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Abstract
Genetic programming (GP) is an evolutionary regression method that has received considerable interest to model hydro-
environmental phenomena recently. Considering the sparseness of hydro-meteorological stations on northern areas, this 
study investigates the benefits and downfalls of univariate streamflow modeling at high latitudes using GP and seasonal 
autoregressive integrated moving average (SARIMA). Furthermore, a new evolutionary time series model, called GP-
SARIMA, is introduced to enhance streamflow forecasting accuracy at long-term horizons in a lake-river system. The paper 
includes testing the new model for one-step-ahead forecasts of daily mean, weekly mean, and monthly mean streamflow in 
the headwaters of the Oulujoki River, Finland. The results showed that a combination of correlogram and average mutual 
information (AMI) analysis might yield in the selection of the optimum lags that are needed to be used as the predictors of 
streamflow models. With Nash-Sutcliffe efficiency values of more than 99%, both GP and SARIMA models exhibited good 
performance for daily streamflow prediction. However, they were not able to precisely model the intramonthly snow water 
equivalent in the long-term forecast. The proposed ensemble model, which integrates the best GP and SARIMA models with 
the most efficient predictor, may eliminate one-fourth of root mean squared errors of standalone models. The GP-SARIMA 
also showed up to three times improvement in the accuracy of the standalone models based on the Nash-Sutcliff efficiency 
measure.
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1  Introduction

Predicting floods and streamflow, in general, is one of the 
most critical tasks of hydrological modeling. This is quite 
a difficult modeling task, owing to the highly nonlinear, 
time- and spatially varying nature of the underlying pro-
cess (Cheng et al. 2020). In addition, it is time-consuming 
and costly to measure the processes that affect streamflow, 
particularly in tributaries and snow-fed rivers, which means 
that the use of remotely sensed data is inevitable for accu-
rate forecasts (Yang et al. 2007). The available data is often 
noisy, incomplete, or entirely missing. In addition, there 
is often an urgent need for high-quality modeling results 

(Havlíček et al. 2013). Hence, it is more satisfactory to use 
univariate artificial intelligence (AI) techniques in which the 
preceding streamflow records are merely used to construct a 
predictive model (Zhang et al. 2018).

In recent decades, there has been considerable research 
on the use of AI techniques such as artificial neural net-
works (ANNs), extreme learning machine, and support vec-
tor machines to develop predictive models and identify the 
underlying hydrological pattern amongst a set of empiri-
cally observed variables (Govindaraju 2000; Raghavendra 
and Deka 2014; Yaseen et al. 2019; Boucher et al. 2020). 
Although the task is known as system identification, model-
ers have failed to discover a physically interpretable rela-
tionship for the desired phenomenon in many cases. This is 
mainly due to the black-box characteristics of most of the AI 
techniques which may model the process through implicit 
networks of data and parameters. To tackle the problem, 
recent studies have recommended gray-box techniques such 
as genetic programming (GP) (Giustolisi 2004; Nourani 
et al. 2014; Bozorg-Haddad et al. 2017; Herath et al. 2021).

 *	 Ali Danandeh Mehr 
	 ali.danandehmehr@oulu.fi

1	 Water, Energy and Environmental Engineering Research 
Unit, University of Oulu, FI90014 Oulu, Finland

2	 Department of Civil Engineering, Antalya Bilim University, 
Antalya, Turkey

/ Published online: 24 January 2022

http://orcid.org/0000-0003-2769-106X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00704-022-03939-3&domain=pdf


A. Danandeh Mehr et al.

1 3

GP is an emerging AI technique that applies evolution-
ary algorithms to identify explicit relationships for a given 
process (Koza 1992). It has different variants including (but 
not limited to) monolithic GP, gene expression program-
ming, linear GP, multistage, and multigene GP. In all types, 
a population of random solutions (programs) is formed at the 
outset and then, the genetic items of each program are pro-
gressively changed to achieve the desired solution. Hydrolo-
gists have frequently used GP as a symbolic regression tool 
(Danandeh Mehr et al. 2018; Mohammad-Azari et al. 2020). 
Examples include the use of GP for rainfall-runoff modeling 
(Babovic and Keijzer 2002; Havlíček et al. 2013), ground-
water simulation (Fallah-Mehdipour et al. 2014), forecasting 
meteorological variables (Kisi and Shiri 2011; Citakoglu 
et al. 2020), water quality prediction (Bozorg-Haddad et al. 
2017), soil temperature modeling (Kisi et al. 2017), and spa-
tial distribution of flow depth in fluvial rivers (Yan et al. 
2021).

