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Abstract
Is Atlantic Multidecadal Oscillation a genuine representation of natural variability in the climate system? Or perhaps is it 
strongly forced by external drivers? In this paper, a data-driven attribution investigation has been performed for the Atlantic 
Multidecadal Oscillation (AMO) behaviour in the past via a machine learning technique, NN modelling. We clearly see a 
forced nature of AMO in the last 150 years, with a strong contribution of the forcing coming from anthropogenic sulphates, 
which induces its typical oscillating behaviour. The following original application of our model to future predictions of the 
AMO behaviour shows that it shall probably lose its oscillating characteristic features. The only way to recover them is to 
consider an unrealistic increase in anthropogenic sulphates in the future under a strong mitigation scenario, and possibly 
a low-power solar regime. Due to the established influence of AMO on climate and meteorological phenomena in several 
regions of the world, our results can be important to better understand the past and envisage several future scenarios.

1  Introduction

As well known, the climate system is endowed with a com-
plex dynamics, characterised by both internal natural vari-
ability and interactions with external (natural and anthro-
pogenic) forcings. Attribution studies of the recent global 
warming show that the global temperature (T) has been 
mainly driven by external anthropogenic forcings, even if 
internal variability can have a role in determining tempera-
ture values at short time scales (interannual to multidecadal 
ones).

If El Niño Southern Oscillation (ENSO) clearly contrib-
utes to interannual variability, not only in global tempera-
tures (Timmermann et al. 2018), decadal ‘modulations’ of 
the global T curve have not been strictly attributed to atmos-
pheric or oceanic (possibly coupled) patterns. Nevertheless, 
an unforced internal component that varies on multidecadal 
time scales has been identified in the temperature record 

(DelSole et al. 2011) and it has been noted that the warming 
and cooling of this component matches that of the Atlantic 
Multidecadal Oscillation (AMO).

It has been shown (see, for instance, Knight et al. 2006) 
that AMO influences climate and meteorological phenomena 
in several regions of the world, e.g. Sahelian rainfall, Atlan-
tic hurricanes and European temperatures in summer. But, 
could AMO—as an internal natural oscillation in atmos-
phere–ocean-land-cryosphere interactions—have a role in 
modulating global T? Or, very differently, are there some 
external forcings which drive the AMO behaviour? This 
dilemma can be hopefully solved by attribution studies of 
the AMO behaviour itself.

As a matter of fact, many studies faced this problem 
(Knight et al., 2005; Jungclaus et al. 2005; Otterå et al. 2010; 
Booth et al. 2012; Zhang et al. 2013; Knudsen et al. 2014; 
Clement et al. 2015; Bellucci et al. 2017; Cane et al. 2017; 
Murphy et al. 2017; Bellomo et al. 2018; Kim et al. 2018; 
O’Reilly et al. 2019; Athanasiadis et al. 2020). Even if sev-
eral papers emphasised the role that external forcings (sul-
phate aerosols in particular) could have in driving the AMO 
curve, at least in the last century, others claimed to a role of 
ocean dynamics and internal factors of the climate system.

The first explanations for the AMO behaviour have 
focused on the role of naturally occurring changes in ocean 
circulation, primarily the Atlantic Meridional Overturning 
Circulation (AMOC), basing on climate model simulations 
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with constant external forcing that exhibit multidecadal cli-
mate variability with pattern and amplitude that resemble the 
observed AMO: see, for instance, Knight et al. (2005) and 
Jungclaus et al. (2005).

Then, Otterå et al. (2010) found that the phasing of the 
multidecadal fluctuations in the North Atlantic during the 
past 600 years is, to a large degree, governed by changes in 
the external solar and volcanic forcings: volcanoes play a 
particularly important role in their results.

In the study by Booth et al. (2012), anthropogenic aerosol 
emissions and periods of volcanic activity explained 76% of 
the simulated multidecadal variance in detrended 1860–2005 
North Atlantic sea surface temperatures. Aerosols were rec-
ognized as a prime driver of twentieth-century North Atlan-
tic climate variability.

Zhang et al. (2013) found discrepancies which cast doubts 
on the claim by Booth et al. (2012), but no alternative expla-
nation for the AMO behaviour has been supplied.

