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Abstract
Crop production in East Africa (i.e., Sudan and Ethiopia), where economy relies largely on rainfed agriculture, is facing 
significant challenges due to climate change, population growth, and the slow adoption rate of agricultural technology. However, 
a lack of consensus exists on how near-term climate change may affect food crop productivity in the region through changes in 
temperature and precipitation. Here, we empirically estimate optimal-growing temperature and precipitation for a select group 
of food crops using historical observations. We then project climate change impacts on crop yields based on a non-parametric 
empirical crop model using, as input, results from high-resolution (20 km) regional climate model driven by CMIP5/CMIP6 
global climate models. Our projections consistently show increases in growing season temperature and precipitation during 
2021–2050 under RCP8.5 and SSP5-8.5 scenarios, relative to 1976–2000. However, the projected climate change will exert 
dramatically different impacts on the agricultural sectors across the region. That is, the significant warming would likely cause 
overall negative impacts on agriculture in Sudan and mixed impacts on agriculture in Ethiopia. Meanwhile, the weak wetting 
trend may marginally affect crop growth in East Africa. The negative impacts of climate change can be mitigated at least 
partially by an accelerating rate of adoption of agricultural technology (use of fertilizers, better seeds, etc.) and probably by 
horizontal expansion of croplands where precipitation is projected to increase. Our results suggest that East Africa will need to 
take proactive adaptation measures to mitigate the projected food production challenges.

1  Introduction

East Africa is home to 370 million people, of which 
approximately 40 percent faces significant food security 
challenges due to poor access to food (Baquedano et  al. 
2020). The ongoing challenges in this region are likely to 
worsen due to rapid and sustained population growth (Bremner 
2012; UN 2019). In addition, anthropogenic climate change 
is generally expected to reduce agricultural productivity and 
local food production, increasing the number of food-insecure 
individuals in the near future, although with some regional 
differences (Thornton et al. 2011; Blanc 2012; Adhikari et al. 
2015; Zhao et al. 2017; Rosenzweig et al. 2014; Gardi et al. 
2022). Therefore, projecting the impacts of near-term climate 
change at a high spatial resolution is of crucial importance for 
planning sound adaptation strategies to address food insecurity 
in this region.

Sudan and Ethiopia (hereafter referred to as East 
Africa), whose agricultural intensities are high (Fig. 1b) 
and economies rely heavily on rainfed agriculture, are some 
of the most vulnerable countries to climate variability and 
change (Thornton et al. 2011; Degefu et al. 2018; Siddig 
et al. 2020). A large fraction of the croplands in the two 
countries lies between the southern edge of the Sahara 
Desert and the northern fringe of wooded savanna (Fig. 1b), 
with sharp precipitation gradients (Fig. 1c). Farming in 
this transition zone is dominated by smallholder farmers 
reliant on rainfall as a vital water resource, especially for 
agriculture. We hypothesize that rainfed agriculture in the 
region could be significantly affected by the impacts of 
climate change as a projected warming will influence growth 
of crops, and small shifts in the position of wet regions could 
dramatically change water availability.

Until recently, future projections of agricultural 
productivity yielded inconsistent results across East Africa 
(Lobell et  al. 2008; Muluneh et  al. 2015; Abera et  al. 
2018). Several previous studies, based on global climate 
model (GCM) projections, reported that global warming 
would likely decrease length of growing season and reduce 
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crop yields in sub-Saharan Africa towards the end of the 
century (Thornton et al. 2011; Blanc 2012; Adhikari et al. 
2015; Dale et al. 2017). Additionally, Schlenker and Lobell 
(2010) showed that, by mid-century, East Africa is likely to 
experience significant yield losses of maize, sorghum, and 
millet due to climate change. However, according to Lobell 
et al. (2008), responses of crop yields to future climate 
change are not likely to be spatially uniform and would vary 
widely across regions. For example, the Sahel region will 
likely experience decreased yields of sorghum, maize, and 
wheat. By contrast, East Africa may experience noticeable 
increases in barley, wheat, and sorghum yields. The 
heterogeneous impacts of climate change are more obvious 
on a smaller spatial scale (Muluneh et al. 2015; Abera et al. 
2018; Yang et al. 2020; Ginbo 2022). That is, the yield of 
maize is projected to rise in the highland areas in Ethiopia as 

temperature increases. Meanwhile, crop productivity in the 
lower elevation regions is projected to decrease (Thornton 
et al. 2009). Therefore, high-resolution regional climate 
projections should be considered in agricultural impact 
studies to identify local changes in crop yields.

Most previous studies in this field have focused on the 
country scale using GCMs (Schlenker and Lobell 2010; 
Thornton et al. 2011; Blanc 2012; Adhikari et al. 2015). 
However, GCMs are in general not suitable for agricultural 
impact studies due to their coarse resolution and inadequate 
representation of physical processes (Seneviratne et al. 2012; 
Flato et al. 2013; Im et al. 2017a). In particular, reproducing 
the historical climate over East Africa with its complex 
topography and various agro-climatic zones is one of the 
great challenges for GCM-based studies (Flato et al. 2013). 
In contrast, regional climate models (RCMs) with a finer 

Fig. 1   MRCM simulation domain with a topography (unit: m), b 
agricultural intensity with approximately 10-km spatial resolution 
at the equator (unit: fraction; Ramankutty et  al. 2008), c long-term 

(1990–2019) mean annual total rainfall (unit: mm/year) derived from 
CRU, and d the locations of eight sub-regions in East Africa. The 
blue line in a indicates the Nile River
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resolution can facilitate an in-depth analysis for regions with 
complex topography (Choi et al. 2022).