The current GP literature shows that several studies have 
also attempted to apply GP for univariate streamflow fore-
casting (e.g., Sivapragasam et al. 2008; Guven 2009; Wang 
et al. 2009; Al-Juboori and Guven 2016; Danandeh Mehr 
and Demirel 2016). Overall, its ability to extract explicit 
formulas has been reported as its main advantage over other 
AI techniques (Karimi et al. 2016, 2019; Herath et al. 2021). 
However, it may fail to model the streamflow process, par-
ticularly in long-term forecasts. To increase the predictive 
accuracy of GP, the most recent studies suggest hybrid 
GP models that can better tackle nonstationary features of 
streamflow time series (Danandeh Mehr et al. 2018). The 
key objective of the present study is therefore to improve 
the efficiency of univariate streamflow forecasting models 
through introducing a new hybrid GP model. In this study, 
we, first, developed a set of GP models for one-step-ahead 
streamflow forecasting in a lake-river system in cold climate 
conditions for a catchment in North-Eastern Finland. The 
models cover both short- (daily) and long-term (weekly and 
monthly) forecasting horizons and were compared with sea-
sonal autoregressive integrated moving average (SARIMA) 
models developed as the benchmark. A new ensemble 
model, called GP-SARIMA, is additionally introduced to 
enhance the predictive accuracy of the standalone models for 
monthly streamflow forecasting. To select effective predic-
tors, the study benefits from both autocorrelation and aver-
age mutual information (AMI) techniques.

1.1 � Main contributions

The primary contributions are twofold. First, this study, for 
the first time, investigates the predictive capabilities of GP 
and SARIMA models for streamflow forecasting in a boreal 
lake-river system. Next, a new ensemble evolutionary model, 
called GP-SARIMA, is proposed for monthly streamflow 

forecasting that is superior to standalone GP and SARIMA 
models and meets both accuracy and simplicity conditions. 
Compared to metaheuristic optimized AI models existing in 
the literature, the proposed model is explicitly having a less 
computational burden that makes it more appropriate to be 
implemented in practice.

2 � Methodology

2.1 � Overview of GP

GP is an evolutionary modeling approach in which random 
computer programs are created and improved to solve a 
given problem (Koza 1992). The computer programs have a 
tree structure comprising a root/function node, inner nodes, 
branches, and terminal nodes (leaves). Figure 1 demonstrates 
a GP tree and the associated mathematical expression. The 
main steps required to develop a GP-based forecasting model 
include (i) selection of input variables, (ii) educated guess 
about modeling functions (mathematical or Boolean), and 
(iii) appropriate tuning of evolutionary operators (Hrnjica 
and Danandeh Mehr 2019). Skilled decision-making during 
these steps helps the GP algorithm to evolve precise models 
and decrease the time of computations.

Regardless of the kind of problem, the GP algorithm 
starts with the random establishment of the initial programs 
known as potential solutions. At that point, the programs 
are sorted based on their goodness of fitness, and the ones 
demonstrating higher suitability are chosen as parents 
subjected to the evolutionary operations of crossover and 
mutation (Koza 1992). During crossover, two top parents 
combine their branches and create two offspring that may 
show higher fitness than their parents. In mutation opera-
tion, only a single parent is chosen, and an offspring is cre-
ated by substituting some of its genetic materials with the 
new materials. Among the initial parents, the individual(s) 
showing the highest fitness is transferred directly to the new 
set of programs. The modeler defines the probability of GP 

Fig. 1   An exemplary genome and its mathematical expression
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operations. For a symbolic regression task, as is the case 
in this study, a high crossover rate is generally selected so 
that it is substantially greater than the mutation and repro-
duction rates. Since there is no universal way to determine 
these rates, one may use a trial-and-error procedure to opti-
mize their values. For details about the GP algorithm and its 
applications in hydrology, the reader is referred to Danandeh 
Mehr et al. (2018).

2.2 � Overview of SARIMA

Classic autoregressive time series modeling techniques 
such as autoregressive moving average (ARMA), autore-
gressive integrated moving average (ARIMA), and sea-
sonal autoregressive integrated moving average (SARIMA) 
could be used as alternatives for univariate streamflow mod-
eling (Terzi and Ergin 2014; Valipour 2015; Mehdizadeh 
and Sales 2018). The pertinent literature shows SARIMA 
outweighs its counterparts as it can handle both potential 
trend and periodicity features in streamflow series (Moeeni 
et al. 2017). However, its performance is highly sensitive to 
selecting a correct periodic term in the model calibration 
stage.

