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Abstract
Evaluation of the performance of daily satellite-based rainfall (CMORPH, CHIRPS, GPM IMERG, and TRMM) was done 
to obtain applicable satellite rainfall estimates in the groundwater basin of the Merapi Aquifer System (MAS). Performance 
of satellite data was assessed by applying descriptive statistics, categorical statistics, and bias decomposition on the basis 
of daily rainfall intensity classification. This classification is possible to measure the performance of daily satellite-based 
rainfall in much detail. CM (CMORPH) has larger underestimation compared to other satellite-based rainfall assessments. 
This satellite-based rainfall also mostly has the largest RMSE, while CHR (CHIRPS) has the lowest. CM has a good perfor-
mance to detect no rain, while IMR (GPM IMERG) has the worst performance. IMR and CHR have a good performance 
to detect light and moderate rain. Both of them have larger H frequencies and lower MB values compared to other satellite 
products. CHR mostly has a good performance compared to TR (TRMM), especially on wet periods. CM, IMR, and TR 
mostly have a good performance on dry periods, while CHR on wet periods. CM mostly has the largest MB and lowest AHB 
values. CM and CHR have better accuracy to estimate rain amount compared to IMR and TR. All in all, all 4 satellite-based 
rainfall assessments have large discrepancy compared with rain gauge data along mountain range where orographic rainfall 
usually occurs in wet periods. Hence, it is recommended to evaluate satellite-based rainfall with time series of streamflow 
simulation in hydrological modeling framework by merging rain gauge data with more than one satellite-based rainfall than 
to merge both IMR and TR together.
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1 Introduction

Ground rainfall estimates using rain gauges is a traditional 
way of the most common methods (Brauer et al. 2016) that 
is used to correct the bias of satellite rainfall estimates (Ma 
et al. 2019; Park et al. 2019) for water resources application 
and related studies. For example, it is the input for hydro-
logical modeling in basin scale (Andersen et al. 2001) and 
for modeling base flow (Becker and Braun 1999). Bias cor-
rection requires ground rainfall estimates to correct satellite 
rainfall estimates because the finer ground observation can 
reduce an error in spatial precipitation gradients of satel-
lite rainfall estimates (Zhang and Anagnostou 2019). The 
optimal and appropriate satellite rainfall estimates should 
be selected before they are corrected with ground rainfall 
estimates.

It is necessary to evaluate the performance of satellite 
rainfall estimates to limit the error and uncertainty of cor-
rected gridded rainfall estimates when it is merged to the 
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ground rainfall estimates. It is because the success of bias 
correction depends on understanding and quantification of 
systematic uncertainties inherent to satellite-based rainfall 
and sensors (Sorooshian et al. 2011). The evaluation of 
satellite-based rainfall performance will show the consist-
ency and deficiencies of satellite rainfall estimates (Pfeifroth 
et al. 2015) compared to ground observation (Sorooshian 
et al. 2011). Ground observation of rain gauge measures 
rainfall directly, while satellite rainfall products estimate 
rainfall from visible/infrared (VIS/IR), microwave (MW), 
and/or radar sensors (Bai and Liu 2018). Satellite observing 
system also has a complex uncertainty and error because of 
precipitation estimates from cloud and precipitation param-
eters (Stephens and Kummerow 2007).

Satellite rainfall estimates of CMORPH (Climate Pre-
diction Center Morphing Methods) are passive microwave 
(PMW)–based rainfall estimates (Joyce et al. 2010) that 
accurately derive rainfall estimates compared to infra-
red (IFR)-based algorithm (Ebert et al. 2007). CMORPH 
is applicable for diurnal cycle of precipitation (Janowiak 
et al. 2005) in the mountainous region of Bali compared to 
other satellite rainfall estimates (Rahmawati 2020), although 
CMORPH tends to underestimate heavy rain rate in moun-
tainous areas (Derin et al. 2016; Rahmawati 2020; Rahmawati 
and Lubczynski 2018). This satellite can be used to evalu-
ate its performance in groundwater basin in Merapi Aquifer 
System since it is more accurate in the tropical island of Bali 
compared to TRMM (Tropical Rainfall Measuring Mission) 
and PERSIANN (Precipitation Estimation from Remotely 
Sensed Information using Artificial Neural Networks). Satel-
lite rainfall estimates of CHIRPS (Climate Hazards Group 
Infrared Precipitation with Stations) have the finest spatial 
resolution (Duan et al. 2016; Funk et al. 2015). The finer 
spatial resolution of satellite-based rainfall has a probability 
to catch the shifting time of rainy events of diurnal cycle 
of precipitation in the tropics (Qian 2008), i.e., Bali Island 
(Rahmawati 2020). Since CHIRPS has the finest spatial 
resolution, it is important to assess CHIRPS performance 
in the tropical groundwater basin of Merapi Aquifer System 
(MAS). Satellite Rainfall estimates of IMERG (Integrated 
Multi-satellitE Retrieval for GPM or Global Precipitation 
Measurement) are also the latest replacement of TRMM 
mission. It considers bringing together existing satellite 
rainfall estimates of CMORPH, TRMM, and PERSIANN 
(Rozante et al. 2018). GPM IMERG has more comprehen-
sive data and accuracy than TRMM (Ahmed et al. 2020; Ma 
et al. 2020). It is also necessary to evaluate the performance 
of GPM IMERG in groundwater basin of MAS. Moreover, 
the performance of TRMM is also possible to be evaluated 
its performance in MAS as a control point to be able to know 
the possible improvement of GPM IMERG.

Merapi Aquifer System (MAS) is a groundwater basin in 
Yogyakarta that abundance with the richness of groundwater 

storage. This basin has physical border of mountain range 
that separates Java Island into two parts, northern and south-
ern. There is the line of water body of the Indian Ocean 
that borders the groundwater basin of MAS in the south 
part. The border in the east part is Gunung Sewu Mountain 
Range, while the ancient volcano of Kulon Progo in the west 
part. This physical border of MAS is leading to the unique 
character of rainfall pattern and distribution in this area. 
Sufficient information of precipitation from rain gauge and 
satellite-based rainfall is necessary to be able to describe this 
unique character. Therefore, the objective of the research is 
to evaluate the performance of daily satellite-based rainfall 
on the basis of 13 rain gauges over 5-year periods (1 Janu-
ary 2008–31 December 2012) applying descriptive statistics, 
categorical statistics, and bias decomposition at a various 
class of rainfall intensity.

The novelty of the research is in the first time: (i) valida-
tion of satellite rainfall estimates over MAS using 4 satellite-
based rainfall assessments, i.e., CMORPH, CHIRPS, GPM 
IMERG, TRMM; (ii) latest and long periods of validation, 
i.e., recent years of 2008 to 2012 and over 5 years; (iii) dif-
ferent assessments of rainfall intensity of satellite rainfall 
estimates applying descriptive statistics, categorical statis-
tics, and bias decomposition.

1.1  Study area description

Yogyakarta Special Region is located in the south of Central 
Java Province, Indonesia. In the north, it is bordered with 
mountain range that separates Java Island into two parts, 
northern and southern. Yogyakarta Special Region is situ-
ated in the southern part of mountain range with Merapi 
Volcano as part of this mountain range. The top of Merapi 
Volcano is the highest place in Yogyakarta Special Region 
that is 2,925 m.asl based on topography map scale 1:25,000 
in 1998 (Fig. 1). Only the south slope of Merapi Volcano is 
part of Yogyakarta Special Province; others are under the 
administration of Central Java Province. Most areas of Yog-
yakarta Special Province are abundant with a richness of 
groundwater storage because these are included in Merapi 
Aquifer System.