Knudsen et al. (2014) found that external forcing played 
a dominant role in pacing the AMO after termination of the 
Little Ice Age. Furthermore, this paper (based on statisti-
cal analyses of high-resolution proxy data) suggests that the 
AMOC is important for linking external forcing with North 
Atlantic sea surface temperatures, a conjecture that recon-
ciles the previous opposing theories concerning the origin 
of the AMO.

The results by Clement et al. (2015) show that AMO is 
not driven by ocean circulation and AMOC, but is forced by 
mid-latitude atmospheric circulation.

Basing on a multimodel analysis, the study by Bellucci 
et al. (2017) suggests that anthropogenic aerosols and green-
house gases (GHGs) might have played a key role in the 
1940–1975 North Atlantic cooling.

Cane et al. (2017) performed a modelling study which 
concludes that the ocean is influent on AMO, but not that it 
is important to the simulation of the climate variability as 
represented by the surface temperature.

Murphy et al. (2017) analysed the AMO in the prein-
dustrial and historical simulations from the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) to assess the 
drivers of the observed AMO from 1865 to 2005. They 
concluded that there is an essential role for external forcing 
in driving the observed AMO and that it is very unlikely 
that internal variability is sufficient to drive multidecadal 
changes resembling the AMO observed over the last century.

Bellomo et al. (2018) found that phase changes of the 
AMO over the years 1854–2005 can be explained only in 
the presence of varying historical forcing. Furthermore, 
they found that internal variability is large in North Atlantic 
SST at timescales shorter than 10–25 years, but at longer 
timescales the forced response dominates. Moreover, sin-
gle forcing experiments show that GHGs and tropospheric 

aerosols are the main drivers of the AMO in the latter part 
of the twentieth century.

Kim et al. (2018), from observations and model simula-
tions, support a key role for ocean dynamics, rather than 
external forcings, in Atlantic multidecadal variability during 
the last half century.

O’Reilly et al. (2019) used proxy data over a period of 
more than 300 years to investigate the internally generated 
AMO and the externally forced AMO components. In addi-
tion, they analysed a long ensemble simulation over the same 
period to estimate the external forcing of the AMO in the 
proxy datasets. The proxy AMO is found to closely follow 
the accumulated forcing of the North Atlantic oscillation 
(NAO) over almost the entire analysis period, referred to as 
an ‘internal’ source of AMO.

Finally, in a study about predictability, Athanasiadis et al. 
(2020) provided evidence that ocean dynamics may drive 
part of the observed decadal atmospheric variability. In their 
vision, the NAO partly drives ocean circulation anomalies 
and AMO.

Obviously, one can argue that the signal of AMO has 
been estimated for centuries and millennia well before the 
industrial era: see, for instance, Knudsen et al. (2011). Thus, 
the studies cited above seem quite limited for establishing 
the unforced or forced nature of AMO. Recently, however, 
Mann et al. (2021) addressed this problem and showed this 
oscillation can be due to pulses in volcanic activity in the 
last millennium. The great majority of these studies has been 
performed by runs of Global Climate Models (GCMs).

In this framework, following a first attempt briefly 
described in Pasini et al. (2017), here we address this prob-
lem via a neural network (NN) model specifically developed 
for modelling relationships amongst variables in small data-
sets (Pasini 2015). This nonlinear data-driven model allows 
us to perform an attribution activity by NNs in which we 
consider data of external forcings (solar radiation, volcanic 
activity, GHGs and black carbon (BC) radiative forcings 
(RFs), sulphates forcing) as inputs/predictors and the AMO 
index as target/predictand. Once the forced nature of AMO 
in the past is discovered, for the first time (at our knowledge) 
this model allows us to predict its future behaviour in spe-
cific scenarios, too.

Looking at the title of this paper, in our approach we 
would understand if AMO is driven by external forcings or 
is a manifestation of internal variability (possibly driven by 
other natural patterns and cycles): in this latter case, there 
is no direct effect of external forcings, even if this could 
be mediated by other variability patterns influenced by 
them. Thus, the possible influence of NAO on AMO is not 
explicitly considered, but only evaluated on the residuals of 
our NN reconstruction by external forcings: see Section 4. 
In particular, this choice allows us to perform also future 
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projections of AMO, basing on several scenarios of forcings 
(obviously, nobody can envisage future scenarios for NAO).

