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Abstract
High-resolution, daily precipitation climate products that realistically represent extremes are critical for evaluating local-
scale climate impacts. A popular bias-correction method, empirical quantile mapping (EQM), can generally correct
distributional discrepancies between simulated climate variables and observed data but can be highly sensitive to the choice
of calibration period and is prone to overfitting. In this study, we propose a hybrid bias-correction method for precipitation,
EQM-LIN, which combines the efficacy of EQM for correcting lower quantiles, with a robust linear correction for upper
quantiles. We apply both EQM and EQM-LIN to historical daily precipitation data simulated by a regional climate model
over a region in the northeastern USA. We validate our results using a five-fold cross-validation and quantify performance of
EQM and EQM-LIN using skill score metrics and several climatological indices. As part of a high-resolution downscaling
and bias-correction workflow, EQM-LIN significantly outperforms EQM in reducing mean, and especially extreme, daily
distributional biases present in raw model output. EQM-LIN performed as good or better than EQM in terms of bias-
correcting standard climatological indices (e.g., total annual rainfall, frequency of wet days, total annual extreme rainfall).
In addition, our study shows that EQM-LIN is particularly resistant to overfitting at extreme tails and is much less sensitive
to calibration data, both of which can reduce the uncertainty of bias-correction at extremes.

1 Introduction

Climate data is often necessary for social, ecological,
and hydrological models and is routinely used in climate

� Maike Holthuijzen
maike.holthuijzen@uvm.edu

Brian Beckage
brian.beckage@uvm.edu

Patrick J. Clemins
patrick.clemins@uvm.edu

Dave Higdon
dhigdon@vt.edu

Jonathan M. Winter
jonathan.m.winter@dartmouth.edu

1 University of Vermont, Burlington, VT, USA

2 Virginia Tech, Blacksburg, VA, USA

3 Dartmouth University, Hanover, NH, USA

impact models and assessments. Model reliability is largely
dependent on the quality and resolution of climate data
products (Flint and Flint 2012; Holden et al. 2011; Franklin
et al. 2013; Field et al. 2014). The representation of
extremes, in particular, can have a disproportionately large
effect on such models (Lanzante et al. 2021). Increases
in the frequency, variability, and magnitude of extreme
precipitation over the last several decades, especially in
the northeastern USA, are well-documented (Hayhoe et al.
2007; Huang et al. 2017). To study the future impacts of
changing extremes at local scales, climate data products
must represent extreme events accurately and be available at
fine spatial and temporal resolutions (Lanzante et al. 2021).
General circulation models (GCMs) provide important
information about historical and future larger-scale climate
trends, but their resolution is too coarse to investigate
localized effects of changes in extreme climate events
(Ekström et al. 2015; Lafon et al. 2013). Additionally,
raw GCM output is characterized by a non-trivial degree
of bias (Lafon et al. 2013), and the ability of GCMs
to reproduce extreme tails of climate variables is limited
(Leander and Buishand 2007). Therefore, prior to its use
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in hydrological (Pierce et al. 2015; Shrestha et al. 2017),
agricultural (Hoffmann and Rath 2012), or ecological
models, GCM output is downscaled to a finer resolution
and bias-corrected with respect to observed data (Zia et al.
2016). These post-processing techniques result in climate
data that is more realistic at finer spatial scales. Here,
we propose a bias-correction method that more accurately
captures precipitation extremes. We incorporate it into a
high-resolution downscaling and bias-correction workflow
for constructing daily, high- resolution data products for use
in modeling efforts.

In the process of downscaling, model output is converted
from a coarse to finer resolution. In dynamical downscal-
ing, a regional climate model (RCM) is forced with a
GCM, resulting in finer-scale output in which regional cli-
mate processes, topography, and orography are incorporated
(Feser et al. 2011). In statistical downscaling, statistical rela-
tionships between coarse-scale climate variables and local,
observed data are established, and the effects of fine-scale
predictors are integrated into downscaled data (Maraun et al.
2010). Dynamical downscaling is computationally inten-
sive and can introduce additional biases (Caldwell et al.
2009; Leung et al. 2003), but, localized climate processes,
including extremes (Gao et al. 2006), are generally bet-
ter reproduced than in GCMs (Maraun 2016). However,
RCMs do not perform well in capturing the most extreme
events (Baigorria et al. 2007; Leander and Buishand 2007).
Statistical downscaling is efficient, can be applied to a
variety of climate variables (Mearns et al. 2003), and
is especially effective in topographically complex terrain
(Hanssen-Bauer et al. 2005). Climate data products with
fine spatial resolutions, which are important for studying
localized changes in extreme climate events, can be gen-
erated by combining statistical and dynamic downscaling,
(Friederichs and Hense 2007). In this study, we combine sta-
tistical and dynamical downscaling to produce precipitation
data products with a fine spatial resolution.

Downscaling is complemented by bias-correction, a
procedure in which climate model output is adjusted such
that its statistical properties (e.g., mean, variance, and
potentially higher moments) resemble those of observations
in a common climatological period (Lafon et al. 2013;
Cannon et al. 2020). We note that the terms “downscaling”
and “bias-correction” are sometimes used to refer to
equivalent processes. However, in this study, downscaling
only refers to the process in which coarse, gridded climate
data is interpolated to a finer spatial resolution, and bias-
correction refers specifically to applying transformations
to climate model output such that distributional biases are
reduced. Most bias-correction methods assume stationarity
of model errors over time (Roberts et al. 2019), which
can be problematic for bias-correcting future climate model
output over multi-decadal time spans (Cannon et al. 2015;

Fowler et al. 2007). In addition, sufficient observational
data is necessary to derive robust transfer functions (Fowler
et al. 2007). Bias-correction methods for precipitation
range from simple approaches such as the “delta change”
or “delta factor” method (Teutschbein and Seibert 2012)
to more flexible and effective quantile-mapping based
methods (Teutschbein and Seibert 2012; Cannon et al.
2015; Wood et al. 2002). In quantile-mapping (QM) based
methods, a transfer function (TF) maps quantiles of climate
model output to those of observed data. QM methods can
be parametric (Piani et al. 2010), non-parametric (Lafon
et al. 2013), or a combination of both (Tani and Gobiet
2019). Distribution mapping (DM) is a parametric QM
method in which known, parametric distributions are fit
to observed and model data. The Gamma distribution is
often used to model wet-day precipitation (e.g., (Lafon et al.
2013; Gudmundsson et al. 2012; Luo et al. 2018)) but is
generally not adequate for modeling extreme precipitation
tails (Heo et al. 2019; Gutjahr and Heinemann 2013).
Hybrid DM approaches in which the Gamma distribution
is fit to lower quantiles and a heavy-tailed distribution is
fit to tail quantiles can improve bias-correction of extreme
precipitation (Gutjahr and Heinemann 2013; Um et al.
2016). A non-parametric counterpart to DM, empirical
quantile mapping (EQM), is a flexible method in which
no distributional assumptions are made. In EQM, the TF
represents a mapping from empirical model quantiles to
observed quantiles and typically outperforms DM (Jakob
Themeßl et al. 2011; Ivanov and Kotlarski 2017). EQM
is effective in correcting precipitation variables (Jakob
Themeßl et al. 2011; Fang et al. 2015; Jakob Themeßl
et al. 2011; Miao et al. 2016; Enayati et al. 2021) and
is attractive as a bias-correction method as it corrects the
mean, standard deviation, and higher-order distributional
moments (Gudmundsson et al. 2012).