Based on rainfall data from 1 January 2008 to 31 Decem-
ber 2012 within 13 rain gauges stations available in MAS, 
the maximum daily rainfall is 188.0 mm·day−1. This rainy 
event is classified as extreme rain. Most rainfall occurs with 
the intensity of ≤ 20 mm·day−1 and 20–50 mm·day−1 which 
are light to moderate rain. Very heavy rainfall or rainfall 
with the intensity of 100 to 150 mm·day−1 occurs very rarely. 
This only occurs on a certain day or some days for a year in a 
certain station. This very heavy rainfall does not only occur 
in high land areas, but also in lowland areas. It is probably 
because of the condition of MAS that is surrounded and 
blocked by mountain range and sea. Heavy rain can occur 
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along the coastline, lee side of mountains, and windward 
side of mountains (Zhu et al. 2017). Topography and sea-
side coastal regime play important role in the complexities 
precipitation mechanism in the tropical region (Kikuchi and 
Wang 2008) so that heavy rainfall occurs not only in high 
land areas but also in lowland areas (Kirshbaum and Smith 
2009). Extreme rain only occurs twice within 5 years.

2  Data and methodology

2.1  Data

The time span to evaluate satellite daily rainfall estimates 
in Merapi Aquifer System (MAS) is from 1 January 2008 
until 31 December 2012 (1,826 days). The data collection is 
from Serayu Opak River Basin Organization (locally called 
BBWS Serayu Opak), Yogyakarta. Rainfall data is measured 
with automatic and non-automatic rain gauges station. The 
automatic rain gauge measurement is mostly used to vali-
date rainfall estimates. In case the automatic measurement 

is broken for several months or years, the manual rain data is 
used for validation. There are 13 daily gauge stations within 
Merapi Aquifer System that are used to validate satellite 
rainfall estimates of CMORPH, CHIRPS, GPM IMERG, 
and TRMM (Fig. 1). These 13 gauges are selected because 
they have complete data. The type of the gauge is a tip-
ping bucket rain gauge that accumulates a volume in a small 
bucket corresponding to 0.1 mm (Michaelides et al. 2009). 
There are also 6 climatology stations (wind gauges) used to 
analyze daily wind speed in MAS (Fig. 1). ArcGIS is used 
for processing, analyzing, and finalization of MAS rainfall 
estimates with the support of Python GUI (IDLE) and R 
Software.

Satellite data of 8-min CMORPH is resampled on a 
daily basis for the same period with rain gauge observation 
data in Yogyakarta Special Region. The 8-min CMORPH 
(CM) has a 0.07° spatial resolution (roughly 8 km × 8 km 
at the equator). This finer resolution can capture rainfall 
dynamic compared to coarser resolution in the diurnal 
cycle of tropical rainfall in Indonesia (Rahmawati and 
Lubczynski 2018). CMORPH is merged of infrared (IR) 

Fig. 1  The boundaries and the location of 13 rain gauges for validation of satellite-based rainfall assessments in Merapi Aquifer System (MAS)
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and microwave (MW) applying Lagrangian equation to 
retrieve rainfall estimates (Joyce et al. 2004). This rainfall 
product does not use rain gauge data for rainfall retrieval. 
There is no adjustment with rain gauge data to obtain 
rainfall estimates of CMORPH. The version used in this 
paper is purely from satellite sensors. This satellite-only 
rainfall estimate is called CMORPH version 0.x, while 
the gauge-adjustment version is called CMORPH version 
1.0 (Joyce et al. 2010). It is not only because this version 
is the best performance in Bali Island (Rahmawati 2020), 
but also because it shows the improvement performance of 
a satellite-only product. The poor quality and the lack of 
spatial representation of the gauges that are used for bias 
correction are probably the reason satellite-only products 
have a good performance in rainfall estimates compared 
to satellite-gauge bias-corrected products (Habib et al. 
2014). The data of CMORPH or CMORPH version 0.x 
is downloaded with the support of ILWIS ISOD Toolbox 
(Maathuis et al. 2014).

The GPM IMERG satellite data is multi-satellite algo-
rithms from the component of TRMM TMPA, CMORPH-
KF, PERSIANN-CCS (Huffman et al. 2019). This is a grid-
ded rainfall estimates product that GPM-CO (GPM Core 
Observatory) and its partners of satellite precipitation esti-
mates along with geostationary IR sensors to fill the gaps 
between MW sensors by Lagrangian time interpolation 
or Lagrangian morphing and monthly precipitation data. 
GPM-CO uses the most advanced precipitation sensors in 
space currently. It is the precipitation sensors successors of 
TRMM (Hou et al. 2014). GPM IMERG (IMR) provides 
quasi-global satellite rainfall estimates from 60° N to 60°S. 
It is available in grid of 0.1° spatial resolution (roughly 
10 km × 10 km at the equator) and 30-min temporal resolu-
tion (O and Kirstetter 2018; Skofronick-Jackson et al. 2018). 
The datasets are downloaded on a daily basis from 1 Janu-
ary 2008 to 31 December 2012 using this link https:// gpm1. 
gesdi sc. eosdis. nasa. gov/ data/ GPM_ L3/ GPM_ 3IMER GDF. 
06. In this research, we use the final run and current version 
of GPM IMERG that is version 06. It is because this ver-
sion has (i) the inclusion of additional sensors specifically 
of TRMM, (ii) parent GPM product improvement, and (iii) 
the refinement of morphing components (Freitas et al. 2020).

TRMM TMPA 3B42 version 7 is a bias-corrected satellite 
rainfall product of TMPA (Guo et al. 2015). It is the merged 
product of infrared from geosynchronous satellites and pas-
sive microwave from low orbit satellites. It covers between 
coverage of 50° N to 50° S. It is available in gridded of 0.25° 
spatial resolution (about 27 km × 27 km at the equator) and 
3-h temporal resolution. TRMM (TR) and GPM are used to 
characterize the changes in the earth water cycle, freshwater 
fluxes, and reservoirs, and to advance the prediction of natu-
ral disasters and extreme weather (Skofronick-Jackson et al. 
2018). The webpage to obtain a daily temporal resolution 

of this data is https:// disc2. gesdi sc. eosdis. nasa. gov/ data/ 
TRMM_ L3/ TRMM_ 3B42_ Daily.7.

CHIRPS satellite data is a quasi-global rainfall data that 
is available from 50° N to 50° S and 180° E to 180° W 
coverages (Aksu and Akgül 2020). This dataset is available 
from 1981 to present (Sacré Regis M. et al. 2020). CHIRPS 
(CHR) is a high resolution of satellite observation and 
imagery that provides shorted low latency, high resolution, 
low bias, and long period of precipitation gridded datasets 
for drought monitoring and climate change analysis (Funk 
et al. 2015; Liu et al. 2019). The source of CHIRPS satellite 
rainfall estimates is from monthly precipitation data, geosta-
tionary satellite thermal IR observation, TRMM 3B42, and 
in situ precipitation observation (Funk et al. 2014). CHIRPS 
is available for a 0.05° spatial resolution (about 5 km × 5 km 
at the equator) and daily temporal resolution. The datasets 
are available in this link https:// data. chc. ucsb. edu/ produ cts/ 
CHIRPS- 2.0/ global_ daily/ tifs. The datasets are downloaded 
with the same period with ground rainfall estimates from 
rain gauge.