Incidentally, we must stress that in the AMO index 
adopted here (Enfield et al. 2001) (see also Section 2) the 
signal of Atlantic SSTs has been linearly detrended in order 
to ‘clean’ it from the strong influence of the GHG forcing, 
but, first of all, this forcing is not really linear, and secondly 
there are other forcings (both anthropogenic and natural) 
which can influence this variability pattern.

In general, attribution studies are extensively performed by 
ensemble runs of GCMs. However, it has been recently shown 
(Pasini and Mazzocchi 2015; Pasini et al. 2017; Mazzocchi and 
Pasini 2017) that in a complex system such as the climate an 
alternative and complementary strategy can be adopted in order 
to test the reliability of attribution results and possibly increase 
their robustness. In particular, NNs and other data-driven mod-
els (as completely independent models) can be applied to attri-
bution studies. In the case of attribution of the recent global 
warming, their results corroborate those obtained by GCMs, 
and permit to explore new aspects of the problem, too. In the 
case of attribution of AMO behaviour, these new models could 
clarify its forced or non-forced nature.

2 � Data

In this investigation, we base on annual data related to 
the AMO index and to the following radiative forcings: 
the warming part of the anthropogenic forcing RFWARM 
(GHGs + BC RFs), its cooling part given by sulphates 
(RFSOX), RF from solar activity (RFSOLAR) and RF from 
volcanoes (RFVOL).

In particular, we consider the AMO index calculated 
with the method of Enfield et al. (2001) and download this 
record from www.​esrl.​noaa.​gov/​psd/​data/​times​eries/​AMO. 
Data about anthropogenic radiative forcings are downloaded 
from the freely available dataset collected at http://​www.​
stern​davidi.​com/​datas​ite.​html, referred to a paper by Stern 
and Kaufmann (2014). Here the data on GHG concentra-
tions are taken from the NASA/GISS website and the related 
RF calculations are performed through standard formulas 
(Ramaswamy et al. 2001; Kattenberg et al. 1996). Data 
about sulphates come from the global estimates of their 
emissions in the past (Smith et al. 2011; Klimont et al. 2013) 
and the calculation of direct and indirect RFs as in Stern 
and Kaufmann (2014), which is based on slight modifica-
tions of previous studies (Wigley and Raper 1992; Boucher 
and Pham 2002). These last data are available until 2007: in 
order to consider a prolonged time series but not to do a too 
long extrapolation, we continue this series of RFSOX with 
constant data until 2011. Past data about RF of black carbon 
come from the RCP8.5 scenario (Meinshausen et al. 2011).

As far as the data of natural radiative forcings are con-
cerned, solar irradiance is approximated by an index previ-
ously assembled (Lean 2000) and available at https://​data.​
giss.​nasa.​gov/​model​force/​solar.​irrad​iance/. The conversion 
from solar irradiance to RFSOLAR is obtained in a stand-
ard way (Kattenberg et al. 1996). Volcanic activity of dust 
emission is considered through optical thickness data (Sato 
et al. 1993) and downloaded from https://​data.​giss.​nasa.​gov/​
model​force/​strat​aer/; RFVOL is − 27 times the optical thick-
ness (Stern and Kaufmann 2014).

In this paper, we consider also two indices of natural 
variability:

The Southern Oscillation Index (SOI), related to ENSO 
(Ropelewski and Jones 1987; Allan et al. 1991; Können 
et al. 1998), which is a well-known factor influencing the 
interannual variability of the global T series. The data 
are available at www.​cru.​uea.​ac.​uk/​cru/​data/​soi/​soi.​dat;
The NAO index (Jones et al. 1997), downloaded from 
https://​cruda​ta.​uea.​ac.​uk/​cru/​data/​nao/

Interannual variability at the surface could be affected by 
changes in ocean heat content, too. Thus, we use also data 
of the quantity of heat stored in the ocean until the depth 
of 700 m (OHC700), from http://​www.​nodc.​noaa.​gov/​OC5/​
3M_​HEAT_​CONTE​NT/​basin_​data.​html: see Levitus et al. 
(2012) for technical details.