To date, few studies addressed near-term climate change 
impacts on the food security at the local scale in Sudan and 
Ethiopia. Here, we study how near-term climate change 
affects the agricultural sector in the two countries at national 
and sub-national levels, using high-resolution climate change 
information. The following section describes the data used 
in this study. We specifically investigate (1) the sensitivity 
of crop yield to climate variability using an empirical 
approach in Section 3.1, (2) examine how precipitation 
and temperature will change in the near-term future using 
high-resolution (20 km) regional climate model simulations 
in Section 3.2, and (3) project how these changes would 
impact crop yields at the local scale in Section 3.3. Section 4 
presents a discussion. The summary and conclusion are 
presented in Section 5.

2 � Data and method

2.1 � Agricultural production in the study area

This study focused on two countries, Sudan and Ethiopia, 
which are geographically located in the climatic transition 
zone between the subtropical Sahara Desert to the north and 
the humid tropical climate to the south (Fig. 1a, c, d). These 
countries are major producers of food crops like sorghum, 
millet, sesame, wheat, maize, teff, and barley (Fig. S1; 
CSA 2016) which are the main sources of human calories 
(Fig. S2). Most of the crop consumption in the region is 
met by domestic production, except for wheat in Sudan 
(Fig. S3). A large fraction of the croplands (i.e., cultiva-
tion area) in East Africa is located in semi-arid regions of 
Sudan with annual total precipitation of 400 to 800 mm and 
in the highlands of Ethiopia with annual total precipitation 
of 800 to 1600 mm alongside altitudes greater than 1500 m 
above sea level (Fig. 1a, b and Fig. S4). In Sudan, the main 
crops are mostly cultivated in Darfur, Kordofan, central, and 
eastern regions (Fig. 2a, b, c, d). Of these, the largest pro-
ducer of millet is Darfur. Sorghum and sesame are primarily 
cultivated in the central region which includes Gezira and 
Gedaref areas. Wheat is mainly produced in the northern and 
central regions, but the northern region with irrigated areas 
is excluded from further analysis. In Ethiopia, maize, teff, 
sorghum, wheat, and barley are intensively cultivated in Tig-
ray, Amhara, Oromia, and Benishangul-Gumuz (Fig. 2e, f, g, 
h, i). In particular, the alpine regions of Amhara and Oromia 
are major agricultural producers in Ethiopia. In this study, 
we focused on eight major crop-producing regions in East 
Africa, four in Sudan (Darfur, Kordofan, central, eastern), 
and four in Ethiopia (Tigray, Amhara, Benishangul-Gumuz, 

and Oromia), where their agricultural systems are highly 
dependent on precipitation as the main source of water.

2.2 � Observation data

Data on crop yields and production were collected from 
several sources, such as FAOSTAT (FAO 2018; available at 
http://​www.​fao.​org/​faost​at/​en/), annual agricultural sample 
survey from Central Statistical Agency (CSA; for Ethiopia; 
available at https://​www.​stats​ethio​pia.​gov.​et/​our-​survey-​
repor​ts/), and Food and Agriculture Organization/World 
Food Program (FAO/WFP) crop and food supply assessment 
mission (for Sudan; available at http://​www.​fao.​org/​giews/​
repor​ts/​speci​al-​repor​ts/​en/). More specifically, national-level 
crop data for 32 African countries (listed in Table S1) were 
available from the FAOSTAT, while sub-national-level crop 
data were only available for Sudan and Ethiopia. The crop 
data (production and yield) used in this study are summa-
rized in Table S1.

Daily calorie consumption was from the FAOSTAT. 
The compositions of domestic crop production, imports, 
and exports for Sudan and Ethiopia were derived from the 
FAOSTAT. Nitrogen fertilizer data was provided by the 
FAOSTAT. Growing seasons for the crops and the coun-
tries were compiled from several sources, such as the Global 
Information and Early Warning Systems (GIEWS) country 
briefs (available at http://​www.​fao.​org/​giews/​count​rybri​
ef/​index.​jsp) and the FAO crop calendar database (avail-
able at https://​cropc​alend​ar.​apps.​fao.​org/#/​home). Crop 
production areas for sorghum, millet, maize, barley, and 
wheat were acquired from the global agro-ecological zones 
(GAEZ + _2015) data (Frolking et al. 2020; available at 
https://​datav​erse.​harva​rd.​edu/​datav​erse/​GAEZ_​plus_​2015;​
jsess​ionid=​8e89b​cad5b​094e9​9ede8​ba1ff​760). Population 
density data was derived from the gridded population of the 
world (GPW) v4 data set (CIESIN 2018).

Monthly temperature and precipitation observations were 
taken from the climate research unit product (CRU; Harris 
et al. 2020) with a horizontal resolution of 0.5° × 0.5° for the 
period 1961–2019. Our earlier study verified that the CRU 
has the appropriate quality standards for climate analysis in 
East Africa (Choi et al. 2022).