A SARIMA model is structured by combining additional 
seasonal terms into ARIMA structure (Box et al. 2015). The 
model is commonly expressed as SARIMA(p,d,q)(P,D,Q)m 
in which p, d, and q are non-seasonal components; P, D, and 
Q are the seasonal backshifts and the letter m denotes the 
number of samples in a year (e.g., m = 12 for monthly data). 
Equation (1) expresses an example of a first-order SARIMA 
model without a constant for a set of quarterly data (i.e., 
m = 4).

where �1 and �1 are the parameters of non-seasonal and 
Φ1 and Θ1 are the parameters of seasonal components of the 
model. The term �t is white noise (Bender and Simonovic 
1994).

It is seen that the additional seasonal terms are simply 
multiplied by the non-seasonal terms. Like ARIMA mod-
eling, the seasonal backshift parameters ( Φ and Θ ) can be 
determined through either a correlogram analysis or from 
an analytical stationarity test such as augmented Dickey-
Fuller (ADF). For more details about parameter tuning in 
SARIMA, the interested reader is referred to Bender and 
Simonovic (1994).

2.3 � The proposed evolutionary GP‑SARIMA model

Predictive performance is of the utmost importance to 
a hydrological model. Ensemble learning algorithms 

(1)
SARIMA(1,1, 1)(1,1, 1)4 ∶ (1 − �1B)(1 − Φ1B

4)(1 − B)(1 − B4)

yt = (1 + �1B)(1 + Θ1B
4)�t

typically combine the forecasts from multiple models 
and are designed to outweigh any contributing ensemble 
member. Applications of different types of ensemble AI 
techniques in hydrology have been recently reviewed by 
Zounemat-Kermani et al. (2021). This study introduces 
the ensemble GP-SARIMA model in which the prediction 
process is composed of three main stages (Fig. 2). The cor-
relogram and mutual information analysis are implemented 
in the first stage to determine the potential lags (predictors). 
Then, both target and input vectors are normalized to secure 
the development of dimensionally accurate solutions. In the 
second stage, the ad hoc modeling phase, the SARIMA, and 
GP techniques are run to evolve initial solutions. To this 
end, Gretl and GPdotNET v5.0 (Hrnjica and Danandeh Mehr 
2019) tools can be used, respectively. In this phase, the most 
effective input (Qt-m) is determined concerning the average 
impact of each input in the best solutions as suggested by 
Uyumaz et al. (2014). The GP result in this phase is a dimen-
sionless vector of streamflow, but the SARIMA forecasts 
streamflow with the same dimension of the input series (here 
m3/s). In the last phase, the GP engine is rerun so that the 

Fig. 2   Flowchart of the proposed GP-SARIMA streamflow forecast-
ing model
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most influential input, the initial GP forecast, and the nor-
malized SARIMA forecast are used as the new predictors. 
This acts as post-processing to reduce the initial models’ 
errors. As both GP and SARIMA are explicit models, the 
ensemble model remains explicit; however, the results are 
dimensionless and need to be denormalized. Compared to 
hybrid simulation-metaheuristic optimization models (e.g., 
Yaseen et al. 2017), the new model has a less computational 
burden. This makes it faster than metaheuristic optimization 
models. However, it increases the likelihood of traping GP 
in local optima, and thus, the modeler needs to control the 
model against the overfitting problem.

2.4 � Average mutual information (AMI)

A set of optimal time delays (lags) leads a predictive AI 
model to a robust solution. On the contrary, inefficient 
or redundant lags may result in poor or complex mod-
els. Many optimal lag selection methods fail to perform 
properly owing to the inherent hypothesis of linearity or 
intense redundancy between the lags (Darudi et al. 2013). 
In previous studies, autocorrelation analysis of the stream-
flow series has been commonly employed to identify the 
optimum lags (e.g., Rezaie-Balf et al. 2019). However, the 
information distilled from autocorrelation analysis merely 
represents collinearity among the current and preceding 
discharge amount. Thus, the method might fail to extract 

efficient inputs in a nonlinear process (Danandeh Mehr 
and Gandomi 2021). To cope with this drawback, the aver-
age mutual information (AMI) that could be judged as a 
nonlinear generalization of the autocorrelation function 
was additionally considered in this study. This criterion 
(Eq. 2), aka auto mutual information, is generally used to 
find time delayed coordinates that are as independent of 
each other as possible (Fraser and Swinney 1986).