A disadvantage of QM methods and EQM in particular,
is their propensity to overfit on calibration data, especially
at precipitation extremes where data is scarce and highly
variable (Lafon et al. 2013; Grillakis et al. 2013; Holthuijzen
et al. 2021; Piani et al. 2010; Mamalakis et al. 2017).
In EQM, TFs are interpolated using linear interpolation,
splines, or other smoothing techniques (Gudmundsson
2016). Flexible methods such as EQM can result in TFs
that can correct model data nearly perfectly (overfitting) but
may not generalize to out-of-sample or future model data.
Overfitting is problematic because it can lead to instability
of the TF at higher quantiles (Gobiet et al. 2015; Grillakis
et al. 2013; Hnilica et al. 2017). When applied to future
projections, EQM has been shown to significantly distort
future climate change signals (Grillakis et al. 2017; Maraun
et al. 2017) and exaggerate or deflate extreme trends,
introducing additional uncertainty into bias-corrected data
(Cannon et al. 2015; Tani and Gobiet 2019). Hybrid EQM
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approaches that combine parametric and non-parametric
modeling can reduce the degree of overfitting of the TF at
extreme tails (Tani and Gobiet 2019). In a hybrid approach,
bias-correction below a specified threshold is achieved via
a non-parametric TF (EQM), while bias-correction above
the threshold is with DM, based on an extreme distribution,
such as the Generalized Pareto distribution (Tani and Gobiet
2019). Hybrid EQM methods combine the flexbility of
EQM for correcting lower to middle quantiles with the
robustness of parametric distributions for correcting upper
quantiles. In particular, the use of extreme or heavy-
tailed distributions for modeling extremes can improve
bias-correction of tail quantiles (Laflamme et al. 2016;
Mamalakis et al. 2017; Yang et al. 2010; Gutjahr and
Heinemann 2013; Kim et al. 2018; Yang et al. 2010; Tani
and Gobiet 2019). However, the risk of overfitting the TF
at distributional tails still exists, as poor fits to heavy-
tailed distributions can introduce outliers (Luo et al. 2018;
Shin et al. 2019). In addition, selection of the threshold
is difficult, as the amount of data beyond the threshold
must be sufficiently large to allow for distribution fitting
and must approximate a known heavy-tailed distribution
(Beirlant et al. 2006; Gutjahr and Heinemann 2013). There
is a need for a hybrid EQM method in which bias-correction
of extremes can be performed without the risk of overfitting
and the introduction of outliers.

We propose and demonstrate a simple, hybrid EQM
method for bias-correction that, when used in conjunction
with downscaling, results in high-resolution (1km) daily
precipitation data in which precipitation extremes are
accurately represented. The proposed method, EQM-LIN,
combines the effectiveness of EQM for correcting the
bulk of the distribution with a robust, linear correction
for extremes. As part of a high-resolution, downscaling
and bias-correction workflow, we use EQM-LIN to bias-
correct historical (1976–2005), daily precipitation data that
were dynamically downscaled by a regional climate model
(RCM). We also compare the effectiveness of EQM-LIN
to EQM for bias-correction, with an emphasis on the
ability of the two methods to accurately capture extremes.
Because EQM-LIN is computationally cheap, easy to apply,
and corrects both mean and extreme bias for precipitation
variables, it is an important methodological addition to the
body of bias-correction literature.

2Methods

2.1 Data

The study area, the Lake Champlain Basin, consists of
parts of Vermont, New Hampshire, eastern New York, USA
and southern Quebec, Canada (Fig. 1). Eleven watersheds

drain into Lake Champlain, and the Green Mountains,
Adirondack Mountains, and White Mountains span portions
of Vermont, New York, and New Hampshire, respectively
(Winter et al. 2016). The study area is approximately
13,251 km2. Elevations range from 30 to 1500 m above
mean sea level (MSL). The study area is characterized by a
subhumid continental climate with cold and snowy winters.
At high elevations, mean annual precipitation can reach
1,000–1,520 mm, while at low elevations, mean annual
precipitation ranges between 750–900 mm; locally intense
precipitation in the form of thunderstorms is likely during
summer months (Stager and Thill 2010).

Simulated historical (1976–2005) precipitation (PRCP)
data were generated by the Advanced Weather and Research
Forecasting model (WRF) version 3.9.1, an RCM (Ska-
marock et al. 2019). WRF output was generated at a
daily temporal resolution. WRF is a widely used numeri-
cal weather prediction system for both research and applied
forecasting purposes (Skamarock et al. 2019). Historical
simulations (1976–2005) were forced by bias-corrected
Community Earth System Model 1 (CESM1), a GCM
(Monaghan et al. 2014). CESM1 historical simulations were
dynamically downscaled with WRF to a 4-km resolution
using three one-way nests (36 km, 12 km, 4 km). The 4-km
resolution WRF data were used for this study. Additional
WRF model details are included in the Supplementary
Materials, and a full description and evaluation of simula-
tions can be found in (Huang et al. 2020).

Historical daily climate station data was obtained from
the Global Historical Climate Network (GHCND) (https://
www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND).
GHCND data records are adjusted to account for changes in
instrumentation and other anomalies (Oceanic and Admin-
istration 2018; Peterson and Vose 1997). We retained only
those stations with at least 70% complete records over
the historical time period 1976–2005 (85 stations). We
chose to use station data, rather than gridded data products
(e.g., Livneh et al. 2015; Daymet, (Thornton et al. 2012);
and PRISM, (Daly et al. 2000)), because interpolation
algorithms used to create gridded climate products can
introduce bias (Behnke et al. 2016) and additional uncer-
tainty when used for bias-correcting climate model output
(Walton and Hall 2018; Tarek et al. 2021). Gridded prod-
ucts can misrepresent extreme tails (Bannister et al. 2019),
and (Wootten et al. 2021) showed that Daymet, Livneh,
and PRISM precipitation products varied widely in their
representation of wet-day occurrences, length of wet and
dry periods, and precipitation intensity in the South-Central
USA. Station data represent direct climatological measure-
ments and are available throughout the Northeastern USA
(Peterson and Vose 1997; Durre et al. 2010). We acknowl-
edge that there is a spatial misalignment between gridded
model data and point-based GHCND station data. In the
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Fig. 1 GHCND stations (black)
within the study area (red). The
study area is approximately
13,251 km2

study region, elevation has the most significant impact on
precipitation. The WRF model accounts for elevation at a
4-km spatial resolution, which is adequate to capture the
main effects of elevation within the study region. In addi-
tion, the effect of fine-scale (1 km) elevation is incorporated
via topographical downscaling (Winter et al. 2016), adding
further value to model data. There are numerous examples
in the bias-correction literature in which point-based station
and downscaled model data are treated as equivalent (e.g.,
Rajczak et al. (2016), Heo et al. (2019), and Gutjahr and
Heinemann (2013)).