2.2  Methodology

The performance of 4 satellite-based rainfall assessments 
was assessed applying descriptive statistics, categorical 
statistics, and bias decomposition adapting Rahmawati and 
Lubczynski (2018). The modification is performed by the 
assessment of satellite-based rainfall applying 4 rainfall 
intensity classifications adapting from BMKG (2010). It is 
done so that it is to be able to evaluate the performance 
of satellite rainfall estimates in much detail in each rain-
fall classification. Most rainfall intensity occurs from light 
to moderate rain so that rainfall intensity from heavy to 
extreme is categorized as one classification. The modifica-
tion of rainfall intensity classification is shown in Table 1. 
The formula for descriptive statistics consists of mean error 
(ME) and root mean square error (RMSE) as shown in Eqs. 1 
and 2. The assessment was performed for each station in 
each season division separately. Since satellite-based rainfall 
is not good performance in transition season in the tropical 
climate of Bali (Rahmawati 2020), the division of season 
was based on the following assumptions: (i) wettest months 
in wet period (January to March or Jan-March), (ii) wet 
months in wet period (October to December or Oct-Dec), 

Table 1  Rainfall intensity classification

Rainfall intensity (mm/day) Classification

0 No rain
0 < rain < 20 Light rain
20 ≤ rain < 50 Moderate rain
 ≥ 50 Heavy to extreme rain
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(iii) dry months in dry period (April to June or Apr-Jun), 
and (iv) driest months in dry period (July to September or 
Jul-Sep). The representative and different location of stations 
will be assessed to evaluate the performance of satellite-
based rainfall in much detail. These selected rain gauges 
stations are shown in Fig. 1.

In Eqs. 1–2, T is total number of daily rainfall events in 
each rainfall intensity classification from 2008 to 2012 (i.e., 
T is number of days for 0 mm·day−1 (no rain) for January to 
March from 2008 to 2012), Rst is the value of rainfall based 
on satellite-based rainfall at time series t, and Rgt is the value 
of rainfall based on rain gauge at time series t.

Categorical statistics and bias decomposition are also 
classified based on rain intensity. Categorical statistics and 
bias decomposition were calculated for each 13 available 
rain gauges. Contingency table for categorical statistics is 
expressed in Table 2, while the formula for bias decompo-
sition is shown in Eqs. 3–7 adapting from Rahmawati and 
Lubczynski (2018). The contingency table in Table 2 shows 
the example of contingency table for zero rain (0 mm·day−1) 
and light rain (0 mm·day−1 < rain < 20 mm·day−1), and other 
rainfall intensity class follows this example. The perfor-
mance of satellite-based rainfall for categorical statistics in 
detecting no rain is assessed from CN and FA, while for rain-
fall intensity > 0 mm·day−1, i.e., light rain to extreme rain, is 
assessed from H and M. In bias decomposition, the assess-
ment of no rain detection is based on Rs (or it is equal to TB 
for no rain since only FB available), while AHB and MB are 
for rainfall intensity > 0 mm·day−1 (light to extreme rain).

(1)ME =
1

T

∑T

t=1

(
Rst − Rgt

)

(2)RMSE =

√
1

T

∑T

t=1

(
Rst − Rgt

)2

In Table 2, FA is when satellite-based rainfall detects 
rainfall and rain gauge detects no rainfall, CN is when both 
satellite-based rainfall and rain gauge detects no rainfall, H 
is the daily event when both satellite-based rainfall and rain 
gauge detects rainfall, and M is when satellite-based rainfall 
detects no rainfall and rain gauge detects rainfall.

where HB is hits bias, AHB is absolute hits bias, MB is miss 
bias, FB is false bias, and TB is total bias.

3  Result

The result of descriptive statistics applying mean error (ME) 
to validate 4 satellite-based rainfall assessments for 4 inten-
sity classification in MAS is presented in Figs. 2, 3, 4, and 5. 
The boxplots made for no rain detection for different seasons 
are shown in Fig. 2. All 4 satellite-based rainfall assessments 
generally overestimate no rain events in dry and wet periods 
especially on driest months (Jul-Sep) and wettest months 
(Jan-March). CM is mostly only slightly overestimates no 
rain, while CHR highly overestimates no rain compared to 
others. TR and IMR have comparable performance in detect-
ing no rain. The difference value of ME between those two 
can be 0 mm·day−1 and mostly below 1.0 mm·day−1.

The boxplot of ME of 4 satellite-based rainfall assess-
ments against 5 rain gauges to detect light rain is presented 
on Fig. 3 for 4 seasons separately. The performance of 4 
satellite-based rainfall assessments is inconsistent to detect 
light rain. All 4 satellite-based rainfall assessments can be 
overestimated and underestimated to detect light rain from 
gauge observation. The performance of all satellite-based 
rainfall is generally similar which is no one is superior to 
one another for all seasons. But, it can be noted that CHR 
often has lowest underestimation and overestimation on dri-
est months (Jul-Sep) compared to CM, IMR, and TR. Both 
IMR and TR performances are mostly comparable compared 
to both CM and CHR.

The ME boxplot for 4 satellite-based rainfall assessments 
against 5 rain gauges to detect moderate rain is presented in 

(3)HB =

∑T

t=1

(
Rst − Rgt

)

(4)AHB =

∑T

t=1
||Rst − Rgt

||

(5)MB =

∑T

t=1

(
Rgt

)
∶

(
Rst = 0;Rgt > 0

)

(6)FB =

∑T

t=1

(
Rst − Rgt

)
∶

(
Rst > 0;Rgt = 0

)

(7)TB = HB +MB + FB

Table 2  Contingency table for no rain and light rain

FA is when satellite-based rainfall detects rainfall and rain gauge 
detects no rainfall, CN is when both satellite-based rainfall and rain 
gauge detects no rainfall, H is the daily event when both satellite-
based rainfall and rain gauge detects rainfall, and M is when satellite-
based rainfall detects no rainfall and rain gauge detects rainfall

Contingency table for no rain Rain 
gauges = 0 mm/day

Satellite-based rainfall > 0 mm/day FA
Satellite-based rainfall = 0 mm/day CN
Contingency table for light rain 0 < rain 

gauges < 20 mm/
day

Satellite-based rainfall > 0 mm/day H
Satellite-based rainfall = 0 mm/day M
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Fig. 4 for 4 season divisions separately. The satellite prod-
ucts underestimate moderate rain from rain gauges because 
rainfall amount from satellite products is lower compared 
to gauges rainfall amount. CHR mostly has a larger discrep-
ancy compared to rain gauges on wet periods on Jan-March 

and Oct-Dec, while TR has lower discrepancy on Jan-March 
and IMR on Oct-Dec. CHR consistently performs underes-
timation on moderate rain on wet and wettest months. CHR 
has the largest underestimation of moderate rain, while TR 
is the lowest.