where Pi is the probability of Qt in bin i of the histogram 
constructed from the data points and Pi,j(�) is the probabil-
ity that Qt is in bin i and Qt+� is in bin j. As merely the joint 
probability Pi,j(�) depends on � , and thus, the AMI function 
also depends on how the histograms are constructed, i.e., the 
width and position of the bins.

3 � Study area and data

Essential to the fulfillment of a hydrological model is its 
stochastic feature. Construction of regulators such as a 
dam is just one way to lose the stochasticity of streamflow. 
Therefore, the implementation of the new models should be 
assessed on a case-by-case basis. When deciding on a catch-
ment, it should be taken into account that flow measurements 

(2)AMI(Qt,Qt+�) =
∑

i.j
Pi,j(�)log(

Pi,j(�)

Pi.Pj

)

Fig. 3   Study area and location of Palojärvi gauging station
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are not regulated or adjusted before or at the location of a 
stream gauge. Accordingly, implementation of the GP and 
SARIMA for daily, weekly, and monthly univariate stream-
flow modeling was carried out using observations from the 
Palojärvi gauging station located on the unbuilt headwater of 
the Oulujoki River system in North-Eastern Finland (Fig. 3). 
The region is northern boreal with seasonal snow and soil 
frost and does not contain any glaciers or permafrost. Oulu-
joki river catchment is strongly seasonally affected. Limited 
baseflow during winter months and spring floods during the 
snow melting period at April-May, and summer baseflow 
during July-August. Having a length of about 107 km, the 
Oulujoki is one of the largest lake-river systems (catchment 
area = 22,500 km2) in Finland (Salojärvi et al. 1982). At the 
point of Palojärvi gauging station (7,186,061 N, 3,635,282 
E), the catchment area is about 264 km2. The upstream area 
from the gauging station has a high lake/pond percentage 
that significantly affects the runoff regime. Daily streamflow 

data at the station is recorded since 1983 by Finnish Envi-
ronment Institute (SYKE), and data is openly available at 
the national OIVA-database.

The observed daily, weekly, and monthly streamflow hydro-
graphs used in this study are shown in Fig. 4. Of the total 
observations, the first 70% and last 30% were used to train 
and test the evolved models. Table 1 represents the associated 
statistical features. Prior to importing the datasets to the GP 
engine, we normalized the predictor/target vectors so that they 
are within the range of 0.0 to 1.0 (i.e., min-max normalization 
approach).

4 � Criteria for performance appraisal

Numerical metrics utilized to evaluate models’ performance 
have been reviewed by Biondi et al. (2012). A combination of 
absolute value error and normalized goodness-of-fit statistics 
is currently recommended to assess hydrological models (Rit-
ter and Munoz-Carpena 2013). Therefore, in addition to graph-
ical results, we implement root mean square error (RMSE) as 
an absolute error statistic and Nash-Sutcliffe efficiency (NSE) 
as a normalized efficiency value in this study. Mathematical 
expressions of the indices are presented below:

where Xobs
i

 = observed streamflow at the time i, Xpre

i
 = 

predicted streamflow at the time i,Xobs
mean

 = mean observed 
streamflow, and n is the number of arrays at each vector.

5 � Results and discussion

As previously mentioned, effective lags were selected with 
respect to both linear and nonlinear correlations through-
out the correlogram and mutual information analysis. 
To this end, we calculated AMI measure for the target 
streamflow series. At first, the joint likelihood between the 
observed discharge at time t (Qt) and its preceding 62 steps 
(i.e., Qt-τ, τ = 1, 2, …, 62) was calculated. Then, the asso-
ciated AMI values were attained using Eq. (2). Figure 5 
illustrates the AMI values attained for the observed daily, 
weekly, and monthly streamflow series. Overall, the fig-
ure demonstrates that the AMI values generally decrease 
by increasing the number of lags. It contains an oscillat-
ing pattern at weekly and monthly time scales. Regarding 
the daily and weekly timeseries, the greatest AMI value 