In the proposed workflow, historical WRF simulations
(model output) are downscaled to a 1-km grid prior to bias-
correction using topographic downscaling, a variation of
inverse distance weighting (IDW) that incorporates eleva-
tional lapse rates (Winter et al. 2016). Elevation estimates
at each 1-km grid cell were derived by interpolating ele-
vation values from a 30-m digital elevation model (DEM)
(USGS 2018) via IDW. The 1-km grid cell size was chosen
based on resolution requirements for climate impacts mod-
eling efforts over the Lake Champlain Basin (Wang et al.
2012; Winter et al. 2016).

Prior to bias-correction, historical model data were also
interpolated to GHCND station locations via topographical
downscaling for the purpose of constructing TFs. To gen-
erate high-resolution, bias-corrected data products, bias-
correction was applied to model data downscaled to the
1-km grid. All performance metrics were calculated using
model data topographically downscaled to the 85 GHCND
station locations and GHCND station data. Raw WRF
model data exhibited a wet bias that was most pronounced
during summer months (Fig. 2). This type of seasonal bias in
WRF model simulations has also been found in other studies
in the northeastern USA (e.g., Huang et al. (2020)).

2.2 Bias-correctionmethods

The proposed approach, empirical quantile mapping with
a linear correction for extremes, EQM-LIN, was compared
to empirical quantile mapping (EQM), which is one of
the most frequently used and effective methods for bias-
correction. In addition, we compared EQM-LIN to DM
with the Gamma distribution (DM-GAMMA), a hybrid
EQM approach in which lower quantiles were corrected
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Fig. 2 Mean daily precipitation
(mm/day) for raw model (Mod)
topographically downscaled to
GHCND station locations and
GHCND station data (Obs) with
loess smoothers (smooth solid
lines) overlaid. Daily means are
calculated over the 85 GHCND
station locations for years
1976–2005

using EQM, and upper quantiles were fit to Generalized
Pareto Distributions (GPDs) (EQM-GPD) (Tani and Gobiet
2019), as well as a trend-preserving method, quantile delta
mapping (QDM) (Cannon et al. 2015). The results are pre-
sented in the Supplementary Material but not evaluated in
the main manuscript, since none of the additional methods
performed as well as or significantly better than EQM or
EQM-LIN.

For both bias-correction methods EQM-LIN and EQM,
TFs were constructed by spatially pooling GHCND station
and model data downscaled to station locations. The same
TF was applied to all model values, regardless of spatial
location. We chose to spatially pool data because (1) much
of the spatial variation in the data is due to elevation, which
is accounted for during the downscaling procedure, and
(2) additional interpolation necessary to construct separate
TFs based on spatial location would have added uncertainty
to bias-corrected data. Spatially explicit bias-correction in
general can be a difficult task and involves estimating the
TF at every location at which bias-corrected data is desired
(Holthuijzen et al. 2021), which is contrary to our desire to
develop a bias-correction approach that is simple, efficient,
and easily implemented.

For both bias-correction methods, twelve TFs were con-
structed, one for each month of the year (Jakob Themeßl
et al. 2011; Piani et al. 2010) using model data topographi-
cally downscaled to GHCND stations and GHCND station
data. Daily raw model data downscaled to station loca-
tions and raw model data downscaled to the 1-km grid
were corrected with the corresponding monthly TF. Because
GHCND station gauges are accurate to 0.1 mm (Oceanic
and Administration 2018), we defined wet-day precipitation
days as days in which daily precipitation was greater than
or equal to 0.1 mm. Prior to construction of TFs and bias-
correction, daily model values below 0.1 mm were set to 0.
All analyses were conducted in R Statistical Language (R
Core Team 2018).

Empirical quantile mapping: EQM The TF used in EQM is
expressed by the empirical cumulative distribution function
(ecdf) and its inverse (ecdf−1). Monthly TFs are of the form:

xcorr,t = ecdf−1
obs(ecdfmod(xmod,t )), (1)

where, xcorr,t is the corrected model precipitation value on
day t , ecdf−1

obs is the inverse ecdf of observed data, ecdfmod

is the ecdf of model data, and xmod,t is the raw model
precipitation value on day t . Monthly TFs were constructed
using 10,000 estimated quantiles, and interpolation of the
TF was accomplished with monotone Hermite splines using
the qmap package (Gudmundsson 2016) in R. Values
exceeding the range of the TF were corrected using the
method of constant extrapolation (Boé et al. 2007). The
approximate shape of the TF can be examined by plotting
estimated quantiles of model and observed data against one
another to form a “quantile-quantile-” or “qq-” map (Fig. 3).
The shape of the quantile-quantile map can provide insight
into the type and magnitude of model bias. For instance, if
the TF falls below (rises above) the 1:1 line, model quantiles
are too high (low) relative to observed quantiles.

Empirical quantile mapping with a linear correction for
extremes: EQM-LIN In EQM-LIN, the majority of model
data are bias-corrected via EQM using Eq. 1, while model
data beyond a specified threshold are adjusted with a
constant correction via a linear TF (2). All bias-correction
by EQM was done with the qmap package (Gudmundsson
2016) in R, and custom code was used to construct the linear
TF. The following steps describe the EQM-LIN procedure:

1. Calibration data is divided into two datasets in which
model data is less than (CAL-LOW) and greater than
a specified threshold (CAL-HIGH). The threshold, T

is a function of the inverse ecdf of model data and
is expressed as T = ecdf −1

mod(τLIN), where 0 <

τLIN < 1. Thus, T is a precipitation value in mm that
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Fig. 3 A quantile-quantile map for August constructed with 10,000
quantiles of model and observed data during the calibration period.
The red solid line denotes the 1:1 line. Here, raw model data exhibits
a low bias, especially at upper quantiles, as the qq-map lies above the
1:1 line

indicates where both model and observed datasets are
divided. The procedures for estimating T and τLIN are
thoroughly outlined in Appendix A.

