moreover, the index’s timescale coincides with the peak of 
the dry season, which is very significant to crop production 
during the dry cropping period.

Additionally, the result shown here is consistent with 
Umran’s study in 1999, which stated that SPI-3 is sensitive 
to the reduction in soil moisture that affects crop growth. 
This outcome suggested that to assess the response of the 
wet farming crop to drought in West Java, SPI-3 in August 
is the most suitable SPI. However, as the limitation on this 
analysis, we only considered the temporal and spatial scale 
as drought’s dimensions without separating the impact that 
might be caused by other dimension such as drought inten-
sity and timing. Following the temporal analysis, the spatial 
analysis was conducted by using the value of SPI-3 index in 
August for the correlation analysis with detrended crop yield 
on the grid scale. Even though the spatial analysis was con-
ducted on the grid scale while the temporal analysis result 
was obtained on the city-scale assessment, the difference 
in spatial resolution is not much of a problem because the 
SPI was calculated based on the rainfall data, which cover 
relatively large area. The assumption is that the deficiency 

Fig. 4  Heatmap of mean of cor-
relation value between SPI and 
drought-affected areas.
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of rainfall that can trigger drought events can be observed 
on a large-scale resolution, and it is also reflected on the 
smaller scale one.

Additionally, as mentioned in the methodology section, 
the most severe drought year was selected as the focus period 
for spatial scale assessment. Figure 5 shows the variability 
of the SPI throughout the year across all areas in West Java. 
The vertical axis indicated the SPI while the horizontal axis 
indicated the year from 2000 to 2020 as the study period. 
The result showed that year 2019 has the lowest SPI, which 
can be understood as the most severe drought year in West 
Java, which is thus used as the focus period for spatial scale 
assessment.

Additionally, in terms of agricultural practices especially 
for wet farming crops, one of the key factors is the deliv-
ery system of water supply to the paddy fields or irrigation 
systems. As a preliminary step in the spatial scale analy-
sis, Sianturi et al. (2018) and the Ministry of Public Works 
and Housing clustered the four regencies in the northern 

area, namely, Bekasi Regency, Karawang Regency, Sub-
ang Regency, and Indramayu Regency, as an agricultural 
area served by the Jatiluhur Dam, referred as dam-irrigated 
regencies in this study. On the other hand, the other regen-
cies are irrigated by local water resources, like rivers or 
wells, referred to as local water resource–irrigated regencies 
in this study. The boundaries of these regions can be seen 
in Fig. 6. Based on this classification, the spatial assess-
ment was carried out by grouping each grid into those two 
categories.

4.2  Spatial scale analysis

Crop yield estimation model on the grid scale was gen-
erated using multilinear regression analysis in Python to 
select the most significant NDVI images. Non-significant 
variables with large p-values were eliminated using step-
wise elimination, as recommended by Freund and Lit-
tell (1991). The detrended crop yield was the dependent 

Fig. 5  Year-to-year variability 
of SPI-3 in August

Fig. 6  Map of dam-irrigated 
and local water resource–irri-
gated area in West Java



235Correlation analysis of agricultural drought risk on wet farming crop and meteorological drought…

1 3

variable, and it was calculated using monthly crop pro-
duction data during the dry cropping season. Meanwhile, 
the smoothed NDVI values during the dry cropping period 
(NDVI-7 until NDVI-18, as detailed in Table 2) were the 
independent variables. Through stepwise multilinear 
regression analysis, the crop yield estimation model was 
obtained following this equation:

Figure 7 displays the annual average NDVI value across 
the entire agricultural region of the study area. The green 
box indicated the wet cropping season while the red box 
indicated the dry cropping season as the focus of this study. 
The yellow-cross marker within the red box represented the 
significant NDVI images based on the result of crop yield 
estimation model. Based on this outcome, the significant 
NDVI images were predominantly observed during the 
peak and the end of the dry cropping season or around the 
harvesting period. The validation of the model revealed an 
r-value of approximately 0.83 when applied to the train-
ing dataset and approximately 0.71 when applied to the test 
dataset, as shown in Fig. 8.