Fig. 2  The boxplot of daily mean error (ME) of 4 satellite-based rainfall assessments against 5 selected rain gauges for rainfall intensity 
0 mm·day−1 (no rain) from 1 January 2008 to December 2012

Fig. 3  The boxplot of daily mean error (ME) of 4 satellite-based rainfall assessments against 5 selected rain gauges for light rain from 1 January 
2008 to December 2012
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The boxplot made for daily ME of 4 satellite-based 
rainfall assessments against 5 rain gauges to detect heavy 
to extreme rain is presented in Fig. 5. CHR is the most 
underestimate rainfall on the wettest months of Jan-
March and on driest months of Jul-Sep, while CM is 

mostly on Apr-Jun. IMR and TR mostly have comparable 
performance.

The daily RMSE of 4 satellite-based rainfall assessments 
against 5 rain gauges to detect no rain is shown in Table 3. 
From this table, it can be described that CHR has superior 

Fig. 4  The boxplot of daily mean error (ME) of 4 satellite-based rainfall assessments against 5 selected rain gauges for moderate rain from 1 
January 2008 to December 2012

Fig. 5  The boxplot of daily mean error (ME) of 4 satellite-based rainfall assessments against 5 selected rain gauges for heavy to extreme rain 
from 1 January 2008 to December 2012
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performance compared to 3 other satellite products. It mostly 
has the lowest RMSE in almost all 4 seasons from January 
to December. TR has the worst performance in detecting no 
rain on the wettest months (Jan-March), while CM on dry 
(Apr-Jun) and driest months (Jul-Sep). Both of them mostly 
have the largest value of RMSE. Only on very few occasions 
on the driest months (Jul-Sep), CM has lowest discrepancy 
with rain gauges compared to CHR.

The performance of CHR shows the lowest value of 
RMSE to detect light rain (Table 4) on wettest months (Jan-
March), dry months (Apr-Jun), driest months (Jul-Sep), 
and wet months (Oct-Dec). The degree of discrepancy of 
CHR with rain gauge observation is much lower compared 
to other satellite-based rainfall assessments. The value of 
RMSE of CHR is very lower compared to the 3 satellite 
products especially with CM on driest months. CM has the 
largest RMSE on dry and driest months of April to Septem-
ber. CM and TR have a good performance compared to IMR 
on Oct-Dec. CM and TR have larger value of RMSE on the 
wettest months.

The RMSE value of CHR is mostly the lowest to detect 
moderate rain on Jan-March (Table 5). The largest values 
of RMSE of CM occur on Apr-Jun. CM is more frequent 
to have a large RMSE value compared to others on driest 
months of Jul-Sep. The value of CHR RMSE is the low-
est on wet months of Oct-Dec, while the largest is CM. It 
seems CHR is superior to detect moderate rain on wet and 

wettest months. IMR and TR have comparable performance; 
the frequency of superiority performance to detect moder-
ate rain for one another is similar. IMR and TR have better 
performance on dry periods which are on driest months or 
on dry months.

The performance of satellite-based rainfall is mostly com-
parable to detect heavy to extreme rain (Table 6). Mostly, 
IMR has low RMSE values. CM mostly has better perfor-
mance in the driest months from July to September. CHR 
often has large RMSE values, followed by CM. It seems 
most satellite products have difficulty in estimating heavy 
to extreme rain because there is no clear indication of which 
satellite product is inferior to one another in each season 
division.

The performance of satellite products in detecting no rain 
(0 mm·day−1) is assessed from the frequencies of correct 
negatives (CN) and false alarm (FA) as in Fig. 6. CM has 
the best performance in detecting no rain on wettest months 
(Jan-March), followed by TR and CHR. Mostly more than 
90% of no rain events can be detected by CM. IMR is the 
worst to detect no rain in wettest months. The frequency 
of CN for IMR is the lowest which also occurs in the wet 
months of October to December. CM occasionally has a 
good performance to detect no rain on dry and driest months 
from April to September, followed by TR. IMR often has 
difficulty detecting no rain from April to September com-
pared to CHR. The satellite products are more superior to 

Table 3  The daily root mean square error (RMSE) of 4 satellite-based rainfall assessments against 5 rain gauges for rainfall intensity 0 mm·day−1 
(no rain) from 1 January 2008 to December 2012

No Station Month CM IMR TR CHR

1 Pundong Jan-March 14.2 15.3 16.5 11.2
Apr-Jun 10.9 11.4 10.1 7
Jul-Sep 5.2 5.1 5.2 4.1
Oct-Dec 8.7 11.3 11.5 7.4

2 Beran Jan-March 16.3 17 18 13.1
Apr-Jun 13.1 13 8.6 6.4
Jul-Sep 4.9 2.8 3.6 2.6
Oct-Dec 18.7 14.4 14.4 9

3 Tanjungtirto Jan-March 14.6 16.2 16.6 13.9
Apr-Jun 16.6 11.1 10.1 7.2
Jul-Sep 2.5 3.6 3.4 3.2
Oct-Dec 17 16.8 17.8 8.9

4 Bronggang Jan-March 18.5 15.4 17.6 15
Apr-Jun 13.8 10.1 11.5 10
Jul-Sep 8.7 5.4 5.3 4.5
Oct-Dec 12.3 12.4 12.5 10.8

5 Kemput Jan-March 17.6 17.9 17.6 14.8
Apr-Jun 20.9 10.7 10 9.2
Jul-Sep 7.9 3 5 4.1
Oct-Dec 20.1 15 14 12
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Table 4  The daily root mean square error (RMSE) of 4 satellite-based rainfall assessments against 5 rain gauges for light rain from 1 January 
2008 to December 2012

No Station Month CM IMR TR CHR

1 Pundong Jan-March 11.4 14.4 15.7 9.3
Apr-Jun 17.1 16.7 13.8 10.6
Jul-Sep 23.9 20.1 11.5 6.8
Oct-Dec 15.5 17.5 17.7 8.4

2 Beran Jan-March 18.5 16.1 14.5 11.5
Apr-Jun 14.8 10.9 13.3 8.7
Jul-Sep 15 14.3 13.2 7.7
Oct-Dec 18.2 17.5 13.3 8.5

3 Tanjungtirto Jan-March 18.2 19.2 17.6 11.1
Apr-Jun 15.3 17.2 17 10.4
Jul-Sep 23.1 18.3 12.9 6.1
Oct-Dec 21.5 21.1 15.3 8.4

4 Bronggang Jan-March 19 19.6 20 12.7
Apr-Jun 36.1 12.8 13.7 13.4
Jul-Sep 11 12.5 12.9 9.4
Oct-Dec 16.5 16.2 16.7 11.4

5 Kemput Jan-March 19.2 19.9 17.6 12.7
Apr-Jun 12.1 15.5 14.9 12
Jul-Sep 10.8 16.6 10.1 9.9
Oct-Dec 22.6 17.9 18.5 11.6

Table 5  The daily root mean square error (RMSE) of 4 satellite-based rainfall assessments against 5 rain gauges for moderate rain from 1 Janu-
ary 2008 to December 2012

No Station Month CM IMR TR CHR

1 Pundong Jan-March 28.5 27.4 22.1 20.1
Apr-Jun 29.2 26.1 22.6 22.8
Jul-Sep 27.6 22.7 23.8 24.7
Oct-Dec 32.5 25 25.9 22.8

2 Beran Jan-March 32.6 244.1 225.7 204
Apr-Jun 169.3 175.3 176.8 147.5
Jul-Sep 90.3 89 89.8 96.5
Oct-Dec 230 218.3 230.6 190.8

3 Tanjungtirto Jan-March 188.2 189.7 178.2 143.6
Apr-Jun 101.7 99.5 102 101
Jul-Sep 80 69.1 69.1 72.4
Oct-Dec 141.4 136.5 136.5 132.1

4 Bronggang Jan-March 276.3 253.3 247.1 227.3
Apr-Jun 148 145.2 120.2 128.8
Jul-Sep 67.6 61.3 65.8 60
Oct-Dec 241.7 174.7 166.9 136.6

5 Kemput Jan-March 25.8 25.8 22.5 20.2
Apr-Jun 34.1 32.8 27 26.9
Jul-Sep 32.3 33.4 34.1 32.2
Oct-Dec 30.6 27.2 28.1 25
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detect no rain on wet periods (wet and wettest months) than 
on dry periods (dry and driest months).