2.3 � Empirical crop model

A non-parametric empirical crop model was constructed. 
The aim of the model was to investigate if projected tem-
perature and precipitation are likely to approach or move 
away from optimal growth conditions for the selected 
crops and sub-regions, assuming optimal thresholds do 
not change with time. For example, crop yield gener-
ally increases as temperature or precipitation approaches 
certain thresholds, while crop yield decreases as climate 

http://www.fao.org/faostat/en/
https://www.statsethiopia.gov.et/our-survey-reports/
https://www.statsethiopia.gov.et/our-survey-reports/
http://www.fao.org/giews/reports/special-reports/en/
http://www.fao.org/giews/reports/special-reports/en/
http://www.fao.org/giews/countrybrief/index.jsp
http://www.fao.org/giews/countrybrief/index.jsp
https://cropcalendar.apps.fao.org/#/home
https://dataverse.harvard.edu/dataverse/GAEZ_plus_2015;jsessionid=8e89bcad5b094e99ede8ba1ff760
https://dataverse.harvard.edu/dataverse/GAEZ_plus_2015;jsessionid=8e89bcad5b094e99ede8ba1ff760
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conditions are away from these thresholds. For crop 
modeling, we first estimated the optimal-growing tem-
perature and precipitation for each crop using the long-
term historical data from 32 African countries (listed 
in Table S1). We then used a high-resolution regional 
climate model to project changes in temperature and 
precipitation for the near-term future (2026–2050) under 
RCP8.5 and SSP5-8.5 scenarios, against the reference 
period (1976–2000) (see Section 2.4 for more details). 
To assess the climate change impacts on crop yields, the 
high-resolution climate change information was used 
as input for the empirical crop model. The advantages 
and limitations of using multiple African countries to 
train the crop model will be addressed in the discussion 
section. To increase the reliability of crop yield projec-
tions, sub-national level observation data were used, 

especially for Sudan and Ethiopia. Since the availability 
of observed sub-national level crop data is limited, we 
applied linear regression to extend them back to 1961 
using national-level FAOSTAT statistics spanning the 
period 1961–2019. That is, we fitted a simple regression 
of sub-national-level crop yield against the national-level 
crop yield during its overlapping period (Table S1).

To better assess the dependence of crop productivity on 
weather factors, we considered the climatic conditions, to 
which each crop is exposed during the growing season. 
That is, we calculated agricultural-weighted (based on 
crop cultivation area) average temperature and precipita-
tion for each month within each administrative unit. Since 
the cultivation areas of sesame and teff are not provided 
by the GAEZ + _2015, we assumed that they are grown in 
the regions with the same climate as the other major crops.

Fig. 2   Spatial distribution of crop production (million tons) in a–d Sudan (1993–2006 average) and e–i Ethiopia (1995–2019 average). Note that 
the color scale is different for each panel
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2.4 � Regional climate model and experimental setup

Massachusetts Institute of Technology Regional Climate 
Model (MRCM; Im et al. 2017b), a state-of-the-art regional 
climate model, was used to project future climate change and 
its impacts in East Africa. The dynamical core of the MRCM 
is rooted in the International Center for Theoretical Phys-
ics (ICTP) Regional Climate Model version 3 (RegCM3; 
Pal et al. 2007), but with notable improvements: (a) cou-
pling with the Integrated BIosphere Simulator land surface 
scheme (IBIS; Winter et al. 2009), (b) new surface albedo 
assignment (Marcella 2012; Marcella and Eltahir 2012), (c) 
an irrigation scheme (Marcella 2012; Marcella and Eltahir 
2014), (d) new convective cloud and precipitation autocon-
version schemes (Gianotti 2012; Gianotti and Eltahir 2014a, 
b), and (e) modified boundary layer height and boundary 
layer cloud schemes (Gianotti 2012). Previous studies rigor-
ously verified that the MRCM is capable of reproducing the 
region-specific climate information over various domains 
(Winter et al. 2009; Im et al. 2014, 2017b; Pal and Eltahir 
2016; Choi et al. 2021, 2022; Choi and Eltahir 2022a, b).

The simulation domain of the current research covers 
East Africa, including Ethiopia and Sudan with a 20-km 
grid spacing on a Lambert conformal projection (Fig. 1a). 
To specify the boundary conditions for MRCM, we fol-
lowed the recommendation from our earlier study (Choi 
et al. 2022) to select six GCMs (GFDL-CM3 (Donner et al. 
2011), HadGEM2-ES (Jones et al. 2011), and NorESM1-
M (Bentsen et al. 2013) from the CMIP5 archive; CMCC-
ESM2 (Cherchi et al. 2019), HadGEM3-GC31-MM (Wil-
liams et al. 2018), and NorESM2-MM (Bentsen et al. 2019) 
from the CMIP6 archive), as the models which are most 
skillful in simulating the observed climate of the region. 
Time-slice climate simulations were performed for the 
historical period (1976–2005 for CMIP5 simulations; 
1976–2014 for CMIP6 simulations) and future period 
(2006–2050 for CMIP5 simulations under the RCP8.5 sce-
nario; 2015–2050 for CMIP6 simulations under the SSP5-
8.5 scenario). High-emission scenarios (RCP8.5 and SSP5-
8.5) were considered in this study, since these scenarios 

would be possible, particularly for the near future, if it 
delays global action to cut carbon emissions (Schwalm et al. 
2020). In the MRCM simulations forced by CMIP5 GCMs, 
time-lagged ensemble members (e.g., 1/1/1975, 1/2/1975, 
1/3/1975, 1/1/2020, 1/2/2020, and 1/3/2020) were produced 
and used for ensemble analysis. Projected climate change 
impacts on food crop productivity were mainly analyzed for 
2001–2025 and 2026–2050, relative to 1976–2000.