(4)
Crop Yield (Ton∕Ha) =9.94 − 29.33 NDVI9 + 42.61 NDVI10 − 24.75 NDVI11+

32.68 NDVI15 − 57.33 NDVI16 + 30.28 NDVI17#

Then, the crop yield estimation model was applied to gen-
erate the crop yield data from 2001 to 2020 in the agriculture 
area. And for the correlation analysis, the detrended method 
using LOWESS was applied to obtain the detrended crop 
yield dataset from 2001 to 2020 on each grid as an indica-
tor of agricultural drought risk. As previously mentioned 
on Section 3.3.3, the detrended crop yield value lower than 
one can represent crop yield loss. Appendix 3 and Appendix 
4 show the results of crop yield estimation and detrended 
crop yield, respectively. Figure 9 shows the result of Pear-
son correlation analysis between drought events indicated 
by the SPI and detrended crop yield with p-value < 0.05. 
The positive correlation resulted from this analysis indicated 
that crop yield loss more likely occurred during the drought 
event, indicated by low SPI. The correlation values were 
varied from around 0 to larger than 0.7, which can indicate 
the strength of drought conditions that affected crop yield. 
The low significant r-value was caused by the low number 
of data points as the input for correlation analysis, meaning 
that drought events occurred relatively low in some grids 
over the 20-year period.

Figure 10 shows the r-value distribution in each grid 
during the most severe drought year. The vertical axis 

Fig. 7  Significant NDVI images 
for crop yield model on the grid 
scale

DRY CROPPING SEASON WET CROP--PING SEASON

Fig. 8  Crop yield model valida-
tion on the grid scale
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represents the crop yield and the horizontal axis represents 
the drought condition. The results indicate that the region 
with an r-value > 0.6, depicted by the grey and orange color, 
is mostly located below the average detrended crop yield 
lane, signifying their vulnerability to drought, as proven by 
a reduction in crop yield across almost all grids.

The study further analyzed the data by categorizing 
the grids according to the irrigation system, as shown in 
Fig. 6. The results of the correlation analysis between the 
SPI and detrended crop yield are presented in Fig. 11, 
where the triangle-shaped marker indicates the irrigated 
area, and the hexagonal-shaped marker indicates the local 
water resource–irrigated area. The blue color indicates 

the area with an r-value less than 0.6; meanwhile, the red 
color indicated the r-value larger than 0.6. The vertical 
line in Fig. 11 represents the error bar for detrended crop 
yield, indicating the variability of agricultural drought 
risk, which could result in crop yield gain (if larger than 
1) or crop yield loss (if less than 1) among all grids. On 
the other hand, the horizontal line represents the error 
bar for the SPI, indicating the different degrees of hazard 
among all grids.

The analysis showed that the irrigated area was located on 
the left side or in regions of more severe drought conditions. 
This result indicates that the purpose of the irrigation system 
to supply water in the area that might be hit by drought was 

Fig. 9  Map of the correlation 
between detrended crop yield 
and SPI-3 on the grid scale.

Fig. 10  Data characteristics of 
R-value
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achieved. However, in the regions with an r-value larger than 
0.6 (denoted by the red color), which were more vulnerable 
to drought, higher drought magnitude resulted in a greater 
crop yield loss, indicating that the drought hazard was one 
of the key drivers of yield loss. In contrast, there was no 
observed difference in crop yield loss in regions with an 
r-value less than 0.6 (denoted by the blue color) suggesting 
that the existence of an irrigation system helped to resist the 
impact of agricultural drought, resulting in the same crop 
yield loss as the local water resource–irrigated area, even 
when affected by more severe drought. Nevertheless, this 
hazard assessment alone is insufficient to explain the varied 
responses of wet farming crops during the dry cropping sea-
son to agricultural drought, both in the dam-irrigated area 
and local water resource–irrigated area; thus, further study 
is necessary. Some of the studies, for example, focused on 
the vulnerability assessment to explore the sensitivity of 

agricultural drought risk to the possible key driver factors 
on a specific study location (Wilhemi et al. 2002; Jianjun 
Wu et al. 2011; Di Wu et al. 2013; Murthy et al. 2015; Hao 
Wu et al. 2017)