IMR mostly has the largest hits (H) frequencies to detect 
light rain on both wet and dry periods, followed by CHR 
and TR (Fig. 7). More than 88% of light rain events can be 
detected by IMR on wettest months, while CHR more than 
81%. TR occasionally has a good performance compared 
to CHR on dry or driest months so that TR sometimes has 
larger H and lower M compared to CHR in these dry periods. 
CM has the lowest frequency of H for light rain. As a result, 
CM has the largest number of M. The frequency of M for 
CM is lower on dry and driest months compared to wet and 
wettest months, especially on driest months. More than 50% 
of light rain can be detected by CM on the driest months of 
July to September.

The spider chart of H and M frequencies in detecting 
moderate rain for 4 satellite-based rainfall assessments 
against 5 rain gauges from 1 January 2008 to 31 Decem-
ber 2012 is shown in Fig. 8 for each season separately. The 
performance of 4 satellite products to detect moderate rain 
almost similar to light rain. IMR is more often to have the 
largest H frequency, followed by CHR and TR. More than 
90% of light rain events can be detected by IMR on wettest 
months, while CHR more than 84%. But occasionally, the 
performance of IMR, CHR, or TR is comparable on dry or 
driest months. The frequency of H for CM is mostly the 
lowest in all seasons.

CM is not a good performance to detect heavy to extreme 
rain (Fig. 9). It has the lowest frequency of H and largest 
frequency of M. IMR has the largest frequency number of 
H to detect heavy to extreme rain, followed by CHR. TR is 
a better performance than CM. It has a lower frequency of 
M than CM.

The spatial maps of Rs or TB in detecting no rain 
(0 mm·day−1) for 4 satellite-based rainfall assessments 
against 5 rain gauges from 1 January 2008 to 31 December 
2012 are shown in Fig. 10. CM has the lowest Rs or TB on 
the wettest months of January to March, while CHR is the 
largest. IMR has a better performance compared to TR. 
CM mostly has the lowest TB on driest and wet months. It 
means CM has the largest accuracy to detect no rain. IMR 
and CHR have larger TB compared to TR in dry months of 
April to June. The station located near a mountain range 
or mountain rise, i.e., Tanjungtirto and Kemput, has larger 
TB values compared to other stations. It is because satellite 
products falsely detect rainy events leading to large value 
of TB. Mostly, only 10–20% of no rain can be detected by 
satellite products on wet periods, except for CM. It is prob-
ably the wind flow from south to north that makes satellite 
products falsely detect rainy events. The air mass flows 
from the sea sweep away to the direction of mountain peak 
of volcano to create orographic precipitation. Particularly, 
the wind speed is mostly slower in wet periods than dry 
periods. The wind speed is approximately 80 km/day (~ 1.8 

Table 6  The daily root mean square error (RMSE) of 4 satellite-based rainfall assessments against 5 rain gauges for heavy to extreme rain from 1 
January 2008 to December 2012

No Station Month CM IMR TR CHR

1 Pundong Jan-March 62.8 46.4 48 64.2
Apr-Jun 86 82.9 75 79.4
Jul-Sep 66 51.3 52.6 59.2
Oct-Dec 55.2 51.2 54.6 59.9

2 Beran Jan-March 342.4 339.6 346.8 342.1
Apr-Jun 167.2 167.6 169.2 193
Jul-Sep 96.5 79.3 104.4 107.2
Oct-Dec 355.4 341.4 353.8 347.8

3 Tanjungtirto Jan-March 141.9 122.9 124.5 139.2
Apr-Jun 65.4 41.9 36.4 50.5
Jul-Sep 20.5 45.9 33.7 47.1
Oct-Dec 169.2 169.2 173.1 177

4 Bronggang Jan-March 304.6 293.8 303.8 307
Apr-Jun 210.1 182.5 197.4 193.4
Jul-Sep 116 137.4 132.9 138
Oct-Dec 230.2 235.7 239.5 246

5 Kemput Jan-March 63.1 65.9 55.3 69.6
Apr-Jun 55.5 61.1 52.6 54.7
Jul-Sep 47.5 61.3 60.3 65.2
Oct-Dec 66.3 63.6 63 59.8
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knots/day) near mountain rise in wet periods, while in dri-
est months of July to September 100 km/day (2.25 knots/
day).

The spatial map radar chart of bias decomposition com-
ponent for MB and AHB in detecting light rain for 4 satel-
lite-based rainfall assessments against 5 rain gauges from 
1 January 2008 to 31 December 2012 is shown in Fig. 10. 
IMR generally has the lowest MB and CM has the largest 
MB in detecting light rain on wet and dry periods. The MB 
values of CM are much larger compared with MB values 
of CHR in wet periods and TR in dry periods. CHR has 
lower MB compared to TR on wet and wettest periods. It 
is an opposite condition on dry and driest months; TR has 
lower MB compared to CHR. All satellite products have 
large values of AHB on Jan-March (wettest months) and 
Oct-Dec (wet months). All of them have large values of 
AHB near the mountain range. AHB of CHR has the lowest 
values on wet and wettest months indicating this satellite-
based rainfall is a good performance to detect rain amount 

on wet periods. IMR mostly has the largest values of AHB 
on all seasons on wet and dry periods. IMR is not a good 
performance to detect rain amount of light rain.

IMR and CHR mostly have comparable performance to 
detect moderate rain compared to CM and TR on wettest 
and dry months (Fig. 10). Both of them have low values 
of MB. CM is poor performance than TR. IMR has a good 
performance in wet months of October to December, fol-
lowed by CHR and TR. CM has the largest MB values in 
these months. IMR has low values of MB because it has 
the lowest M frequency to detect rainfall intensity more 
than 0 mm·day−1. But IMR has the largest value of AHB 
indicating this satellite product is not a good performance 
to detect rain amount. CM generally has the lowest AHB 
in all periods, followed by CHR. For example, in Brong-
gang Station, the accuracy of IMR to detect rain amount 
is 1/3 of CM, while 1/2 of CHR. However, all satellite-
based rainfall assessments have the largest values of AHB 
in Bronggang station near the top of Merapi Volcano. It is 

Fig. 6  The radar chart of (FA and CN) of 4 satellite-based rain-
fall assessments against 5 selected rain gauges for rainfall intensity 
0 mm·day−1 (no rain) from 1 January 2008 to December 2012. The 

scale of radar chart is similar only for each season depending on min-
imum and maximum frequency values in each season
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probably the orographic events surrounding this mountain 
that make satellite products have difficulty estimating rain 
amount.