Finally, Coupled Model Intercomparison Project Phase 6 
(CMIP6) scenarios are considered here as future estimates 
of the anthropogenic forcings (Eyring et al. 2016; O’Neill 
et al. 2016; Gidden et al. 2019; Smith et al. 2020). In par-
ticular, we based our analysis on recent data from the model 
REMIND 2.1 of the Potsdam Institute for Climate impact 
research (Leimbach et al. 2010), downloaded from https://​
data.​ene.​iiasa.​ac.​at/​ar6/#/​docs

3 � Methods

Feedforward NNs (Hertz et al. 1991; Bishop 1995) are mod-
els which permit to perform multiple nonlinear regressions. 
In our case, we can assess the possible influences of external 
forcings—considered inputs of the networks—on the AMO 
behaviour (the target to be ‘approached’ by the networks’ 
output). But in a framework of short records available such 
as our case, one has to avoid overfitting problems and han-
dle the sources of variability (e.g. the random choices for 
initial weights and validation sets). Our tool (Pasini 2015), 
adopted here, properly maximises the information for train-
ing, minimises overfitting problems and ‘averages away’ 
the NN model variability by multiple ensemble runs. This 
tool has been recently applied to several climate-driven 
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problems: see, for instance, Pasini and Modugno (2013), 
Pasini et al. (2017), Pasini and Amendola (2019), Pasini 
et al. (2020). Here, we briefly sketch the main characteristic 
features of the tool, leaving further details to its presentation 
paper (Pasini 2015).

The NNs considered in this tool are feedforward with 
one hidden layer, endowed with hyperbolic-tangent transfer 
functions at the hidden level and a linear function at the out-
put neuron. It is worthwhile to stress that in the present study 
the training technique of this tool is modified by consider-
ing a quasi-Newton backpropagation method—the so-called 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm 
(LeCun et al. 1998)—which is more suitable for handling 
small datasets with respect to the standard backpropagation 
adopted previously. This leads to differences in AMO attri-
bution results when compared with those of our previous 
attempt (Pasini et al. 2017).

In order to obtain a nonlinear relationship between inputs 
and targets (to be approximated by outputs) which can be 
generally valid, a training-validation-test procedure must be 
applied. Usually, the free parameters of the NNs (i.e. the 
connection weights) are fixed on the training set by stop-
ping the training phase when the error on the validation set 
begins to increase; then, the generalisation performance is 
measured on a third set, unknown to the NNs, the so-called 
test set. In our tool, developed for analysing small datasets, a 
generalised leave-one-out procedure is adopted for training, 
validation and test, which works as follows.

In a dataset formed by annual inputs-target patterns, 
starting from the first year we extract a single inputs-target 
pattern from the total available dataset and consider it as 
test set. Then, a validation set is randomly chosen and the 
remaining patterns constitute the training set. At the end of 
a NN run, the connection weights are fixed and we obtain a 
transfer function from inputs to output. But this result can 
be influenced by the specific random choice of the initial 
weights and of the members of the validation set. Thus, 
multiple runs are performed in an ensemble approach by 
choosing different random values for weights and members 
of the validation set. This gives the chance to calculate the 
ensemble mean of the outputs and ‘average away’ the intrin-
sic variability of NN results.

After this reconstruction of the first (annual) value of the 
target, the procedure can be followed also for the other years; 
each of their patterns becomes, sequentially, the test set. In 
this way, one can achieve the estimation of all output values 
and ensemble means at the end of this generalised leave-
one-out procedure.

In this paper, we use also standard multilinear regressions 
in order to understand the specific value added by the use 
of NNs in our analysis. In doing so, the same approach to 
training is adopted: for each single pattern, the coefficients 
of the linear regression are fixed on the other data (the union 

of the training and validation sets used in the NN method). 
Obviously, an advantage is given to the linear model, so that, 
as we will show in the following section, the better perfor-
mance of the NN model is even more notable. Of course, in 
the linear model no ensemble strategy is required.

4 � Analysis and attribution results

In the application of the tool to our problem, the validation 
sets are composed by the 10% of the total available pat-
terns and 20 multiple runs are performed in our ensemble 
approach.