The subsequent analysis focused on the correlation 
between SPI and detrended crop yield at the city scale, in 
which the result can be seen in Fig. 12. Each color in the 
figure corresponds to a different city, while the vertical and 
horizontal axes, as well as the error bar, have the same mean-
ing as in the previous analysis. In this analysis, the grid-scale 
data was aggregated into a city scale. The findings indicate 
that in the region with an r-value less than 0.6, or indicated 
by x-shaped marker, the dry condition is not the primary 
factor driving crop yield loss. This was proven by the value 
of the detrended crop remaining consistent despite the SPI 
ranging from − 1.2 until − 2.8. Conversely, in the region 
with an r-value larger than 0.6 (indicated by an o-shaped 

Fig. 11  Correlation between 
SPI and detrended crop yield 
based on the existence of irriga-
tion system

Fig. 12  Correlation between 
SPI and detrended crop yield on 
city-scale aggregation

Dam-irrigated Area
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marker), which is strongly associated with drought, the 
crop yield loss varied but was generally more severe than in 
other regions. These results also emphasize the importance 
of assessing agricultural drought at a finer resolution, as wet 
farming crop responses during the dry cropping season can 
vary even within the same city.

A notable observation in this figure is the location 
of the four cities served by the Jatiluhur Dam (refer to 
Fig. 6), along with the Purwakarta Regency, where the 
dam is situated (marked within the red-dashed square), 
located on the far left of the diagram, indicating that 
those regions are among the most severely affected by 
drought. Nevertheless, while the irrigation system was 
constructed to mitigate crop yield loss, the effectiveness 
of those systems varied in different agricultural areas, 
with some regions experiencing less crop yield loss than 
others. This finding also amplifies the previous statement 
that the significant role played by other factors in deter-
mining the impact of drought on crop yield loss that needs 
further investigation, while for Hendrawan et al. (2023) 
who assessed the possible key factors of crop yield sen-
sitivity to drought on global scale, the local assessment 
is also needed to understand the local factors especially 
in the fragmented agricultural areas.

5  Summary and conclusion

The objective of this study was to address the gap in agri-
cultural drought assessment for the wet farming crops. 
From this study, it was revealed that SPI-3 during August is 
the most suitable timescale for agricultural drought assess-
ment on wet farming crops in the target area. This finding 
is consistent with the result of previous study by Umran in 
1999, which stated that SPI-3 is sensitive to the reduction 
in soil moisture that affects crop growth, and with a study 
by Ji and Peters 2002, which stated that vegetation has a 
time-lagged response to precipitation, with the impact of 
water deficits being cumulative. It is noteworthy that the 
crop calendar and precipitation distribution vary across 
regions or countries, which can have a significant impact 
on the result. Furthermore, the difference in agreement 
among the regions between observed precipitation data and 
satellite-based precipitation data shown in Fig. 3 might 
also contribute to the uncertainty of this finding. Nonethe-
less, this limitation is beyond the scope of this study.

The spatial assessment on the grid scale revealed 
that there is a negative correlation between the SPI and 
detrended crop yield, indicating that crop yield loss is asso-
ciated with dry conditions. This finding emphasizes the 
importance of conducting agricultural drought risk assess-
ment on finer resolution. The thresholding of the r-value at 

0.6 suggests that in the regions with an r-value larger than 
0.6, dry conditions are the primary driver of crop yield loss 
during the dry cropping season, even in the presence of 
an irrigation system. Those regions also can be said as the 
area which is more vulnerable to drought. Conversely, in 
the region with an r-value less than 0.6, dry conditions are 
not the primary driver of crop yield loss, and the existing 
irrigation system was able to resist the drought’s impact on 
crop yield loss.

This study has revealed the potential influence of addi-
tional factors in determining the impact of drought on crop 
yield loss, which highlights the necessity of conducting 
further research to explore the agricultural drought vulner-
ability on wet farming crops. Future investigations should 
scrutinize the impact of multiple factors, such as water 
accessibility, socioeconomic condition, and other climate 
parameters, to provide a more comprehensive understand-
ing of the impact of drought on agriculture areas at a finer 
resolution.

6  Supplementary information
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