CHR is not a good performance to estimate heavy to 
extreme rain (Fig. 10). It mostly has the largest AHB val-
ues. The second place that has large AHB values is IMR 
or TR. Usually, IMR is a good performance compared to 
TR on driest months of Jul-Sep, while TR on dry months 
of Apr-Jun. On high altitudes of rain gauge stations, such 
as Bronggang, Kemput, and Tanjungtirto, CHR has better 
accuracy to detect heavy to extreme rain on wet periods 
compared to IMR and TR. This satellite product has lower 
AHB values than IMR and TR in wet periods. CM has the 
largest accuracy to detect rain amount of heavy to extreme 
rain. The value of AHB for CM is the lowest. In contrast 
with AHB values, MB of CM is the largest. IMR mostly 
has the lowest MB values and CHR has better accuracy 
than TR to estimate heavy to extreme rain. CM has the 
largest frequency of M so that the value of MB will be 
large although CM is a good accuracy to estimate rain 

amount. The second place to have a good accuracy to esti-
mate rain amount is CHR.

4  Discussion and conclusion

A sparse density of rain gauge is a challenging task to esti-
mate strong spatial–temporal variability of precipitation 
in the tropics (Rahmawati and Lubczynski 2018). Accu-
rate and reliable satellite-based rainfall is necessary to be 
merged with gauge-based rainfall to catch the diurnal cycle 
of precipitation in the tropics (Rahmawati 2020). Before 
satellite-based rainfall is merged to rain gauge observation, 
it is important to evaluate the performance of satellite-based 
rainfall. One of the ways to evaluate the performance of sat-
ellite-based rainfall is by the direct comparison of satellite-
based rainfall against gauge observations or point-to-point 
comparison as applied in MAS (Bai and Liu 2018; Belay 
et al. 2019; Chen et al. 2016; Luo et al. 2019). There are 
several considerations to evaluate the performance of sat-
ellite-based rainfall: (i) the detailed knowledge of rainfall 

Fig. 7  The radar chart of (H and M) of 4 satellite-based rainfall assessments against 5 selected rain gauges for light rain from 1 January 2008 to 
December 2012. The scale of radar chart is similar only for each season depending on minimum and maximum frequency values in each season
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characteristics, (ii) algorithm of satellite-based rainfall, and 
(iii) resolution of satellite-based rainfall.

The detailed knowledge of rainfall characteristics, i.e., 
rainfall intensity, is essential to evaluate remotely sensed 
rainfall estimates (Mandapaka and Qin 2013). It is important 
to provide nature and characteristics of rainfall and better 
prediction of hydrologic response in watersheds and urban 
areas (Chen et al. 2016) since rainfall exhibit different mean 
value and variability at daily time series (Choubin et al. 
2019). The error estimation of satellite-based rainfall in fre-
quencies and intensities of daily precipitation influences the 
simulation result of surface water, sub-surface water, evapo-
transpiration, and different amounts and proportion of simu-
lated water balance components (Luo et al. 2019). The daily 
satellite-based rainfall (CM, IMR, TR, and CHR) assess-
ments mostly overestimate rainfall intensity ≤ 20 mm·day−1. 
It is because satellite estimation from infrared and micro-
wave leads to an overestimation of rainfall amount due to 
ignorance of the surface altitude in the algorithm. Evapora-
tion of rainfall below the cloud base in complex terrain is 

not counted because rainfall retrieval is from brightness tem-
perature at cloud top (Scheel et al. 2011). The satellite-based 
rainfall overestimates rainfall in MAS because of the pos-
sibility of cloud microphysical, rain processes, and moisture 
distribution in the environment (McCollum et al. 2000). The 
daily satellite-based rainfall underestimates rainfall inten-
sity ≥ 50 mm·day−1. The range of underestimation is much 
higher especially for extreme rainfall (≥ 150 mm·day−1). It 
is probably satellite-based rainfall has a tendency to under-
estimates convective rain amounts (Bell and Kundu 2003). 
In convective system, infrared estimates rainfall from cirrus 
cloud that does not produce any precipitation (Scheel et al. 
2011).

A multitude of techniques are developed and available 
for the estimation and retrieval of rainfall for satellite sen-
sors (Kidd and McGregor 2007). The algorithm of satellite-
based rainfall is mainly based on microwave and infrared 
sensors together with ground-based data (radar or rain 
gauge) or multiple sensors (Freitas et al. 2020; Kidd and 
Levizzani 2011; Tapiador et al. 2012). The nature of the 

Fig. 8  The radar chart of (H and M) of 4 satellite-based rainfall 
assessments against 5 selected rain gauges for moderate rain from 
1 January 2008 to December 2012. The scale of radar chart is simi-

lar only for each season depending on minimum and maximum fre-
quency values in each season
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error can change with the update of retrieval algorithm and 
the change of data source leading to different performances 
of satellite-based rainfall for different regions, seasons, 
and precipitation types, i.e., rainfall intensity (Ebert et al. 
2007; Guo et al. 2015). CHIRPS (CHR) is best performed 
compared to other satellite-based rainfall assessments. This 
satellite product mostly shows the lowest RMSE especially 
in rainfall intensity < 50 mm·day−1. CHR has the best per-
formance because apparently, the infrared precipitation 
determines to effectively represent some of the systematic 
climate effects of complex terrain (Funk et al. 2014). TR 
and IMR have almost similar performances. The value of 
rainfall amount occasionally is similar or comparable. It is 
because the new satellite sensors and algorithm from TR to 
IMR lead to mixed performance regarding various rainfall 
intensities (He et al. 2017).

The different performances observed for different rain-
fall intensities could be attributed to the intrinsic features 
of satellite-based rainfall, i.e., TR and IMR, produced by 

algorithmic and sensors discrepancy (He et al. 2017). CM 
has the best performance in detecting no rain. CM has the 
most frequent hits (H) for no rain that is why this satellite 
product has the lowest overestimation toward rain gauge 
data. Mostly, all satellite-based rainfall assessments per-
form worse in estimating rainfall intensity ≥ 50 mm·day−1. 
CHR also performs worse in detecting heavy to extreme 
rain. It can be seen from the larger values of RMSE com-
pared to others. It is in agreement with Funk et al. (2015). 
IMR generally has a good performance compared with TR. 
IMR advanced satellite sensors leading the IMR to detect 
the occurrences of light rain and extreme heavy rain ranks 
better than TR does, although IMR tends to produce signifi-
cant overestimation of the amounts of extreme rain events 
(He et al. 2017).

The performance of satellite products is different for dry 
and wet periods. The performance of satellite-based rainfall 
is good in wet periods (wet and wettest months) and worse 
in dry periods (dry and driest months) such as CHR. It is 

Fig. 9  The radar chart of (H and M) of 4 satellite-based rainfall 
assessments against 5 selected rain gauges for heavy to extreme rain 
from 1 January 2008 to December 2012. The scale of the radar chart 

is similar only for each season depending on minimum and maximum 
frequency values in each season
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probably the rain rate variability especially during dry sea-
sons is likely to be much stronger and tend to have strong 
diurnal modulations for satellite algorithm (Bell and Kundu 
2003). It is also because of limited ability to differentiate 
drizzle or frozen rainfall during the later period (Wu et al. 
2019). CM and TR mostly have a good performance in dry 
periods. It is because of the inability of the technique to 
retrieve precipitation during wet season, either through 
greater low-intensity precipitation or because of cold surface 
background affecting PMW retrievals (Kidd et al. 2012).