2. Next, the intercept for the linear TF, δ is obtained
(details are discussed in Appendix A). The intercept
represents the constant correction that will be applied
to extreme model values (all model values in CAL-
HIGH). The linear TF is expressed as xcorr,t =
δ + xmod,t and is applied to model values in
CAL-HIGH (2). Model values in CAL-LOW are corrected
via EQM. The TF for EQM-LIN is expressed as:

xcorr,t =
{

ecdf−1
obs(ecdfmod(xmod,t )), xmod,t <T

xmod,t + δ, xmod,t ≥ T ,
(2)

where xcorr,t and xmod,t are as defined in Eq. 1. Thus,
the linear portion of the TF (xcorr,t = δ+xmod,t ) always
has a slope of 1 and intercept δ.

In this study, we only consider linear TFs with a slope
of 1 and intercept of δ. Optimizing the slope as well as the
threshold would increase the overall complexity of EQM-
LIN and could introduce the potential for overfitting on
out-of-sample data.

We chose τLIN to be 0.79, based on a grid search over
a range of values in a five fold cross-validation approach
(details are discussed in Appendix A). We chose the value
of τLIN that resulted in the minimization of the mean
absolute error of observed and model ecdfs above the
95th percentile (MAE95), (Reiter et al. 2016) (Section 3).
MAE95 quantifies the distributional similarity between

observed and model data at extremes. Since the focus of
this study was on accurately representing distributional
extremes, we chose the minimization of MAE95 rather
than another metric. However, we found that minimization
of MAE95 resulted in improvements in all performance
metrics and indices.

The shape of the EQM-LIN TF is identical to that of
EQM below T , while above the threshold the TF is linear.
Figure 4 shows a quantile-quantile map for model and
observed data for the month of August and the associated
EQM and EQM-LIN TFs.

3 Validation

Performance evaluation of EQM and EQM-LIN was accom-
plished with a five-fold cross-validation procedure using
observed and model data during the calibration period (1976–
2005). Cross-validation is commonly used to evaluate the
efficacy of bias-correction methods, as out-of-sample data
can be considered proxies for future projections (Tani and
Gobiet 2019; Gudmundsson et al. 2012; Jakob Themeßl
et al. 2011). Test datasets always consisted of consecu-
tive years (for example, if training data consisted of years
1976–2000, test data would contain years 2001–2005).

We chose performance metrics and indices that quan-
tified (1) model skill and (2) the effectiveness of bias-
correction methods in capturing overall climatology with an
emphasis on extreme tails. All performance metrics were
calculated using model data topographically downscaled to
GHCND station locations and GHCND station data. Model
skill, distributional similarity between model and observed
data, was quantified with the mean absolute error (MAE).
We chose MAE, rather than other skill metrics, such as the
Perkins Skill Score (Perkins et al. 2007), because it is more
sensitive to outliers. Since TFs for EQM and EQM-LIN are
constructed on a monthly basis, MAE metrics are also calcu-
lated by month. MAE was calculated between distributions
of daily observed and raw model data as well as between
distributions of daily observed and bias-corrected data at
GHCND station locations for a given month (Gudmunds-
son et al. 2012). MAE95 was used to quantify model skill
at extreme tails. MAE95 is computed similarly to MAE,
but only the upper 5% of daily observed and model dis-
tributions are used (Reiter et al. 2016). The number of
quantiles estimated in the calculation of MAE95 was equal
to the maximum number of 95th quantile values in observed
or model distributions. Generally, the number of values
greater than the 95th quantile in each data type (model,
bias-corrected model, and observed) did not differ apprecia-
bly. MAE and MAE95 metrics were calculated by month
for each of the five cross-validated data folds for raw and
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Fig. 4 The quantile-quantile
map and corresponding EQM
and EQM-LIN TFs for daily
observed and model data during
the month of August over the
calibration period 1976–2005.
(a) quantile-quantile map,
constructed using 10,000
quantiles evenly spaced between
0 and 1; (b) EQM TF ; (c)
EQM-LIN TF, with the blue line
denoting the non-parametric
(EQM) portion of the TF and the
red line indicating the linear
portion; d) enlarged section of
EQM-LIN TF in (c) (gray box)
to illustrate the transition from
EQM portion to the linear
portion of the TF. In (c) and (d),
the threshold (dashed line),
indicates the 79th quantile of
model data (6.88 mm)

bias-corrected data, and results are reported as the average
metrics over the five folds. MAE and MAE95 quantify dis-
tributional error between model and observed data; lower
values are indicative of better model skill, with an ideal
mean absolute error of 0 (no error).

We used a subset of ETCCDI indices (Peterson 2005)
to assess how well bias-corrected data captured overall
climate characteristics of observed data. ETCCDI indices
are standard indices that allow for the comparison of results
over varying time periods, geographical regions, and source
data, and are recommended by the World Research Climate
Program (WRCP) (Karl et al. 1999). ETTCDI indices were
computed annually with spatially pooled data. Prior to
calculating ETCCDI indices, downscaled raw model, bias-
corrected model, and station data were averaged over the
85 station locations for each day in the 30-year calibration
period (10950 days). Thirty annual values of each ETCCDI
index were calculated for observed, raw model, and bias-
corrected model data. The choice of indices was based on
the preference of stakeholders.

“D” indices (D90, D95, and D99) are defined as the
annual number of days in which mean daily precipitation
exceeded the 90th, 95th, or 99th quantiles. “S” metrics
(S90, S95, and S99) are defined as the annual sum of
mean daily precipitation (mm) for days in which mean daily

precipitation exceeded the 90th, 95th, or 99th quantiles.
TotalP is the annual sum of mean daily precipitation (mm)
on wet days (days for which mean daily precipitation
0.1 mm), WetDays is the annual count of wet days,
and the simple precipitation index (SPI) is calculated as
TotalP/WetDays (mm/day). SPI is a measure of precipitation
intensity. The nine indices characterize the extreme tails, as
well as general characteristics, of the 30-year climatology
of precipitation. An overview of MAE metrics and ETCCDI
indices is given in Table 1.

Performance evaluated by ETCCDI indices or MAE
metrics cannot be directly compared, since each provides
assessments on different temporal scales. MAE metrics
quantify distributional errors of the entire distribution of
daily model data compared to observed data. ETCCDI
indices quantify how well model data capture 30-year cli-
matology at a temporally coarser (annual) scale using spa-
tially averaged data. In combination, both evaluation metrics
give insight in the overall adequacy of the bias-correction
method at both aggregated and finer temporal scales.