(3)NSE = 1 −

∑n

i=1
(Xobs

i
− X

pre

i
)
2

∑n

i=1
(Xobs

i
− Xobs

mean
)
2

(4)RMSE =

�

∑n

i=1
(Xobs

i
− X

pre

i
)
2

n

Fig. 4   Observed Streamflow at Palojärvi gauging station
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stood at the first lag; however, at the monthly scale, the 
maximum AMI was attained at lag #12. This implies that 
monthly streamflow in the river relies heavily on the past 
year’s value than that of the previous months. Considering 
the AMI threshold of 0.25, 0.1, and 0.035 as well as the 
attained correlogram (see Fig. 6), the most effective inputs 
for one-step-ahead daily, weekly, and monthly univariate 
streamflow forecasting are shown in Eqs. (5) to (7).

where Qtd, Qtw, and Qtm denote mean daily, mean weekly, 
and mean monthly streamflow, respectively.

5.1 � Results of standalone GP and SARIMA models

As illustrated in Fig. 2, the efficient streamflow vectors 
(shown in Eqs. (5) to (7)) were imported as the inputs for 
the GP engine. Apart from input/target vectors, the mod-
eler needs to define a set of functions, random numbers, aka 
floating-point, and rates of evolutionary operators to run GP. 
Considering the given time scales, the evolutionary algo-
rithm can generate various formulae representing the lake-
river’s streamflow time series. Here, we employed the basic 
arithmetic (+ , /, × , and -), trigonometric, and exponential 

(5)Qtd = f
(

Qtd−1, Qtd−2, Qtd−3, Qtd−4, Qtd−5

)

(6)Qtw = f
(

Qtw−1, Qtw−38, Qtw−39, Qtw−40, Qtw−41

)

(7)
Qtm = f

(

Qtm−1, Qtm−2, Qtm−4, Qtm−12, Qtm−32, Qtm−33

)

functions. Table 2 summarizes the setup features for GPdot-
NET v5.0, a non-commercial GP tool. It is worth mention-
ing that the main evolutionary parameters (i.e., crossover, 
mutation rate, and reproduction) were optimized through a 
trial-and-error strategy.

To cope with the overfitting problem in the GP, we ran 
the GP with lower trees at the first trials and then, linearly 
increased the maximum three depth up to six (see Table 2). 
Meanwhile, the mean fitness value throughout gene produc-
tions was checked to end the run. This is a kind of super-
vised control in which the evolutionary process is ended 
once either a weaker solution is created, or the number of 
generations passes a user-defined maximum number of 
generations.

The mathematical expressions of the best GP solutions 
are tabulated in Table 3. It is clear from the table that the 
best model does not necessarily comprise all the predefined 
effective lags and functions. For instance, the best daily 
model was attained via a nonlinear combination of the first 
two lags although up to five lags were considered as poten-
tial input vectors. Similarly, the weekly model indicates that 
the first and 38th lags are more informative inputs among 
those given in Eq. (6). This is due to interior evolutionary 
function optimization of the GP algorithm that allows it to 
optimize its shape by eliminating less efficient inputs/func-
tions existing in the user-specified search space at each time 
scale. Considering the monthly time scale, GP produces the 
most complex model (in terms of both numbers of inputs and 
functional nodes) that utilizes all the predefined input vec-
tors. The flexibility of GP structure against the given inputs 

Table 1   Statistical features 
of the observed streamflow in 
Palojärvi gauging station

Statistic data set Time series type

Daily Mean Weekly Mean Monthly Mean

Modeling period Entire 2012 to 2019 2012 to 2019 1983 to 2019
Training 2012 to 2016 2012 to 2016 1983 to 2007
Testing 2017 to 2019 2017 to 2019 2008 to 2019

Number of observations Entire 2861 409 434
Training 1827 288 300
Testing 1034 121 134

Max
(m3s−1)

Entire 34 30.86 16.35
Training 34 30.86 16.35
Testing 28 20.53 15.88

Ave
(m3s−1)

Entire 3.53 3.53 3.36
Training 3.65 3.67 3.38
Testing 3.33 3.22 3.32

Min
(m3s−1)

Entire 0.63 0.69 0.57
Training 0.63 0.69 0.57
Testing 0.79 0.83 0.96

Standard deviation Entire 3.56 3.44 2.66
Training 3.57 3.62 2.73
Testing 3.55 2.94 2.51
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or functions is one of its advantages over SARIMA which 
has a fixed structure.