Satellite-based rainfall is able to detect spatial and tempo-
ral variability of rainfall at finer resolution (Chen et al. 2016; 
Rahmawati 2020). The resolution and time step of spatial 
satellite-based rainfall influence the accuracy and outcome 
of precipitation-based analysis (Gupta et al. 2020), i.e., the 
lowest RMSE values of CHR. However, it is not fully in 
agreement based on this research in MAS. The advanced 
algorithm of satellite-based rainfall also gives an effect on 
the accuracy to estimate rainfall, i.e., lowest MB values of 
IMR. CHR mostly is in the second place to have low values 

of MB. The traditional algorithm of satellite-based rainfall 
that does not use rain gauge data to estimate rainfall also 
influences the accuracy of rainfall estimates, i.e., the largest 
H frequency of CM for no rain detection and lowest values 
of AHB of CM. It is because rain gauge data that is used 
for bias correction or bias adjustment for satellite rainfall 
estimates do not represent the study area.

Eastern and western MAS are generally treated as cli-
matically separate units that influence modulation pre-
cipitation in the groundwater basin of MAS. It is perhaps 
one of the reasons satellite-based rainfall is not a good 
performance to detect certain rainfall amounts in MAS. 
All 4 satellite-based rainfall assessments are also poor in 
estimating moderate to extreme rain, although CHR mostly 
shows better performance compared to others. All satellite 
products mostly have large values of AHB along the moun-
tain range. The rain may not fall with equal possibilities at 
different times of the day at different points such as near 
the coast and near mountain range (Bell and Kundu 2003). 
PMW sounding instruments are relatively insensitive to 

Fig. 10  The spatial maps of radar chart of (Rs or TB) of 4 satellite-
based rainfall assessments for no rain and the spatial maps of radar 
chart of (MB and AHB) of 4 satellite-based rainfall assessments for 

light to extreme rain against 5 selected rain gauges from 1 January 
2008 to December 2012
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surface emissions and therefore are essentially immune to 
cold background issues (Kidd et al. 2012) such as along 
mountain range or hills. Therefore, satellite-based rainfall 
has low accuracy to detect rainy events along mountain 
range or hills in MAS. It shows from large values of MB 
and AHB along hills and mountain ranges.

It is recommended to validate 4 satellite-based rainfall 
assessments based on streamflow simulation in the hydro-
logical modeling framework before it applies for water 
resources application and related studies. It is because 
point-to-point comparison or simple interpolation can cre-
ate bias (Chen et al. 2016) and the error of satellite-based 
rainfall can show in time series streamflow simulation (Bai 
and Liu 2018). The satellite product can be corrected with 
rain gauge data and/or merged with other satellite products 
to obtain the advantages of each satellite product. It is bet-
ter not to merge IMR and TR because both of them often 
have comparable performance and IMR is an improvement 
algorithm of TR. It is also possible to use certain satellite 
product with good performance to detect no rain so that it 
is good for drought application such as CM in dry periods 
and CHR in wet periods or a combination of both. It is 
because CM has a good performance to detect no rain and 
mostly has lowest values of AHB from light to extreme 
rain, while CHR has a good performance to estimate light 
to moderate rain. CHR mostly has the lowest RMSE val-
ues, low values of AHB (after CM), and low values of MB 
(after IMR). CHR mostly has better performance com-
pared to others.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00704- 021- 03731-9.

Acknowledgements The authors would like to thank the Department 
of Water Resources, Faculty of Geo-Information Science and Earth 
Observation (ITC), University of Twente, The Netherlands, for the 
software licenses and library access. The authors also would like to 
thank the University of Twente, The Netherlands that kindly provides 
support for funding this article to be an open access article. The authors 
thank Serayu Opak River Basin Organization (BBWS Serayu Opak), 
Ministry of Public Works and Housing in Yogyakarta Special Province, 
Indonesia, for allowing to measure and for providing the data of daily 
rainfall from rain gauge stations and wind speed data from climatol-
ogy stations. The authors thank the Climate Prediction Center, NOAA/ 
National Weather Service, for providing the CMORPH data that can 
be accessed by ITC ILWIS Toolbox. The author thank the NASA/
Goddard Space Flight Center and PPS for developing, computing, and 
providing the dataset of TRMM and GPM IMERG and it is archived at 
the NASA GES DISC. The authors thank the Climate Hazard Center, 
University of California for providing the data of CHIRPS. The authors 
would like to thank anonymous reviewers for the help in improving 
this manuscript.

Author contribution Novi Rahmawati: conceptualization, methodol-
ogy, software, validation, formal analysis, investigation including data 
collection, data curation including software code, visualization, writ-
ing—original draft. Kisworo Rahayu: investigation—data collection, 

and writing—reviewing and editing. Sukma Tri Yuliasari: writing—
reviewing and editing.

Data availability All data published in this article are available upon 
request except the raw data of daily rainfall and wind speed from gauge 
stations. The rain gauge and wind speed data have to be requested from 
Serayu Opak River Basin Organization (BBWS Serayu Opak), Ministry 
of Public Works and Housing in Yogyakarta Special Province, Indone-
sia (http:// sda. pu. go. id/ balai/ bbwss erayu opak/).

Code availability Code is available from the author upon request.

Declarations 

Consent to participate The manuscript has been read and approved 
by all named authors and there are no other persons who satisfied the 
criteria for authorship but are not listed. The order of authors listed in 
the manuscript has been approved by all of the authors.

Consent for publication The authors transfer to Springer the non-
exclusive publication rights. The transfer of publication rights covers 
the non-exclusive rights to reproduce and distribute the article includ-
ing re-prints, translations, photographic reproductions, electric forms 
(online, offline), or any other reproductions of similar nature.

Conflict of interest The authors declare no competing interests.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Ahmed E, Al Janabi F, Zhang J, Yang W, Saddique N, Krebs P (2020) 
Hydrologic assessment of TRMM and GPM-based precipitation 
products in transboundary river catchment (Chenab River, Paki-
stan). Water 12:1902

Aksu H, Akgül MA (2020) Performance evaluation of CHIRPS satel-
lite precipitation estimates over Turkey. Theoret Appl Climatol 
142:71–84

Andersen J, Refsgaard JC, Jensen KH (2001) Distributed hydrological 
modelling of the Senegal River Basin — model construction and 
validation. J Hydrol 247:200–214

Bai P, Liu X (2018) Evaluation of five satellite-based precipitation 
products in two gauge-scarce basins on the Tibetan Plateau. 
Remote Sens 10:1316

Becker A, Braun P (1999) Disaggregation, aggregation and spatial scal-
ing in hydrological modelling. J Hydrol 217:239–252

188 N. Rahmawati et al.

https://doi.org/10.1007/s00704-021-03731-9
http://sda.pu.go.id/balai/bbwsserayuopak/
http://creativecommons.org/licenses/by/4.0/


1 3

Belay AS, Fenta AA, Yenehun A, Nigate F, Tilahun SA, Moges MM, 
Dessie M, Adgo E, Nyssen J, Chen M, Griensven AV, Walraevens 
K (2019) Evaluation and application of multi-source satellite rain-
fall product CHIRPS to assess spatio-temporal rainfall variability 
on data-sparse western margins of Ethiopian highlands. Remote 
Sens 11:2688