To remove the systematic bias existing in the model 
simulations, we applied the equidistant quantile-mapping 
bias correction procedure (Li et al. 2010; Choi et al. 2021, 
2022). The ERA5 (Hersbach et al. 2018) and the Climate 
Hazards center InfraRed Precipitation with Station data 
(CHIRPS; Funk et al. 2015) were used to correct the bias 
in MRCM. To determine future atmospheric demand for 
evaporation, we calculated the potential evapotranspiration 
using the Penman–Monteith equation (Monteith 1965). A 
detailed description of the experimental design is shown in 
Table 1 and given by Choi et al. (2022).

3 � Results

3.1 � Relationships between climate variables 
and crop yields

We highlight a distinct contrast in the impact of global 
warming on food crops across East Africa. Figures 3 and 
4 present the relationship between crop yields and climate. 
The sensitivity of crop yields to climate factors is highly 
heterogeneous spatially in these countries with a broad range 
of climates and altitudes. In Sudan, the yields of major crops 
are negatively correlated with temperature at the interan-
nual time scale (Fig. 3a, b, c, d). In contrast, temperature 
and crop yields are overall positively correlated in Ethiopia 
(Fig. 4a, b, c, d). That is, temperature in Ethiopia appears 
to be a limiting factor for the growth of crops, including 
maize, sorghum, barley, and wheat. Based on these results, 
we hypothesize that rising temperature, as a result of climate 
change, will probably reduce crop yields in Sudan but could 

Table 1   Description of MRCM experiments

Experiment Boundary conditions Variant label Resolution (lon × lat) Scenario Time-lagged 
ensemble members

MRCM/CMIP5_GFDL GFDL-CM3/CMIP5 r1i1p1 158 × 127 Historical/RCP8.5 3
MRCM/CMIP5_HAD HadGEM2-ES/CMIP5 r1i1p1 158 × 127 Historical/RCP8.5 3
MRCM/CMIP5_NOR NorESM1-M/CMIP5 r1i1p1 158 × 127 Historical/RCP8.5 3
MRCM/CMIP6_CMCC CMCC-ESM2/CMIP6 r1i1p1f1 214 × 139 Historical/ssp5-8.5 1
MRCM/CMIP6_HAD HadGEM3-GC31-MM/CMIP6 r1i1p1f3 214 × 139 Historical/ssp5-8.5 1
MRCM/CMIP6_NOR NorESM2-MM/CMIP6 r1i1p1f1 214 × 139 Historical/ssp5-8.5 1
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Fig. 3   Anomaly of annual crop 
yield (unit: t/ha) against anoma-
lies of agricultural-weighted 
a–d temperature (unit: °C) and 
e–h precipitation (unit: mm/
day) during the growing season 
for each crop (see Section 2.3 
for more details about agricul-
tural-weighted climate condi-
tions). Anomalies are relative to 
the mean of 1961–2011. Four 
major crop-producing regions 
in Sudan, such as central (CE), 
Darfur (DA), eastern (EA), and 
Kordofan (KO) are considered. 
Values within each plot indicate 
the partial correlation coeffi-
cients between crop yields and 
climate variability, excluding 
the effect of nitrogen fertilizer. 
One and two asterisks indicate 
that the correlation coefficient is 
significant at the 95% and 99% 
confidence levels, respectively
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Fig. 4   Anomaly of annual crop 
yield (unit: t/ha) against anoma-
lies of agricultural-weighted 
a–d temperature (unit: °C) and 
e–h precipitation (unit: mm/
day) during the growing season 
for each crop (see Section 2.3 
for more details about agricul-
tural-weighted climate condi-
tions). Anomalies are relative to 
the mean of 1961–2019. Four 
major crop-producing regions 
in Ethiopia, such as Tigray (TI), 
Amhara (AM), Oromia (OR), 
and Benishangul-Gumuz (BE), 
are considered. Values within 
each plot indicate the partial 
correlation coefficients between 
crop yields and climate vari-
ability, excluding the effect of 
nitrogen fertilizer. One and two 
asterisks indicate that the cor-
relation coefficient is significant 
at the 95% and 99% confidence 
levels, respectively
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provide some benefits for the agricultural sector in Ethio-
pia. This hypothesis is further supported by previous studies 
(Schlenker and Lobell 2010; Blanc 2012; Yang et al. 2020).

Precipitation seems to be a limiting factor for crop growth 
in Sudan, but not in Ethiopia (Figs. 3 and 4). In general, 
crop yields are positively correlated with precipitation in 
Sudan where relatively dry conditions prevail, while nega-
tive correlations are found in Ethiopia which receives plenty 
of precipitation (see Fig. 1c). Moreover, the correlation of 
yield with precipitation differs significantly from region to 
region within Ethiopia at the sub-national scale. The rela-
tionship between maize (respectively sorghum) yield and 
precipitation tends to be negative (p value < 0.05) in Amhara 
(respectively Benishangul-Gumuz), consistent with Yang 
et al. (2020). Meanwhile, there are negative but statisti-
cally insignificant relationships in the other sub-regions in 
Ethiopia. Although correlation does not imply causation, the 
above results may suggest that temperatures could generally 
have a greater impact on crop growth than precipitation, in 
line with the findings of Schlenker and Lobell (2010). Even 
ignoring the effects of fertilizers, which are known to affect 
agricultural productivity, the relationships between climate 
and crop productivity remain significant (see partial correla-
tion coefficients shown in Figs. 3 and 4).