Furthermore, in this paper on the attribution of AMO 
behaviour we follow the rationale of dynamical-modelling 
attribution via GCMs. This way of acting is well represented 
in the case of attribution for global T, where one chooses an 
ensemble of validated GCMs and simulates the behaviour 
of global T by supposing that certain forcings remain fixed 
at their preindustrial levels. Analogously, here we take an 
ensemble of NN models that are able to well reconstruct the 
time series of the AMO index once all observed values of 
forcings as inputs are considered, then apply their transfer 
functions (the validated NN models) to new inputs, in which 
we mimic the fact that some of their values show no trend 
since the preindustrial period, finally obtaining new outputs 
in terms of a ‘simulated’ AMO index. In doing so, one can 
appreciate the roles of the real changes in the different forc-
ings on the AMO behaviour.

As cited above, each model ensemble is composed by many 
NNs. Here we adopt 20 NNs which supply reconstructions of 
the AMO index values for each year considered test set in 
an iterated generalised leave-one-out training-validation-test 
procedure. The networks are endowed with 4 inputs (repre-
senting the anthropogenic and natural forcings for each year: 
RFWARM, RFSOX, RFSOLAR, RFVOL), 4 hidden neurons 
in a single hidden layer and one output (to be compared with 
the annual value of the AMO index, i.e. the target). The small 
architecture of the networks and the specific training method 
adopted here allow us to avoid overfitting.

The first result (illustrated in Fig.  1) shows that the 
ensemble mean (blue line) of NN outputs is able to recon-
struct the ‘shape’ of the AMO curve when all the inputs 
are considered with their real observed values, with a high 
variance explained (R2 = 0.591, RMSE = 0.116). At the same 
time, a multilinear regression model has a quite poor per-
formance (R2 = 0.265, RMSE = 0.156) and does not show 
the AMO cycle almost at all: see Fig. 2. In general, even if 
the ensemble mean tends to average away nonlinear influ-
ences, the NN approach clearly shows that nonlinearities 
between forcings and AMO are crucial to reconstruct its 
behaviour, which appears to be strongly driven by these 
external forcings.
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The spread of single NN runs (red lines) in Fig. 1 gen-
erally spans a range of less than ± 0.1 °C, even if a high 
variability is visible in 1884, a year following a big volcanic 
eruption. This is understandable because of the ‘spot-like’ 
time series of RFVOL, so that the reconstruction of this 
year requires a big extrapolation from the values of RFVOL 
presented to the NNs in the training set.

It is worthwhile to note that the ensemble mean of NN 
outputs well follows decadal and interdecadal ‘modulations’ 
of the AMO curve, but interannual variability is not very 
well caught. This high-frequency variability could be due to 
other influences not included in our forcings, or to natural 
climate variability which manifests itself at higher frequen-
cies. Here we consider the time series of SOI and NAO indi-
ces and try to see if they could explain a part of the residuals, 
i.e. the time series of observed AMO minus reconstructed 
AMO (ensemble mean) since 1866, initial date of SOI esti-
mations. Then, since 1955, initial date of OHC700 estima-
tions, we consider also the insertion of a linearly detrended 

OHC700 index as predictor in our NNs. The results (not 
shown) are quite poor: 20 NNs endowed with SOI and NAO 
as inputs and other 20 NNs with SOI, NAO and OHC700 as 
inputs show ensemble mean performance in terms of R2 of 
less than 0.1. We hope to do a more accurate investigation 
on interannual variability of AMO in a future work.

Once this good reconstruction of the AMO oscillations in 
the recent past is obtained, a proper attribution activity can 
start to understand which forcings are the most influential in 
driving its behaviour. We mimic the situations in which each 
forcing in turn does not exhibit any trend from the beginning 
of our time series and consider these new values as inputs to 
the NNs endowed by the weights fixed through the previous 
reconstruction stage. In doing so, only one forcing in turn is 
kept fixed or stationary; the other ones are considered with 
their real values.

If RFVOL is fixed to the low initial value of its record, the 
final reconstruction result is very similar to the full recon-
struction runs: see Fig. 3 (and also Table 1, in which the 

Fig. 1   Reconstruction of the 
AMO behaviour from external 
forcings by NN models. Black 
line, AMO index; red lines, 
single NN runs; blue line, 
ensemble mean

Fig. 2   Reconstruction of the 
AMO behaviour from external 
forcings by multilinear regres-
sion. Black line, AMO index; 
blue line, reconstruction results 
by multilinear regression
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values of two indices of reconstruction performance and an 
index of statistical significance are reported). The ‘shape’ of 
AMO record is completely preserved. This is not surprising 
due to the ‘spot-like’ nature of this forcing, which influences 
just few years of our time series.