3.1 Analyses

Bayesian one-way analysis of variance (ANOVA) mod-
els were used to determine if MAE and MAE95 differed
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Table 1 Metric and index definitions

Metric/Index Definition Reference

MAE Mean absolute error of quantiles of observed and raw model or bias-corrected
model distributions. MAE is calculated using daily data (not spatially averaged)
for the entire historical period using 10,000 estimated quantiles

Gudmundsson et al. (2012)

MAE95 Mean absolute error of upper 5% of quantiles of observed and raw model or
bias-corrected model distributions. MAE95 is calculated using daily data (not
spatially averaged) for the entire historical period

Reiter et al. (2018)

D90, D95, D99 Annual count of days for which mean daily precipitation exceeded the 90th 95th
or 99th percentile

Alexander et al. (2011)

S90, S95, S99 Annual sum (mm) of mean daily precipitation on days in which mean daily
precipitation exceeded the 90th , 95th, or 99th percentile

Alexander et al. (2011)

TotalP Annual sum (mm) of mean daily precipitation on days in which mean daily
precipitation ≥ 0.1 mm

Alexander et al. (2011)

WetDays Annual count of days in which mean daily precipitation ≥ 0.1 mm Alexander et al. (2011)

SPI Simple precipitation index (mm/day) calculated as TotalP/WetDays Alexander et al. (2011)

significantly among raw model, EQM and EQM-LIN data.
Separate ANOVA tests were conducted for MAE and
MAE95. ANOVA tests were conducted with data from
all five cross-validated folds, as MAE and MAE95 values
within folds can be considered subsamples. All analyses
were conducted with the RJags package (Plummer et al.
2016) in R. The response variables, MAE or MAE95 values,
were log-transformed prior to analysis to ensure homogene-
ity of variances, an assumption of ANOVA models. The
predictor variable for both ANOVA models was data type,
a variable with three levels: raw model (Mod), EQM-LIN,
and EQM. Credible intervals in the form of 95% highest
posterior density (HPD) intervals were used to determine
if the difference in posterior distributions was significantly
different from 0. Credible intervals were constructed for
all pairwise differences of posterior distributions of EQM-
LIN, EQM, and raw model data. Credible intervals can be
interpreted as follows: there is a 95% chance that the true
pairwise difference in posterior distributions is contained
within the interval, given the data. Therefore, if 0 is con-
tained within the interval, the difference is not significant at
the 95% confidence level. Full details on these analyses are
provided in the Supplementary Materials.

Distributions of all nine ETCCDI indices calculated
from EQM-, EQM-LIN-corrected, and raw model data were
compared to those of observed data. Performance of bias-
corrected and raw data relative to observed data was formally
assessed using Kolmogorov-Smirnov (KS) tests (Smirnov
et al. 1948). The two-sample KS test is a non-parametric
test that is used to assess the equality of two empirical dis-
tributions (see Appendix B). It is sensitive to differences in
both location and shape of the two ecdfs being compared
and is often used in climatological studies (Cannon et al.
2015; Rosenberg et al. 2010; Tschöke et al. 2017). Here,

we applied the KS test three times for each ETCCDI index
to determine the similarity of ecdfs between observed and
EQM- and EQM-LIN-corrected data and between observed
and raw model data. All tests were conducted with the
two-sided null hypothesis that the samples being compared
belonged to a common distribution. The significance level,
α, was set to 0.05; p-values below 0.05 indicate there is evi-
dence that the two samples do not come from a common
distribution. However, to control for multiple comparisons,
α was adjusted using the Holm-Bonferroni method (Holm
1979) (details are shown in Appendix C). We acknowl-
edge that the KS test has low power for small sample
sizes (30 values or less) (Razali et al. 2011). All KS tests
in this study are performed on pairs of distributions com-
posed of 30 annual values; thus, we use KS tests, along
with visual inspection of boxplots, to guide our interpreta-
tion of results.

4 Results

Overall, data bias-corrected with either EQM or EQM-
LIN exhibited substantial improvements in both MAE and
MAE95 compared to raw model data (Mod), but improve-
ments were more pronounced for EQM-LIN. Both bias-
correction methods generally improved ETCCDI indices
compared to Mod, and EQM-LIN performed as well as or
slightly better than EQM for all indices.

4.1 MAE andMAE95

MAE values of EQM- and EQM-LIN-corrected model data
and Mod were 0.704 mm, 0.655 mm, and 1.06 mm respec-
tively (Fig. 5a). MAEs of both bias-corrected datasets were
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Fig. 5 Monthly MAE (mm) (a)
and MAE95 (mm) (b) for raw
model (Mod), EQM- and
EQM-LIN-corrected data.
Please note the difference in
y-axes limits for plots a and b

significantly lower than MAE of Mod. Monthly MAE val-
ues for EQM-LIN were overall slightly lower than those
of EQM. The credible interval for the difference in MAE
between EQM and EQM-LIN contained 0, indicating that
although MAE of EQM-LIN was lower than that of EQM,
the difference was not significant at the 95% confidence
level.

MAE95 values of EQM- and EQM-LIN-corrected model
data and Mod were 3.45 mm, 1.73 mm, and 7.12 mm, respec-
tively. For EQM-LIN corrected data, MAE95 varied little
among months; however, both raw model and EQM-corrected
data exhibited substantial increases in MAE95 between
months 8 and 11 (Fig. 5b). Similar to results for MAE,
MAE95 values of both bias-corrected datasets were signifi-
cantly lower than MAE95 of Mod. In contrast to results for
MAE, 95% credible intervals for the difference in MAE95
of EQM and EQM-LIN indicated that MAE95 of EQM-
LIN was significantly lower than MAE95 of EQM at the
95% confidence level (see Supplementary Materials for full
details of ANOVA analysis).

4.2 ETCCDI indices

Distributions of ETCCDI indices for both bias-corrected
datasets more closely resembled those of observed data
compared to Mod, with EQM-LIN performing as good as
or slightly better than EQM. Generally, mean and extreme
total annual precipitation was overestimated in Mod, but
Mod performed adequately in capturing extreme wet day
frequency. While bias-correction resulted in the distribu-
tions of most ETCCDI indices becoming more similar to
those of observed data, it also resulted in an underestimation
of wet-day frequency (see Appendix D, Table 3 for selected
summary statistics of ETTCDI index distributions for Mod,
EQM, and EQM-LIN).

D and S indices Less extreme “S” indices (S90 and S95)
were substantially overestimated in Mod, and distributions
of S90 and S95 calculated from Mod were significantly
different from observed data (Fig. 6a; Table 2). The distribu-
tion of the more extreme S99 index was better represented
in Mod and did not differ significantly from observed data.
Both bias-correction methods provided minor improve-
ments of the representation of S99 in Mod. For EQM-LIN,
distributions of S90 and S95 did not differ significantly
from those of observed data (Fig. 6a; Table 2). However,
for EQM, the distribution of S95 was significantly different
from that of observed data (Table 2). While both bias-
correction methods were able to reduce the overestimation
of total extreme annual rainfall exhibited in Mod, EQM-LIN
slightly outperformed EQM.