3.2 � Near‑term climate change

Based on the MRCM ensembles, we find a significant 
increasing trend in temperature over East Africa by 2050. 
Temporal and spatial changes in temperature are shown 
in Fig. 5 for the main growing season (July to October) 
when most crops grow. The temperature during the grow-
ing season is projected to increase by about 1 °C for the 
period 2001–2025 and by 2 °C for 2026–2050, relative 
to 1976–2000, consistently across MRCM/CMIP5 and 
MRCM/CMIP6 simulations (Figs. 5, S5, and S6). The larg-
est increases are found in the north, strengthening the south-
north temperature gradient. Similar temperature projections 
can be obtained when considering different growing seasons 
for various crops and countries (Fig. S7). A consistent pat-
tern of the changes in temperature across all model projec-
tions is notable. We note that the increase in temperature is 
relatively smaller in MRCM/CMIP6 than MRCM/CMIP5 in 
the vicinity of the Sahara Desert border.

In accordance with the temperature rise, overall wet-
ting trends are detected in East Africa over the next few 
decades (Figs. 6, S5, S6). There is a high degree of agree-
ment across the MRCM projections (driven by different 
MIP generations) that the increase in precipitation is more 
pronounced in southeastern Sudan and the highlands of 
Ethiopia. In particular, growing season precipitation would 
increase by more than 5% in areas where agricultural inten-
sity is relatively high (Fig. 1b), except for western Sudan 

(where precipitation remains somewhat stagnant with neg-
ligible changes in CMIP6 projections). Also, precipitation 
in the lowlands of Ethiopia is likely to increase, albeit with 
the lack of inter-model consistency. These features are also 
found when considering different growing seasons for differ-
ent crops (Fig. S8). Thus, as a result of climate change, the 
projected wetting is expected to reduce the water shortages 
to some extent and potentially affect the rainfed agricultural 
systems in East Africa. However, it is important to note that 
the projected warming in this region will enhance atmos-
pheric evaporative demand, and thus may partially offset 
the advantage of the increases in precipitation, especially in 
terms of water availability.

Despite a projected increase in evapotranspiration due 
to the rising temperature, the amount of available water is 
still expected to increase (please see Fig. S9 showing the 
regional increase of the difference between precipitation 
and evaporation). Figure 7 presents projected changes in 
relative humidity and potential evapotranspiration over 
East Africa in a warmer climate. According to MRCM/
CMIP6, the projected warming, along with small changes in 
relative humidity, leads to widespread increases in potential 
evapotranspiration with a strong agreement across models. 
Relative to the reference period (1976–2000), the increase in 
potential evapotranspiration is likely to be about 5% by 2050 
in MRCM/CMIP6. Exceptionally, in the southwestern part 
of Ethiopia, the model projections show a small reduction in 
potential evapotranspiration—but there is an inconsistency 
between models in depicting this decrease. This insignificant 
change in potential evapotranspiration might be associated 
with the local increase in relative humidity. MRCM/CMIP5 
exhibits a similar trend to that revealed by MRCM/CMIP6. 
Altogether, the increase in evapotranspiration is smaller 
than the increase in precipitation, particularly in the Upper 
Blue Nile catchments. The increased water availability may 
eventually reduce the water stress to some extent (Figs. 6 
and S9) and could provide some benefits for agricultural 
production in the Nile basin countries (Larsson 1996), 
especially where precipitation is insufficient to sustain crops 
and irrigation is needed.

3.3 � Projected impacts of climate change 
on agriculture

The precipitation trends could indirectly affect crop 
production in East Africa by altering the extent of crop-
land areas. The future projections, based on the MRCM/
CMIP6 ensemble, highlight horizontal expansion of 
croplands in eastern Sudan and the lowlands of Ethiopia. 
Figure 8 shows projected changes in climatic zones with 
annual total precipitation of 0–200 mm, 400–800 mm, 
800–1600 mm, and 1600–2500 mm over four sub-regions 
in East Africa, including western Sudan, eastern Sudan, 
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and the highlands and lowlands of Ethiopia. It is assumed 
that most crops are grown in the regions of Sudan with 
annual total precipitation ranging from 400 to 800 mm, 
while regions in Ethiopia with annual total precipita-
tion of 800 to 1600 mm are suitable for crop cultivation 
(Fig. S4). Based on the climate projections, the overall 
increase in precipitation is expected to reduce desert areas 
(areas with less than 200 mm of annual total precipita-
tion) mostly in Sudan (Fig. 8a, d). In the MRCM/CMIP6 
projections, future changes in cropland (areas with annual 

total precipitation of 400–800 mm) in western Sudan are 
found to be small and insignificant, while small but sig-
nificant increases (0.5% increase; p value < 0.05) are pro-
jected in eastern Sudan. Also, there will be an expansion 
of cropland in the lowlands of Ethiopia. For the highlands 
of Ethiopia, where most crops are grown, the shift of pre-
cipitation distribution towards higher values would expand 
the area with annual total precipitation of 800–1600 mm, 
while the area with annual total precipitation ranging from 
400 to 800 mm could be reduced to large degree.