As far as the values of RFSOLAR are concerned, they 
show the peculiar 11-year cycle but also a clear increase in 

the period 1910–1950, a transition from a low-power regime 
to a high-power one. Thus, in our attribution runs we can-
not consider a constant value for RFSOLAR, but create a 
synthetic stationary series (RFSOLSTAT) which shows the 
11-year cycle but no more this transition. This is done by a 
first-order Fourier series built on the first decades of data. 
See Fig. 4 for the plot of these two series.

When RFSOLSTAT is considered and transferred 
through the structure of the networks (with weights fixed 
by the previous reconstruction step) towards the output, the 
new reconstruction substantially shows a distorted oscilla-
tion, with progressively underestimated values of the AMO 
index starting from the first decades of the last century. This 
preserves the oscillating characteristic period of the curve 
and affects only the single values of the last 100 years (see 
Fig. 5). The performance indices in Table 1 show however 
a quite consistent decrease.

Thus, the features of the AMO time series are not sub-
stantially affected by changes of the natural forcings in the 

Fig. 3   NN reconstruction 
(ensemble mean) of the AMO 
behaviour when RFVOL = con-
stant. Black line, AMO index; 
blue line, reconstruction results 
by NN ensemble mean

Table 1   Indices of NN reconstruction performance (referred to the 
ensemble mean) for attribution runs, compared to the full reconstruc-
tion runs

Attribution runs/Indices R2 RMSE

Reconstruction with real forcings 0.591 0.116
Constant RFVOL 0.545 0.132
Stationary RFSOLAR 0.078 0.298
Constant RFWARM 0.040 0.494
Constant RFSOX 0.0002 0.482

Fig. 4   Detected (black line) and 
synthetic (red line) solar radia-
tive forcings
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last century and a half, at least as far as its oscillating charac-
teristic features are concerned. But, what about the influence 
of anthropogenic forcings?

Through the same method described above, we can eval-
uate the driving role of anthropogenic forcings on AMO 
behaviour. If we consider RFWARM fixed at its initial value 
and constant throughout all the period, a new attribution 
experiment can be performed. The results (presented in 
Fig. 6 and Table 1) show that the indices of performance 
decrease more strongly than in the case of RFSOLSTAT, the 
oscillation between 1920 and 1970 shows a lower maximum 
and the final increase in AMO index after 1970 disappears.

Finally, we consider RFSOX constant at its value of the 
initial year of our time series. The results of this attribution 
experiment are shown in Fig. 7 and Table 1. The indices of 
performance show a strong decrease, but the most impres-
sive result comes from Fig. 7: the oscillating behaviour of 
AMO is now completely destroyed.

Then, if sulphates are considered constant and fixed at 
the initial value of their record, the oscillating signal of 
AMO completely disappears, so claiming to a big role of 
these anthropogenic aerosols for driving AMO behaviour. 
At the same time, however, when GHGs are considered 
constant at their preindustrial values only a small oscilla-
tion is visible in the simulated AMO signal.

We can conclude this attribution investigation with 
some clear results: as a matter of fact, the AMO signal 
is modulated especially by the sulphate forcing, but a 
component of GHG forcing is needed for determining 
well its observed form. No substantial role has been 
detected for external natural forcings as far as the oscil-
lating characteristic features of the AMO time series 
are concerned.

In short, reminding the question asked in the title of this 
paper and following our investigation, for the case of AMO 
natural variability seems not to be really natural.

Fig. 5   NN reconstruction 
(ensemble mean) of the AMO 
behaviour when the solar radia-
tion is considered stationary 
throughout the period. Black 
line, AMO index; blue line, 
reconstruction results by NN 
ensemble mean

Fig. 6   NN reconstruction 
(ensemble mean) of the AMO 
behaviour when RFWARM is 
considered fixed at its initial 
value and constant throughout 
all the period. Black line, AMO 
index; blue line, reconstruction 
results by NN ensemble mean
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5 � Future scenarios and projections

In our basic NN runs with real values for external forc-
ings, we obtained ‘transfer laws’ which strictly link these 
external forcings to AMO behaviour in the past (via the 
weights of the NNs fixed at the end of our generalised 
training-validation-test procedure). Now it is interesting 
to investigate what happens when these relationships are 
used for predicting the future. We can do so in a very sim-
ple manner with a forward step, that is by propagating the 
values of external forcings coming from future scenarios 
towards the output of the networks, which now simulates 
the annual value of AMO index in the future.