To attain the best SARIMA models at each time scale, the 
first step is to estimate the order of autoregressive, moving 
average, and integration components. To this end, the ADF 
test and a visual inspection of correlograms (see Fig. 6) were 
respectively utilized in this study. The p values of the ADF 
test (see Table 4) less than 5% implied that the observed 
streamflow hydrographs could be regarded as stationary 
series.

In Figs. 6a and b, the sudden drops in the first lag of 
the partial autocorrelation functions indicate the insig-
nificant correlation after the first lag. Thus, a seasonal 
autoregressive process of order one and period one could 
be considered. Figure 5c exhibits the highest strength 
of the serial correlations at lag 12. Following Danan-
deh Mehr and Gandomi (2021), multiple combinations 

of seasonal (p, d, q) and non-seasonal parameters (P, D, 
Q) were tested in this study to select the best SARIMA 
model. The model which shows the smallest corrected 
Akaike information criterion (AICc) in the training period 
and RMSE in the testing period was selected as the best 
solution. Table 4 summarizes some of the best SARIMA 
combination trials.

According to the results, the SARIMA (1,1,1)(1,0,1), 
SARIMA (1,0,1)(0,0,0), and SARIMA (2.0.2)(2,0,2) are 
respectively the best autoregressive models for daily, weekly, 
and monthly streamflow forecasting for the study site. The 
results of the weekly scale indicated that the best performing 
SARIMA model has no seasonal component and the order 
of integration of the non-seasonal portion is equal to zero 
which means ARMA could effortlessly model weekly mean 
streamflow series.

Fig. 5   The AMI (left panels) 
and joint probability (right 
panels) amongst the observed 
streamflow data at the study site
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For performance appraisal, the best GP and SARIMA 
models’ hydrographs are depicted in Fig. 7, and the associ-
ated goodness-of-fit values are tabulated in Table 5. From 
Fig. 7, it is seen that both GP and SARIMA precisely cap-
ture the oscillating regime of the observed daily flow in 
the snow-dominated lake-river system. According to the 
goodness-of-fit results in the daily model, both the GP and 
SARIMA offer similar predictive accuracy (NSE = 0.997) 
with the lower error between the model and observed data 
in the testing period. Comparing to the results of a similar 
study (see Abdollahi et al. 2017) that applies GP to model 
daily streamflow in a hot climate (NSE = 0.94), our findings 
indicate that GP (and even SARIMA) exhibits better perfor-
mance (NSE = 0.99) in cold climates.

At the weekly time scale, global peak and local maxima were 
better forecasted by the SARIMA. In contrast, GP exhibited 
higher efficiency in tracing peak monthly streamflow values. 

Fig. 6   Autocorrelation function 
(ACF) and partial autocorrela-
tion functions (PACF) of the 
observed a daily, b weekly, and 
c monthly streamflow in the 
study site

Table 2   Parameters used to run GPdotNET

Parameter Value

Population number 500
Initialization method Half-half
Elitism 1
Initial level 3
Tree depth (maximum) 6
Selection method Rank (0.8)
Crossover 0.9
Mutation 0.05
objective function RMSE
Data scaling Min-max 

normali-
zation

Range of floating points 0 and 1
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According to the fitness criteria, the GP identifies the weekly 
and monthly flow process better than SARIMA during the train-
ing period; however, they suffer from low efficiency in the test-
ing period. Regarding the higher performance of the SARIMA 
during the testing period, it must be highlighted that such results 
could be due to the relatively lower number of testing observa-
tions and the higher variance of the training observations that 
include the global maximum.

5.2 � Results of the proposed GP‑SARIMA model 
for long‑term streamflow forecasting

Following the methodology flowchart, the SARIMA (1,1,1)
(2,1,0), the best GP outputs, and the most effective lag (i.e., Qt-12) 
were utilized as predictors for the rolling forecast of monthly 
streamflow using GP-SARIMA. Running this model through 
the same training (testing) period, we get an NSE of 0.715 
(0.483) and RMSE equals 1.437 (1.817) m3/s. In comparison 
to the goodness-of-fit values given in Table 5, GP-SARIMA is 
superior to the standalone GP and SARIMA models. Compared 
to the best SARIMA, the proposed ensemble model yielded 

an approximately 25 and 20% reduction in RMSE in the train-
ing and testing periods, respectively. Cross-correlation analysis 
between the new predictors (best GP and SARIMA models) and 
the target streamflow series showed that they have a higher cor-
relation (0.67 and 0.63 for GP and SARIMA, respectively) than 
standalone models’ inputs (maximum of 0.56 for Qt-12). Since all 
these models generally utilize autocorrelation of the time series, 
the mentioned higher correlation could be considered as the origin 
of the improvement of the performance of the ensemble model 
compared to the standalone models. The observed and forecasted 
monthly streamflow series and the associated scatter plots during 
the training and testing periods were depicted and compared in 
Fig. 7.