Fig. 5   a July to October (JASO) temperature (T) for 1976–2000 
from the ensemble mean of bias-corrected MRCM/CMIP6 simula-
tions. Projected change in JASO temperature for b 2001–2025 and c 
2026–2050, relative to 1976–2000 from the ensemble mean of bias-
corrected MRCM/CMIP5 simulations. d–e Same as b–c, but for the 

ensemble mean of bias-corrected MRCM/CMIP6 simulations. Area-
averaged values over land are given on the top right corner of each 
plot. Hatching indicates agreement by three MRCM simulations on 
the sign of the change
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Based on the empirical crop model (see Section 2.3 for 
more details), rising anthropogenic greenhouse gas concen-
trations will likely cause overall negative impacts on agricul-
ture in Sudan and mixed impacts on agriculture in Ethiopia 
for the near-term future under the high-emission scenario 
(SSP5-8.5) (Figs. 9 and 10). The crop model indicates that 
sorghum, millet, wheat, sesame, maize, teff, and barley 
have an optimal-growing temperature of 25–26 ℃, 25–26 
℃, 17–18 ℃, 24–25 ℃, 24–26 ℃, 20–21 ℃, and 14–17 ℃ 
based on observations, respectively (Fig. 9). The ranges of 

the optimal temperatures estimated are similar to those pre-
sented in previous studies (Table 2). It implies that the ris-
ing temperature will likely cause overall negative impacts 
on agriculture in Sudan (Figs. 9 and 10). For instance, the 
central region, which is the largest crop-producing region 
(Fig. 2a, b, c, d), will experience yield losses of sorghum, 
millet, wheat, sesame, and maize, albeit with some benefits 
from precipitation increase (Figs. 8 and 9). In Ethiopia, the 
impacts are spatially heterogeneous, depending on the crops 
and regions. That is, agricultural productivity for wheat and 

Fig. 6   a July to October (JASO) precipitation (PR) for 1976–2000 
from the ensemble mean of bias-corrected MRCM/CMIP6 simula-
tions. Projected change in JASO PR for b 2001–2025 and c 2026–
2050, relative to 1976–2000 from the ensemble mean of bias-cor-
rected MRCM/CMIP5 simulations. d–e Same as b–c, but for the 

ensemble mean of bias-corrected MRCM/CMIP6 simulations. Area-
averaged values over land are given on the top right corner of each 
plot. Hatching indicates agreement by three MRCM simulations on 
the sign of the change
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barley will likely decrease in Ethiopia. On the other hand, 
increases in sorghum, maize, and teff yields are expected 
in Oromia (the largest crop-producing region in Ethiopia; 
Fig. 2e, f, g, h, i), because the projected near-term tempera-
ture over this region is likely to approach the optimal-grow-
ing temperatures in the near-term future (Fig. 9). Despite 
the marginal precipitation-yield relationship (Figs. 3e, f, g, 
h and 4e, f, g, h), optimal-growing precipitation for sorghum 
(5–6 mm/day), millet (5–6 mm/day), sesame (5–6 mm/
day), maize (4–5 mm/day), teff (5–6 mm/day), and barley 
(5–6 mm/day) can be found (Fig. 9). However, the small 
increases in precipitation could weakly affect food crop 
yields in the near-term future.

4 � Discussion

Our results broadly support previous findings that global 
climate change will likely increase temperature and 
precipitation during the long rainy season in Sudan and 
Ethiopia for the near-term future under high-emission 
scenarios (Muluneh et al. 2015; Déqué et al. 2017; Osima 
et al. 2018). Osima et al. (2018), based on an ensemble of 

CORDEX-Africa regional climate simulations, projected 
overall warming and wetting trends over East Africa for 
the extended summer season (June to September). In 
a similar way, Déqué et al. (2017) expected an increase 
in precipitation in late summer as a consequence of 2 ℃ 
global warming. However, the relatively coarse-resolution 
models (at 50 km grid spacing) used in these previous 
studies could not provide some details of temperature and 
precipitation which are important for agricultural impact 
studies. Here, we used a 20-km high-resolution regional 
climate model and thus can provide a more in-depth 
assessment of climate change impacts on agricultural 
productivity in East Africa.

RCM simulations inevitably contain high uncertainty 
transferred from global climate models (Giorgi et al. 2009; 
Giorgi and Gutowski 2015), which to some extent could limit 
the ability of policymakers to design appropriate mitigation 
measures at the local scale (Conway and Schipper 2011). In 
this context, we found no perfect agreement between the six 
MRCM simulations on the sign of the precipitation changes, 
especially in western Sudan (Figs. 6 and 8). Despite the lack 
of consensus, most regional climate simulations, except for 
that driven by CMCC-ESM2, indicate wetting trends in 

Fig. 7   Projected change in July–October (JASO) relative humid-
ity (RH; absolute change; %) for 2026–2050, relative to 1976–2000, 
derived from ensemble means of a MRCM/CMIP5 simulations and b 
MRCM/CMIP6 simulations. c, d Same as a, b, but for potential evap-

otranspiration (PET; percent change; %). Area-averaged values over 
land are given on the top right corner of each plot. Hatching indicates 
agreement by three MRCM simulations on the sign of the change
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the region towards the mid-century. Also, parameterized 
convection schemes used for regional climate modeling 
can be a potential source of uncertainty in precipitation 
projections (Finney et al. 2020; Wainwright et al. 2021). 
Although we did not consider a convection-permitting model 
in this study, this convection-permitting model with high 
spatial resolution (< 4 km) could partly alleviate this concern 
(Wainwright et al. 2021).