For anthropogenic forcings, we use their future values 
contained in the CMIP6 data and the Shared Socioeconomic 
Pathways (SSP) scenarios (Eyring et al. 2016; O’Neill et al. 
2016; Gidden et al. 2019; Smith et al. 2020). For natural 
forcings, we consider a future with a constant low value of 

RFVOL (it is difficult to hypothesise frequency and strength 
of future eruptions) and two different scenarios for the solar 
activity, as shown in Fig. 8. In the first scenario, we consider 
that until the end of this century RFSOLAR shall remain in 
a high-power regime, and in the second one, we hypothesise 
its return to the values of the low-power regime which char-
acterised the period before 1910: this is done by a first-order 
Fourier series with a superimposed decreasing trend up to 
2050 and a return to values comparable at the low-power 
regime of the first 60 years (1850–1910) of the observed 
dataset for the last 50 years (2050–2100).

We consider the structure of the networks fixed in the last 
step of our procedure, when the value of the AMO index for 
2011 was reconstructed. Then, we apply these transfer func-
tions to the new inputs coming from the cited scenarios. The 
results are as follows.

Our NN ensemble mean projections under four SSP 
scenarios are presented in Fig. 9 for the high-power solar 

Fig. 7   NN reconstruction 
(ensemble mean) of the AMO 
behaviour when RFSOX is con-
sidered fixed at its initial value 
and constant throughout all the 
period. Black line, AMO index; 
blue line, reconstruction results 
by NN ensemble mean

Fig. 8   Future scenarios of 
RFSOLAR in the hypotheses of 
both a high-power regime (red 
line) and a low-power regime 
(blue line)
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regime and in Fig. 10 for the low-power one. In the first 
case, after a slow initial increase, a quasi-constant behaviour 
of the AMO index is visible for SSP2-4.5 scenario and a 
slight decreasing tendency for SSP1-2.6, while SSP3-7.0 and 
especially SSP5-8.5 show clear increasing tendencies (see 
Fig. 9). In any case, the oscillating AMO behaviour seems 
to be destroyed in the future.

If the low-power solar scenario is considered (Fig. 10), 
SSP2-4.5 shows still a quasi-constant behaviour, while 
SSP3-7.0 and SSP5-8.5 are still increasing, even if more 
slowly than in the previous case. Only SSP1-2.6 appears 
more sensitive to this change in the solar forcing and, start-
ing from the 2030 decade, its projection shows a decrease 
which, however, does not achieve the minimum values of the 
AMO time series. Furthermore, the decreasing tendency is 
quasi-linear and does not show any periodic cycle.

Thus, the future behaviour of AMO shows no periodic 
oscillations in our NN projections and seems to be only 
partially affected by changes in the solar forcing. This last 
consideration is consistent with the results obtained in our 
reconstructions for the past, which show the little impact of 

changes in natural forcings on AMO behaviour and lead to 
the result that its major driver was instead the radiative forc-
ing of sulphates. In the SSP scenarios, RFSOX is assumed 
to decrease in absolute value from the present radiative forc-
ing of about − 1.0 to − 0.5 W/m2 in 2100, almost linearly 
(the negative sign of RFSOX influence indicates its cooling 
effect). This is due to the realistic hypothesis that the envi-
ronmental legislation (which regulates sulphates emissions, 
dangerous for health) will be applied more strictly in the 
future.

We have no doubt that this hypothesis has a high prob-
ability to be correct, but, just to show a counter-example, 
one can hypothesise a different tendency for sulphates in the 
future and look at what can happen to the AMO index. Sup-
pose that RFSOX shall pass linearly from the present value 
of − 1.0 to − 1.4 W/m2 in 2100 and put these data in input 
to our NNs; the projection results are shown in Figs. 11 and 
12 for the hypothesised future cases of a high-power solar 
regime and a low-power one, respectively.