Overall, the forecasts mimic the strong fluctuation of 
the observed streamflow series even though significant 
errors are observed in the prediction of some of the peaks 
throughout the year. It is seen that the SARIMA suf-
fers from low-variance forecasts unable to capture peak 
flows. This result agrees with that of Danandeh Mehr 
and Gandomi (2021) in which SARIMA was applied to 
model the Sedre River flow in Turkey. Such drawback at 

Table 3   GP models evolved 
for one-step-ahead streamflow 
forecasting for the study site

Time scale Model

Daily Qtd = Qtd−1∕(exp((((0.6384)∕(Qtd−2)) × (Qtd−2 − Qtd−1))))

Weekly Qtw = Qtw−1∕((cos((cos((0.6245∕Qtw−38))))) + Qtw−1)

Monthly Qtm =(0.558 /(((0.683 + ((Qtm−12/0.683)× ( Qtm−2 + Qtm−1)))× 
(0.683 + ((Qtm−12+Qtm−32)× ( Qtm−2+Qtm−4))))/((((0.683Qtm−4

)× ( Qtm−1 − Qtm−12))× ((0.403−Qt−12)× (0.558 / Qtm−32

))) + (((Qtm−33 × Qtm−1)× 0.797)− ( Qtm−1− ( Qtm−1+Qtm−12))))))

Table 4   Performance appraisal 
of the evolved SARIMA models 
using observations at the 
training set

*  Error measures were calculated using the last 100 observations of training set
**  Mean absolute error

Time scale ADF test p value Model structure AICc Forecasting period*

RMSE (m3s−1) MAE**
(m3s−1)

Daily 2.56 × 10-13 SARIM (1,0,1)(0,0,0) 1935.5 0.248 0.101
SARIMA (1,0,1)(1,0,1) 1883.1 0.243 0.103
SARIMA (1,1,1)(0,0,0) 881.6 0.156 0.066
SARIMA (1,1,1)(1,0,1) 879.0 0.155 0.067
SARIMA (1,1,1)(1,1,1) 912.5 0.156 0.070

Weekly 3.05 × 10-7 SARIMA (1,0,1)(0,0,0) 1108.6 1.752 0.907
SARIMA (1,0,1)(2,0,2) 1114.6 1.965 0.915
SARIMA (1,2,1)(0,0,0) 1161.6 1.998 0.830
SARIMA (1,2,1)(2,0,2) 1166.4 2.517 1.066
SARIMA (1,0,1)(2,2,2) 876.9 3.875 1.984

monthly 0.0212 SARIMA (1,0,1)(0,0,0) 1342.2 2.473 1.643
SARIMA (1,0,1)(2,0,2) 1218.2 2.477 1.546
SARIMA (1,2,1)(2,0,2) 1320.2 2.871 1.699
SARIMA (0,0,0)(2,0,2) 1190.5 2.755 1.691
SARIMA (2,0,2)(2,0,2) 1198.5 2.350 1.449
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the estimation of high discharge values might be due to 
the existence of strong deviation during the snow melt-
ing months so that the linear SARIMA cannot capture it. 
For such months during the testing period, Fig. 8c dem-
onstrates that the SARIMA forecasts are converged to a 
false local maximum of around 6.0 m3/s. By contrast, the 
GP, and in particular, the ensemble GP-SARIMA were 
not trapped into such maxima. Although GP-SARIMA 
considerably diminishes the residuals, it still underesti-
mates the observed high flows. Such difference could be 
due to intramonthly accumulated snow water equivalent 
that is difficult to be distilled from historical streamflow 
data using univariate AI models. Therefore, the use of 

Fig. 7   The observed compared 
with modeled streamflow data 
during both training and testing 
periods

Table 5   Performance values of the best GP and SARIMA models 
used for univariate streamflow forecasting in the study site

Time scale Model RMSE (m3s−1) NSE

Training Testing Training Testing

Daily GP 0.327 0.188 0.992 0.996
SARIMA 0.300 0.155 0.994 0.997

Weekly GP 2.000 1.915 0.622 0.552
SARIMA 2.038 1.752 0.608 0.625

Monthly GP 1.859 2.408 0.524 0.093
SARIMA 1.935 2.288 0.484 0.181
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exogenous inputs such as snow cover extent or depth for 
long-term streamflow forecasting in snow-fed rivers is 
recommended.