We found that most crops are grown in the regions with 
annual total precipitation ranging from 400 to 800 mm in 
Sudan and from 800 to 1600 mm in Ethiopia (Fig. 1b, c 
and Fig. S4). This finding is further supported by evidence 
that estimated croplands using these criteria are compara-
ble to the observed ones (Fig. S4). We then expected that 
the suitable lands for agricultural production is likely to 
expand in eastern Sudan and the lowlands of Ethiopia in 

the near-term future. However, caution should be exercised 
in interpreting this result, because it does not take into 
account the varying soil conditions, land use, and flood/
drought risks by region.

The crop projections that we provided for Sudan are gen-
erally consistent with previous studies reporting decreases 
in crop yields for sorghum (Schlenker and Lobell 2010; 
Ahmed 2022), millet (Schlenker and Lobell 2010), maize 
(Schlenker and Lobell 2010; Knox et al. 2012), and wheat 
(Iizumi et al. 2021; Tesfaye 2021). In addition, several 
existing studies for Ethiopia, which cohere with our find-
ings, presented a mixture of opposing agricultural trends: 
increases in crop yields for sorghum (Ahmed 2022; Ginbo 
2022), teff (Ginbo 2022), and Maize (Muluneh et al. 2015; 
Dale et al. 2017) and decreases in crop yields for barley 
(Gardi et al. 2022; Ginbo 2022), and wheat (Adhikari et al. 

Fig. 8   Projected change in climatic zones (area) with annual total 
rainfall of (a, d, and j) 0–200 mm, (b, e, g, and k) 400–800 mm, (c, f, 
h, and l) 800–1600 mm, and (i) 1600–2500 mm over four sub-regions 
in East Africa, such as western Sudan (WSDN), eastern Sudan 
(ESDN), the highlands of Ethiopia (HETH; above 1500 m), and the 
lowlands of Ethiopia (LETH; below 1500 m), derived from the CRU 

and bias-corrected MRCM simulations. Anomalies are relative to the 
mean of 1976–2000. The solid line and shading indicate a 25-year 
moving average and inter-model spread, respectively. The dashed 
line denotes the 95% confidence level.  Initial area averaged over the 
period 1976-2000 is given on each plot



855Near‑term climate change impacts on food crops productivity in East Africa﻿	

1 3

2015; Ginbo 2022). However, few studies showed decreases 
in sorghum (Adhikari et al. 2015; Schlenker and Lobell 
2010; Mohammed and Misganaw 2022) and maize yields 
(Schlenker and Lobell 2010; Adhikari et al. 2015; Ginbo 
2022), which differs from our results. The large degree of 
uncertainty in crop yield projections is likely due to the 
following factors: (1) different climate models simulating 
different future climate conditions, (2) different crop mod-
eling methodologies, and (3) lack of reliable crop data. To 

minimize the uncertainty in crop yield projections, we here 
trained the crop model using observed long-term data with 
high quality and then tested the hypothesis that the rainfed 
agricultural systems in Sudan and Ethiopia are prone to the 
impacts of climate change.

We also found some evidence to suggest that rainfall 
and crop yield are generally negatively correlated in Ethio-
pia (Fig. 4), possibly implying that more precipitation may 
decrease crop yields (but not always). This finding is further 

Fig. 9   Accumulated crop yields as a function of growing season 
mean temperature and precipitation in croplands in 32 African coun-
tries (see Table S1), based on observations for 1961–2019. Data are 
plotted using a nearest 25-point smoothing function. Eight major 
crop-producing regions (four in Sudan (Darfur, Kordofan, central, 

eastern) and four in Ethiopia (Tigray, Amhara, Benishangul-Gumuz, 
and Oromia)) in East Africa are considered. Markers denote the cli-
mate conditions over the eight sub-regions in East Africa derived 
from ensemble mean of MRCM/CMIP6
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supported by the well-calibrated process-based crop model 
for Ethiopia (Yang et al. 2020). However, we should acknowl-
edge that the greatest damage to crops could mostly result 
from flooding/erosion or disease pressure rather than the 
small increase in precipitation.

Statistical and process-based crop models are widely 
used to assess the impact of climate change on crop yields 
(Schlenker and Lobell 2010; Lobell et al. 2008, 2011; 
Lobell and Burke 2010; Blanc 2012; Dale et al. 2017). 
A process-based model is a useful tool for translating 

Fig. 10   Projected change in crop yields (%) for 2026–2050, rela-
tive to 1976–2000, over eight sub-regions in East Africa derived 
from non-parametric empirical crop model using, as input, ensem-

ble means of MRCM/CMIP5 simulations (blue) and MRCM/CMIP6 
simulations (red). Asterisk indicates the largest crop-producing area 
within a country