Distributions of “D” indices (D90, D95, and D99) were
quite similar for Mod, bias-corrected, and observed data
(Fig. 6b). P-values of KS tests for D90, D95, and D99 con-
firmed that distributions of Mod and bias-corrected data
were not significantly different from observed data (Table 2).
These results show that the frequency of extreme precipita-
tion days, D90, D95, and D99, are adequately represented
in Mod and that bias-correction via either method does not
adversely affect the representation of “D” indices.

TotalP, WetDays, and SPI TotalP was significantly overes-
timated in Mod (p < 0.0001), but distributions of TotalP
calculated using either bias-corrected dataset were not sig-
nificantly different from observed data (p = 0.81) (Fig. 7;
Table 2). Thus, both bias-correction methods were highly
effective in correcting total annual precipitation.

The distribution of WetDays derived from Mod did
not differ significantly from observed data (p = 0.13)
(Table 2). However, WetDay distributions calculated from
EQM- and EQM-LIN-corrected data were significantly
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Fig. 6 Boxplots of (a) D90, D95, and D99 and (b) S90, S95, and S99
for observed (Obs), model (Mod), EQM-, and EQM-LIN-corrected
data. Each boxplot represents 30 annual values (ETCCDI indices
are calculated annually). Significance of KS-tests of distributional

similarity of ETCCDI indices of Mod, EQM, or EQM-LIN compared
to Obs are indicated with (*); dots represent outliers. (Statistical sig-
nificance of KS tests was adjusted using the Holm-Bonferroni method;
α = 0.05)

underestimated relative to observed data (p < 0.0001)
(Fig. 7; Table 2). SPI was overestimated by Mod, due
to the large overestimation of Total P; SPI was overesti-
mated to a lesser degree, by EQM- and EQM-LIN-corrected
data due to the underestimation of WetDays (Fig. 7). Dis-
tributions of SPI calculated from EQM, EQM-LIN, and
Mod all differed significantly from observed data (Table 2).

Although bias-correction via either EQM-LIN or EQM
results in underestimating WetDays, annual precipitation
totals (TotalP) are effectively corrected. Moreover, while the
distribution of WetDays is adequately represented in Mod,
Mod contains an excessive number of low-precipitation
occurrences relative to observed data (see Supplementary
Materials, Section 4). However, despite the underestimation
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of wet day frequency following bias-correction, precipita-
tion intensity (SPI) is slightly improved compared to raw
model data.

5 Discussion

Local-scale modeling efforts in hydrology, ecology, agri-
culture, and economics, as well as climate impact assess-
ments, require high-resolution climate products. Since cli-
mate extremes exert a large influence on humans and the
environment, it is crucial that extremes are accurately rep-
resented in climate products. An effective way to obtain
high-resolution climate products is to statistically down-
scale and bias-correct dynamically downscaled output from
an RCM. Bias-correction of precipitation extremes, in par-
ticular, is a difficult task. In this study, we developed a
hybrid bias-correction method, EQM-LIN, that combines
the efficacy of EQM for bias-correcting the bulk of raw
model data, with a robust linear adjustment for correct-
ing distributional tails. We found that EQM-LIN results in
the accurate representation of mean and extreme precipita-
tion. EQM-LIN outperformed EQM in terms of model skill
(MAE and MAE95) and performed at least as well or bet-
ter than EQM with respect to most ETCCDI climatological
indices. Furthermore, our study indicates that a linear cor-
rection, as implemented in EQM-LIN, is resistant to overfit-
ting and results in a more robust TF at higher quantiles, both
of which can decrease uncertainty in bias-corrected data.

The substantial difference in performance between
EQM-LIN and EQM with respect to model skill is due to the
different ways in which TFs are constructed at extreme tails.
In EQM, distributional tails are corrected with a flexible
TF that closely interpolates the quantile-quantile map of
raw and observed data. However, since data at extreme tails
is, by definition, scarce and variable, the TF produced by
EQM may be unstable and can result in a faulty correction
on out-of-sample model data (Cannon et al. 2015; Berg
et al. 2012). In our study, MAE95 values of EQM increased
markedly between months 8 and 11, reaching a maximum
in month 9, while those of EQM-LIN remained near 2.5 mm
(Fig. 5b). An inspection of training and testing datasets used
during cross-validation reveals that often, the association
between raw model and observed quantiles (the quantile-
quantile map) was quite different between training and
corresponding testing datasets. In such cases, EQM tended
to overfit on training data, and consequently, the correction
applied to testing data was unsuitable.

Figure 9 depicts such a scenario for month 9, when
the difference in MAE95 between the two bias-correction
methods was large. In Fig. 9, the EQM TF constructed with
training data (black dots) extends non-linearly above the

Table 2 Two-sample Kolmogorov-Smirnov (KS) test results for
raw model (Mod), EQM-, and EQM-LIN-corrected distributions of
ETCCDI indices compared to observed distributions of ETCCDI
indices. D is the KS test statistic

D p

S90

Mod 0.73 < 0.0001*

EQM-LIN 0.33 0.07

EQM 0.40 0.02

S95

Mod 0.43 0.007*

EQM-LIN 0.33 0.007*

EQM 0.40 0.02

S99

Mod 0.30 0.13

EQM-LIN 0.23 0.39

EQM 0.33 0.07

D90

Mod 0.17 0.80

EQM-LIN 0.13 0.95

EQM 0.17 0.80

D95

Mod 0.17 0.80

EQM-LIN 0.13 0.95

EQM 0.17 0.80

D99

Mod 0.10 1

EQM-LIN 0.10 1

EQM 0.10 1

TotalP

Mod 0.73 < 0.0001*

EQM-LIN 0.17 0.808

EQM 0.17 0.808

WetDays

Mod 0.30 0.13

EQM-LIN 0.97 < 0.0001*

EQM 0.90 < 0.0001*

SPI

Mod 0.73 < 0.0001*

EQM-LIN 0.53 0.0003*

EQM 0.60 < 0.0001*

P-values refer to a two-sided null hypothesis; p-values < 0.05 indicate
that the distribution of a particular ETCCDI index for either Mod,
EQM-LIN or EQM is significantly different from that of observed data
at the 5% significance level. All ETCCDI index distributions consisted
of 30 annual values. Significance of KS-tests at α = 0.05, adjusted
with the Holm-Bonferroni method, are indicated with (*)
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Fig. 7 Boxplots of TotalP, WetDays, and SPI for observed (Obs),
model (Mod), EQM-, and EQM-LIN-corrected data. Each boxplot rep-
resents 30 annual values (ETCCDI indices are calculated annually).
Significance of KS-tests of distributional similarity of ETCCDI indices

of Mod, EQM, or EQM-LIN compared to Obs are indicated with
(*); dots represent outliers. (Statistical significance of KS tests was
adjusted using the Holm-Bonferroni method; α = 0.05)