To explore the contribution of each input in the best 
evolved GP-SARIMA model, its tree expression is 
shown in Fig. 9. In this model, Qtm-12, GP, and SARIMA 
are the normalized values of the 12-month antecedent 
observed streamflow, concurrent GP, and SARIMA 
forecasts, respectively. The constant 1.11 represents 
the summation of two random f loating points (0.47 
and 0.64) attained in the terminal nodes of the raw GP-
SARIMA model. It is seen that the Qtm-12 and GP solu-
tion appeared two times in this model. Therefore, they 
could be counted as the most dominant variables among 
the pre-specified predictors.

6 � Conclusion

Many studies have proved that AI techniques outperform 
classical time series models for streamflow forecasting. 
While tackling nonstationary features of a given time series 
is the utmost important issue in univariate streamflow mod-
eling using classical autoregressive models, selecting a suit-
able AI technique, finding the more efficient inputs (i.e., 
lags), and being heedful of the common overfitting challenge 
are some of the critical concerns that a modeler should con-
template in time series modeling using AI techniques (Thapa 
et al. 2020). In this study, the abilities of GP and SARIMA 
for one-step-ahead daily, weekly, and monthly streamflow 
forecasting in the headwaters of the Oulujoki River were 
investigated. The comparative performance appraisal of the 

Fig. 8   Monthly streamflow hydrograph (a) and the associated scatter plots in the b training and c testing periods
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models showed a good and more or less the same accuracy 
for both GP and SARIMA models in daily streamflow fore-
casting. The techniques also showed acceptable performance 
for weekly streamflow forecasting with a slight superiority 
of SARIMA over GP during the testing period. Our results 
also revealed that the standalone techniques are not suitable 
for monthly streamflow modeling in the case study lake-river 
system. This drawback was attributed to the effect of snow 
melting during spring months that creates extreme oscil-
lating structure in the monthly streamflow hydrograph so 
that the models, particularly SARIMA, cannot model the 
streamflow series 1 month in advance. Consequently, they 
underestimate maxima/peak streamflow in the study site. To 
enhance the prediction accuracy at the monthly time scale, 
an ensemble univariate GP-SARIMA model was introduced. 
The associated results demonstrated a significant improve-
ment in the predictive accuracy of the GP and SARIMA. 
Therefore, we concluded that the ensemble strategy is 
more robust than standalone methods, being less likely to 
be trapped into a false local maximum.

From an evolutionary programming perspective, the 
GPdotNET running experiences indicated that using more 
complex functions or deep GP trees would not essentially 
enhance the models’ accuracy. Contrariwise, it may lead the 
algorithm to be trapped in a local optimum (i.e., over-fitted 
solution) during the initial generations. Benefiting from the 
function optimization feature, GP yielded in simpler mod-
els than SARIMA, particularly for short-term forecasting. 
Although the GP-SARIMA model was superior to GP and 
SARIMA, the attained results emphasize the necessity of 
applying further efforts to improve model accuracy in long-
term forecasting.

The present study was limited to the use of (i) univari-
ate modeling strategy (i.e., observed streamflow data is 
used as both input and target variables) and (ii) classic GP 
as the nonlinear regression technique. At monthly time-
scale, the evolved models generally underestimated the 
streamflow hydrograph. This highlights the necessity for 
further investigations either on the modeling strategy or 
the training approach. For long-term (weekly, monthly, or 
seasonal) streamflow prediction in boreal rivers, one may 
investigate the use of multivariate models so that they 
would better reflect intramonthly snow water equivalent 
proportion (Yang et al. 2009). In addition, future studies 
can consider more robust GP variants such as multigene 
GP or multistage GP that might better handle streamflow 
series in boreal lake-river systems. It was well-docu-
mented that AI-based models are case-sensitive, and their 
generalization ability depends on the range and type of 
data used to train/test the desired model. Thus, it could 
be informative if the efficiency of GP-SARIMA to model 
intermittent rivers has been checked in a similar study.
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