In Fig.  11, the behaviours of SSP5-8.5 and SSP3-
7.0 show increasing values of the AMO index, but with 

Fig. 9   NN ensemble mean 
projections of the future behav-
iour of the AMO index under 
four SSP scenarios (SSP1-2.6, 
blue line; SSP2-4.5, yellow 
line; SSP3-7.0, brown line; 
SSP5-8.5, red line) in the case 
of a high-power solar radiation 
hypothesised for the future

Fig. 10   As in Fig. 9, but in the 
case of a low-power solar radia-
tion hypothesised for the future
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reduced increasing rates in the last half of the century (and 
an almost null rate in the last decades); SSP2-4.5 projec-
tions show small increases followed by small decreases. 
Finally, SSP1-2.6 shows an initial linear tendency to 
decrease after 2030, with a plateau in the last decades 
which achieves the minimum values of the historical 
AMO, mimicking the reappearance of a cycle, even if with 
a period longer than that experienced in the past.

In Fig. 12, while in the two highest SSPs an initial ten-
dency to a slow increase and a final asymptotic behaviour 
are visible, SSP2-4.5 shows a decrease after 2050; the 
projections of SSP1-2.6 show a more rapid decrease and 
achieve the minimum values of the historical AMO, also 
showing the completion of a cycle, with a period which 
resembles that of the historical AMO.

Thus, in our NN model the only way to recover an AMO 
cycle in the future is to hypothesise a big increase of sul-
phate emissions in the atmosphere and the correspondent 
strong negative radiative forcing under a strong mitigation 
scenario. In the meantime, a low-power regime of the Sun 

must be hypothesised, too, if we want to recover a cycle 
with a period resembling that of the historical AMO.

6 � Conclusions

In this paper, a data-driven attribution investigation has 
been performed for the AMO behaviour in the past via a 
machine learning technique, NN modelling. The results 
show that a NN model with the values of anthropogenic and 
natural forcings as inputs permits to reconstruct the oscil-
lating characteristic features of AMO. The following NN 
attribution study—which follows the way of acting of more 
classical attribution ones via GCM ensembles—shows that 
this oscillating behaviour strongly depends on anthropogenic 
sulphates.

Once the forced nature of AMO in the last 150 years is 
seen, the original application of our model to future predic-
tions of the AMO behaviour shows that it shall probably 
lose its oscillating characteristic features. The only way to 

Fig. 11   NN ensemble mean pro-
jections of the future behaviour 
of the AMO index under four 
SSP scenarios, when RFSOX 
passes linearly from the present 
value of − 1.0 to − 1.4 W/m.2 in 
2100. In this case, we consider a 
high-power solar radiation sce-
nario for the future (SSP1-2.6, 
blue line; SSP2-4.5, yellow line; 
SSP3-7.0, brown line; SSP5-
8.5, red line)

Fig. 12   As in Fig. 11, but when 
we consider a low-power solar 
radiation scenario for the future
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recover them is to consider an unrealistic increase in anthro-
pogenic sulphates in the future under a strong mitigation 
scenario, and possibly a low-power solar regime.

In the framework of the recent literature on the attribu-
tion of AMO behaviour (widely described in Section 1), the 
present paper explores this topic by a data-driven method, 
which is complementary to more classical dynamical studies 
by GCMs and permits to investigate the unforced or forced 
nature of AMO in an independent way. This can be impor-
tant in itself, as the behaviour of complex systems often 
benefits of analyses from different ‘angles’, especially for 
comparing the new results to previous ones achieved with 
different methods. In particular, our study corroborates the 
previous dynamical studies which evidenced the importance 
of anthropogenic forcings (sulphates, in particular) for the 
reconstruction of the past behaviour of AMO. Here, the 
oscillating behaviour is completely lost if we do not consider 
the real changes in sulphate RF.

Furthermore, our method allows us immediately to pre-
dict the future behaviour of AMO in different SSP scenarios, 
achieving the original result that its oscillating behaviour 
shall be lost in each scenario, if we exclude an artificial sce-
nario (built ad hoc by us) in which anthropogenic sulphates 
shall show a big increase in concentration and the solar RF 
possibly shall present a low-power regime.

Due to the established influence of AMO on climate and 
meteorological phenomena in several regions of the world 
(see, for instance, Knight et al. 2006), the results presented 
in this paper can be important to better understand the past 
and envisage several future scenarios.
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