one-to-one line and then increases sharply. The shape of the
training TF indicates that, generally, raw model quantiles
are too low relative to those of observed data. When the
training TF is applied to test data, raw model values in the
tails, especially, are increased. For instance, a raw model
value of 58.6 mm would be corrected to 81.8 mm (Fig. 9).
However, the relationship between raw model and observed
quantiles in the test data (blue dots), indicates that raw
model quantiles are only slightly too high compared to
observed quantiles (Fig. 9). When raw model data in the test
set are bias-corrected with the training TF, raw model values
are increased too much relative to observed values (Fig. 9).
The quantile-quantile map of corrected model quantiles and
observed quantiles (which should lie near or on the one-to-
one line if the correction was satisfactory) is shifted far to
the right of one-to-one line, indicating that corrected model
values, especially in the tails, are too high. This example
shows that the flexibility of EQM is also what makes it
susceptible to overfitting on calibration data and supports
other studies showing that EQM is sensitive to the choice of,
and can overfit on calibration data (Reiter et al. 2018; Berg
et al. 2012; Holthuijzen et al. 2021; Piani et al. 2010; Lafon
et al. 2013).

For the same scenario, EQM-LIN produces a linear TF
at extreme tails with a slope of 1 and an intercept of δ

(the constant correction factor) (Fig. 10). Raw model values
are adjusted by a constant, δ. Though this approach is

less flexible than that of EQM, it produces more stable
TFs and is less sensitive to training data. In Fig. 10, the
training TF for EQM-LIN (black dots) is linear and does
not exhibit the fluctuations apparent in the training TF of
EQM (Fig. 9). The intercept (δ) of the TF in Fig. 10 is
slightly less than zero, which means that raw model values
will be decreased by δ. The TF for EQM-LIN represents an
appropriate correction, as model quantiles in the test dataset
are, in fact, too high relative to observed quantiles (Fig. 10,
blue dots). For instance, the TF of EQM-LIN corrects a
raw model value of 58.6 to 58.1 mm (Fig. 10). Accordingly,
the quantile-quantile map of corrected model quantiles and
observed quantiles is close to the one-to-one line, indicating
a satisfactory correction.

Figures 9 and 10 are representative of scenarios in which
the relationship between raw model and observed quantiles
differ between training and testing data and highlight
differences in bias-correction between EQM and EQM-
LIN. In our study area, such scenarios are common in
months when precipitation is variable and when extreme
precipitation events are more likely (months 6–9). The
difference in bias-correction between EQM-LIN and EQM
can also be seen visually in downscaled, bias-corrected data
over the study region. Figure 8 shows raw, downscaled,
and corrected and downscaled precipitation data for one
day in which daily mean precipitation exceeded the 95th
percentile (September 12, 1986). Note that in Fig. 8, EQM
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Fig. 8 Raw model, downscaled raw model, and bias-corrected data for
one day (September 12, 1986) (a) with corresponding TFs for EQM (b)
and EQM-LIN (c). Plot (a) shows raw model (4 km grid), downscaled
raw model (1 km grid), and downscaled and bias-corrected precipita-
tion data (mm) for a day in which daily mean precipitation exceeded
the 95th quantile (September 12, 1986). Plots (b) and (c) show the

corresponding EQM and EQM-LIN TFs, respectively; in (b) and (c),
gray lines indicate how EQM and EQM-LIN adjust the maximum
model precipitation value for this day (52.14 mm) as an example. This
figure visually illustrates the difference between bias-correction via
EQM and bias correction with EQM-LIN
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Fig. 9 Construction of the EQM
TF in a train-test scenario; data
for this plot reflect one
particular train-test fold used
during cross-validation for
month 9 (September). The TF
obtained from training data is
shown in black. The
quantile-quantile map of model
and observed data in the test set
is shown in blue. The corrected
quantile-quantile map (quantiles
of corrected model data versus
quantiles of observed data) in
the test set are shown in red.
xmod,t and xcorr,t denote model
and corrected model values,
respectively, for day t . Gray
arrows indicate how model data
in the test set is corrected, based
on the TF from training data

results in an increase of high precipitation values (bright
pink regions), while EQM-LIN results in a slight dampening
of precipitation in the same regions. In Fig. 8, a model
precipitation value of 52.14 mm is transformed to 68.25 mm
using EQM and 51.28 mm using EQM-LIN. The increase
and dampening of model precipitation by EQM and EQM-
LIN, respectively, in Fig. 8 are a result of differences in
EQM and EQM-LIN transfer functions.

Though EQM-LIN significantly outperformed EQM in
terms of model skill (MAE and MAE95), results were not
as dramatic for climatological (ETCCDI) indices. ETCCDI
indices are calculated using spatially averaged, daily data,
which reduces variation and may explain the similarity in
performance of EQM and EQM-LIN for ETCCDI indices.
Bias-correction via both EQM and EQM-LIN resulted in
improvements over raw data for most indices. Though both
bias-correction methods improved the overestimation of
total annual mean precipitation (TotalP) as well as total
extreme annual precipitation (Sum90) exhibited in raw
model data, EQM-LIN performed slightly better than EQM
for moderate extremes (Sum95). Raw model data adequately
captured higher extremes (D99, S99); bias-correction pro-
vided a slight improvement in the representation of S99.

Interestingly, the distribution of raw model wet day fre-
quency (WetDays) was similar to that of observed data,
while bias-correction via either method resulted in consid-
erable underestimation of wet day frequency. The negative
impact of bias-correction on wet day frequency is most
likely due to the excessive number of low-precipitation
occurrences (“drizzle effect”) (Baigorria et al. 2007; Lean-
der and Buishand 2007) in raw model data. EQM, which
is used to correct low-valued quantiles in both bias-
correction methods, results in the majority of excessive low-
precipitation days being set to zero. The underestimation
of wet day frequency after bias-correction via EQM is not
unusual; similar results were found by (Fowler et al. 2007)
and (Martins et al. 2021). Moreover, although wet-day fre-
quency appears to be adequately represented in raw model
data, it comes at the expense of substantial overestima-
tion of total annual precipitation (TotalP) and precipitation
intensity (SPI). After bias-correction via either method, pre-
cipitation intensity is better represented, and the distribution
of total annual precipitation is very close to that of observed
data. Thus, for most climatological indices, bias-correction
via either method provides critical improvements to raw
model data, especially with respect to extremes.
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Fig. 10 Construction of the
EQM-LIN TF in a train-test
scenario; data for this plot
reflect one particular train-test
fold used during cross-validation
for month 9 (September). The
TF obtained from training data
is shown in black. The
quantile-quantile map of model
and observed data in the test set
is shown in blue. The corrected
quantile-quantile map (quantiles
of corrected model data versus
quantiles of observed data) in the
test set are shown in red. xmod,t

and xcorr,t denote raw model
and corrected model values,
respectively, for day t . Gray
arrows indicate how raw model
data in the test set is corrected,
based on the training-set TF.
The threshold (dashed line),
indicates the 79th quantile of
model data (6.88 mm). For ease
of viewing, plot a) (gray box)
shows the scenario at selected
lower (0–10 mm) precipitation
quantiles, and plot b) (gray
dotted box) shows the scenario
at selected extreme (50–80 mm)
precipitation quantiles