Table 2   Optimal temperature 
for various crops

Crops Optimal temperature defined by previ-
ous studies

Optimal temperature derived from the 
empirical approach developed in this study

Sorghum 27.5 ℃ (Liu et al. 2008) 25–26 ℃
Millet 30 ℃ (Liu et al. 2008) 25–26 ℃
Wheat 15–20 ℃ (Liu et al. 2008) 17–18 ℃
Sesame 25–27 ℃ (Oplinger et al. 1990) 24–25 ℃
Maize 25 ℃ (Liu et al. 2008) 24–26 ℃
Teff 10–27 ℃ (Stallknecht 1997) 20–21 ℃
Barley 12–25 ℃ (GRDC, 2018) 14–17 ℃
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climate information into agricultural responses (e.g., 
Araya et al. 2015; Yang et al. 2020). However, to cali-
brate the model parameters, it requires various input data, 
including soil properties, cultivar parameters, and crop 
management practices, which are not available in many 
regions (Lobell and Burke 2010; Lobell et  al. 2011). 
Accordingly, significant challenges are faced in calibrat-
ing a process-based crop model in East Africa due to the 
lack of available field data (Yang et al. 2020). Instead, 
statistical models with climatic and agricultural data 
as inputs can be an alternative to process-based mod-
els (Lobell and Burke 2010; Lobell et al. 2011). This 
statistical approach is simple and efficient because no 
parameters need to be defined while estimating the lin-
ear or non-linear relationship between crop productivity 
and climate variables. In this study, observations from 
32 African countries were used to train the crop model, 
since crop models based on multiple sites are known to 
be less sensitive to length of training period (Lobell and 
Burke 2010). However, caution is warranted as our empir-
ical approach does not consider different crop varieties, 
farm management practices, soil quality, water quality, 
sunlight availability, altitude, and pests/diseases across 
the countries. Also, we acknowledge that the result from 
statistical crop models could be sensitive to data sampled 
(i.e., sampling issue).

This study focused on changes in temperature and 
precipitation during growing season, which are known to 
have the most direct impact on the agricultural sector due 
to climate change (Kahsay and Hansen 2016). However, 
in making future projections, we do not consider other 
possible effects from changes in CO2 (Long et al. 2006; 
Hatfield et al. 2011; Yang et al. 2020), solar radiation 
(Yang et  al. 2020), maximum/minimum temperature 
(Yang et al. 2020), climate extremes (Coffel et al. 2019), 
fertilizer use (e.g., Sánchez 2010), and possible adaptation 
measures (e.g., the expansion of irrigation; Allam and 
Eltahir 2019; Ayyad and Khalifa 2021; Yang et al. 2021). 
For instance, yields of C3 crops, like barley and wheat, 
would increase to some extent in accordance with rising 
CO2 concentrations (Long et al. 2006; Hatfield et al. 2011; 
Yang et al. 2020).

It is important to note that food insecurity might be fur-
ther deteriorated by multiple stresses occurring at various 
levels, such as fragile state of national economy, the large 
variability of precipitation in space and time, explosively 
growing population, slow rate of adoption of agricultural 
technology, and complex conflicts between neighboring 
countries over resource sharing (Bremner 2012; Siam and 
Eltahir 2017; Allam and Eltahir 2019; UN 2019; Eltahir 
et al. 2019; Ayyad and Khalifa 2021). For these reasons, 
the current region’s crop production level is insufficient 
to satisfy local food demand (Baquedano et al. 2020). We 

projected that this food insecurity is expected to continue 
or worsen in the near future, especially in Sudan, in line 
with previous studies (Thornton et al. 2011; Blanc 2012; 
Adhikari et al. 2015).

5 � Summary and conclusion

In this study, we aimed to examine how near-term cli-
mate change affects the agricultural sector in East Africa, 
especially Sudan and Ethiopia, at a sub-national level 
using a combination of the non-parametric empirical 
approach and the ensemble of high-resolution MRCM 
simulations.

Toward the middle of the twenty-first century, the 
MRCM ensemble projects overall warming and wetting 
trends during the main crop growing season under the 
high-emission scenarios (RCP8.5 and SSP5-8.5). Based 
on the empirical crop model, these climate trends are 
expected to generate spatially heterogeneous impacts on 
the agricultural sector in East Africa over the next few 
decades. Although various limiting factors in crop growth 
can complicate the climate change impacts, much of this 
heterogeneity can be explained by the temperature effects. 
For example, agricultural productivities for sorghum, 
millet, wheat, sesame, and maize in Sudan are expected 
to generally decrease due to the overall warming trend. 
By contrast, Oromia, the largest crop-producing region 
in Ethiopia, is projected to experience an increase in 
sorghum, maize, and teff yields, mainly due to the projected 
increase in temperature. On the other hand, the enhanced 
precipitation in the near-term future would provide some 
minor compensations for the yield losses in Sudan. The 
overall negative impacts of climate change can be mitigated 
at least partially by horizontal expansion of agriculture in 
relatively low regions. That is, the shift of the distribution 
of precipitation towards higher values could result in the 
expansion of the areas suitable for agriculture, especially in 
eastern Sudan and the lowlands of Ethiopia. The presence 
of inter-model consistency in the direction of these trends 
ensures to some extent the reliability of future projections.

Although some crops, such as sorghum, sesame, 
maize, and teff, in the highlands of Ethiopia may benefit 
from the increase in temperature, East Africa, already 
exposed to food insecurity, will likely face more severe 
food challenges due to increasing population and anthro-
pogenic greenhouse gas concentrations. Our work sug-
gests that East Africa needs to consider various forms of 
proactive adaptation measures, including irrigation, fer-
tilization, efficient land/water management, a transition 
to heat-tolerant and drought-resistant crops, development 
of high-yield varieties, and a shift in planting dates, to 
help mitigate the projected food production challenges.
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