6 Conclusion

In this study, we show that a hybrid EQM approach for bias-
correction (EQM-LIN), in which the majority of model data
is corrected via EQM and extreme tails are corrected by a
linear TF, resists overfitting on calibration data, increases
overall and model skill, especially at extreme tails, and
results in a better representation of climatological indices
compared to conventional EQM. Our method is simple,
intuitive, and easy to implement, making it a suitable
alternative to EQM for bias-correcting historical and future
climate simulations. Though we apply the method to
precipitation data, we expect it could be applied to other
climate variables as well. Future work might include

adjusting the slope of the linear correction or using another
function to construct the TF at extreme tails.

Appendix A: Estimating the threshold T
and intercept δ

A.1 Estimating the threshold, T

The first step for obtaining the threshold T is to estimate
τLIN from the data. We chose τLIN to be 0.79, based
on a grid search over a range of values in a five fold
cross-validation approach. We chose the value of τLIN that
resulted in the minimization of the mean absolute error
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of observed and model ecdfs above the 95th percentile
(MAE95), Reiter et al. (2016) (Section 3). It is crucial
that τLIN be estimated using cross-validation; our result of
τLIN = 0.79 may not generalize to all data.

To obtain T , we must assume a fixed value of τLIN . The
next steps involves the construction of ecdfs for observed
and model data in the calibration period. Ecdfs are constructed
using 10,000 quantiles evenly spaced between 0 and 1. Next,
the threshold, T is computed as ecdf −1

mod(τLIN). Note that,
T is the model precipitation value in mm corresponding to
the quantile τLIN (whereas 0 ≤ τLIN ≤ 1).

A.2 Estimating the intercept, δ

To obtain δ, we assume that T has been calculated. Ecdfs
of observed and model data are constructed using 10,000
quantiles evenly spaced between 0 and 1. Values in the ecdfs
of model and observed data are sorted in increasing order.
Note the rank of T within the sorted precipitation values of
the model ecdf; the rank value will be denoted as RT . For
example, suppose T = 12 mm and the rank of T within the
ecdf of model data is 5,000, then RT = 5000.

Next, select the precipitation value from sorted, observed
ecdf at rank RT and denote this value as Tobs . The intercept
of the linear TF, δ which represents the constant correction,
is calculated as the difference Tobs −T . Continuing with the
example, suppose Tobs = 9.1 mm; then δ = 9.1 − 12 =
−2.9. This means model extremes (all values ≥ T ) will be
decreased by 2.9 mm.

The constant correction at extremes, δ, is similar to the
constant extrapolation correction used by Boé et al. (2007).
However, here, the constant correction is the difference
T −Tobs , whereas in Boé et al. (2007), it is ecdf −1

obs (1.00)−
ecdf −1

mod(1.00) as in Boé et al. (2007).

Appendix B: KS test

The KS test statistic, D is computed as

(Dn = sup
x

|Fn(x) − Gn(x)|). (3)

In Eq. 3, Fn and Gn are the two ecdfs being compared,
n denotes the number of independent and identically dis-
tributed ordered values used to obtain Fn and Gn, and sup

x

is the supremum of the collection of n distances.

Appendix C: Holm-Bonferroni method
for multiple comparisons

When multiple statistical comparisons are made, it is often
necessary to adjust the Type I error rate (commonly referred

to as the significance level or α). The Type I error rate is the
probability of falsely rejecting the null hypotheses when it
is, in fact, true (a false positive). In the context of multiple
hypothesis testing, it is often desirable to adjust the family-
wise error rate (FWER), the probability of rejecting one
null hypothesis in m hypothesis tests. The Holm-Bonferroni
method is suitable when a less conservative adjustment of
the FWER is preferred.

Suppose m hypothesis tests have been conducted, and
m p-values have been calculated. The Holm-Bonferroni
adjustment for the FWER involves two steps:

1. Order p-values from least to greatest and assign each
p-value a rank from 1 to k, k = 1 . . . m

2. Find the smallest p-value such that pk < α
m+1−k

.

If the condition in step 2 is true, the p-value is significant; if
the condition in step 2 if false, the p-value is not significant.

Appendix D: Summary results for ETCCDI
indices

Table 3 shows the 25th, 50th, and 75th quantiles for each
data type (Mod, EQM, and EQM-LIN) and ETCCDI index.

Table 3 25th (Q25), 50th (Q50), and 75th (Q75) quantiles of ETCCDI
indices for observed data (Obs), raw model data (Mod), and EQM-,
and EQM-LIN-corrected data during the calibration period (1976–
2005)

Data type Q25 Q50 Q75

Sum90

Obs 401.63 456.20 531.18

Mod 533.62 595.78 668.31

EQM 501.05 574.38 645.14

EQM-LIN 463.71 542.41 605.23

Sum95

Obs 239.03 287.21 338.08

Mod 311.85 377.51 428.63

EQM 307.08 378.51 431.53

EQM-LIN 287.94 337.40 400.09

Sum99

Obs 60.29 83.17 114.33

Mod 311.85 377.51 428.63

EQM 55.09 105.16 154.46

EQM-LIN 55.10 101.02 138.54

D90

Obs 32.25 35.50 42.00

Mod 33.00 36.50 40.00

EQM 32.25 37.00 39.75

EQM-LIN 32.25 37.00 39.75
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Table 3 (continued)

Data type Q25 Q50 Q75

D95

Obs 14.25 18.00 21.75

Mod 15.25 17.50 20.75

EQM 16.00 19.00 20.75

EQM-LIN 16.00 18.00 21.00

D99

Obs 2.25 3.50 4.00

Mod 15.25 17.50 20.75

EQM 2.00 3.50 5.00

EQM-LIN 2.00 3.50 5.00

TotalP

Obs 961.92 1032.81 1112.80

Mod 1242.30 1296.84 1367.50

EQM 991.24 1077.74 1132.50

EQM-LIN 951.56 1022.26 1076.33

WetDays

Obs 283.00 289.50 293.00

Mod 289.00 294.00 299.75

EQM 249.25 258.00 265.75

EQM-LIN 240.50 251.50 259.25

SPI

Obs 3.39 3.55 3.78

Mod 4.19 4.47 4.61

EQM 3.74 4.13 4.34

EQM-LIN 3.77 4.07 4.29

Each ETCCDI index was calculated using 30 annual values
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