Bell TL, Kundu PK (2003) Comparing satellite rainfall estimates with 
rain gauge data: optimal strategies suggested by a spectral model. 
J Geophys Res: Atmos 108. https:// doi. org/ 10. 1029/ 2002J D0026 
41

BMKG (2010) Kondisi Cuaca Ekstrem dan Iklim Tahun 2010–2011. 
BMKG (Indonesia Agency for Meteorology, Climatology, and 
Geophysics), Jakarta

Brauer CC, Overeem A, Leijnse H, Uijlenhoet R (2016) The effect of 
differences between rainfall measurement techniques on ground-
water and discharge simulations in a lowland catchment. Hydrol 
Process 30:3885–3900

Chen H, Yu R, Shen Y (2016) A new method to compare hourly rainfall 
between station observations and satellite products over central-
eastern China. J Meteorol Res 30:737–757

Choubin B, Khalighi-Sigaroodi S, Mishra A, Goodarzi M, Sham-
shirband S, Ghaljaee E, Zhang F (2019) A novel bias correc-
tion framework of TMPA 3B42 daily precipitation data using 
similarity matrix/homogeneous conditions. Sci Total Environ 
694:133680

Derin Y, Anagnostou E, Berne A, Borga M, Boudevillain B, Buytaert 
W, Chang C-H, Delrieu G, Hong Y, Hsu YC, Lavado-Casimiro 
W, Manz B, Moges S, Nikolopoulos EI, Sahlu D, Salerno F, Rod-
ríguez-Sánchez J-P, Vergara HJ, Yilmaz KK (2016) Multiregional 
satellite precipitation products evaluation over complex terrain. J 
Hydrometeorol 17:1817–1836

Duan Z, Liu J, Tuo Y, Chiogna G, Disse M (2016) Evaluation of eight 
high spatial resolution gridded precipitation products in Adige 
Basin (Italy) at multiple temporal and spatial scales. Sci Total 
Environ 573:1536–1553

Ebert EE, Janowiak JE, Kidd C (2007) Comparison of near-real-time 
precipitation estimates from satellite observations and numerical 
models. Bull Am Meteor Soc 88:47–64

Freitas EDS, Coelho VHR, Xuan Y, Melo DDCD, Gadelha AN, San-
tos EA, Galvão CDO, Ramos Filho GM, Barbosa LR, Huffman 
GJ, Petersen WA, Almeida CDN (2020) The performance of the 
IMERG satellite-based product in identifying sub-daily rainfall 
events and their properties. J Hydrol 589:125128

Funk CC, Peterson PJ, Landsfeld MF, Pedreros DH, Verdin JP, Row-
land JD, Romero BE, Husak GJ, Michaelsen JC, Verdin AP (2014) 
A quasi-global precipitation time series for drought monitoring. 
In: Data series. Reston, p 12. Reston, VA. https:// doi. org/ 10. 3133/ 
ds832

Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, 
Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) 
The climate hazards infrared precipitation with stations—a new 
environmental record for monitoring extremes. Sci Data 2:150066

Guo H, Chen S, Bao A, Hu J, Gebregiorgis AS, Xue X, Zhang X (2015) 
Inter-comparison of high-resolution satellite precipitation prod-
ucts over Central Asia. Remote Sens 7:7181–7211

Gupta V, Jain MK, Singh PK, Singh V (2020) An assessment of global 
satellite-based precipitation datasets in capturing precipitation 
extremes: a comparison with observed precipitation dataset in 
India. Int J Climatol 40:3667–3688

Habib E, Haile AT, Sazib N, Zhang Y, Rientjes T (2014) Effect of bias 
correction of satellite-rainfall estimates on runoff simulations at 
the source of the Upper Blue Nile. Remote Sens 6:6688–6708

He Z, Yang L, Tian F, Ni G, Hou A, Lu H (2017) Intercomparisons of 
rainfall estimates from TRMM and GPM multisatellite products 
over the upper mekong river basin. J Hydrometeorol 18:413–430

Hou AY, Kakar RK, Neeck S, Azarbarzin AA, Kummerow CD, Kojima 
M, Oki R, Nakamura K, Iguchi T (2014) The global precipitation 
measurement mission. Bull Am Meteor Soc 95:701–722

Huffman GJ, Stocker EF, Bolvin DT, Nelkin EJ, Tan J (2019) GPM 
IMERG Final Precipitation L3 1 day 0.1 degree x 0.1 degree V06. 
In: Savtchenko A, Greenbelt MD, G.E.S.D.a.I.S.C.G. DISC (eds). 
https:// doi. org/ 10. 5067/ GPM/ IMERG DF/ DAY/ 06

Janowiak JE, Kousky VE, Joyce RJ (2005) Diurnal cycle of precipita-
tion determined from the CMORPH high spatial and temporal 
resolution global precipitation analyses. J Geophys Res Atmos 
110. https:// doi. org/ 10. 1029/ 2005J D0061 56

Joyce R, Janowiak J, Arkin P, Xie P (2004) CMORPH: a method that 
produces global precipitation estimates from passive micro-
wave and infrared data at high spatial and temporal resolution. J 
Hydrometeorol 5. https:// doi. org/ 10. 1175/ 1525- 7541(2004) 005% 
3C0487: CAMTPG% 3E2.0. CO;2

Joyce RJ, Xie P, Yarosh Y, Janowiak JE, Arkin PA (2010) CMORPH: 
a “morphing” approach for high resolution precipitation product 
generation. In: Gebremichael M, Hossain F (eds) Satellite Rain-
fall Applications for Surface Hydrology. Springer, Netherlands, 
Dordrecht, pp 23–37

Kidd C, Bauer P, Turk J, Huffman GJ, Joyce R, Hsu K-L, Braithwaite D 
(2012) Intercomparison of high-resolution precipitation products 
over Northwest Europe. J Hydrometeorol 13:67–83

Kidd C, Levizzani V (2011) Status of satellite precipitation retrievals. 
Hydrol Earth Syst Sci 15:1109–1116

Kidd C, McGregor G (2007) Observation and characterisation of rain-
fall over Hawaii and surrounding region from the Tropical Rainfall 
Measuring Mission. Int J Climatol 27:541–553

Kikuchi K, Wang B (2008) Diurnal precipitation regimes in the global 
tropics. J Clim 21:2680–2696

Kirshbaum DJ, Smith RB (2009) Orographic precipitation in the trop-
ics: large-eddy simulations and theory. J Atmos Sci 66:2559–2578

Liu J, Shangguan D, Liu S, Ding Y, Wang S, Wang X (2019) Evalua-
tion and comparison of CHIRPS and MSWEP daily-precipitation 
products in the Qinghai-Tibet Plateau during the period of 1981–
2015. Atmos Res 230:104634

Luo X, Wu W, He D, Li Y, Ji X (2019) Hydrological simulation using 
TRMM and CHIRPS precipitation estimates in the lower Lan-
cang-Mekong River Basin. Chin Geogra Sci 29:13–25

Ma M, Wang H, Jia P, Tang G, Wang D, Ma Z, Yan H (2020) Applica-
tion of the GPM-IMERG products in flash flood warning: a case 
study in Yunnan, China. Remote Sens 12:1954. https:// doi. org/ 
10. 3390/ rs121 21954

Ma Q, Xiong L, Xia J, Xiong B, Yang H, Xu C-Y (2019) A censored 
shifted mixture distribution mapping method to correct the bias 
of daily IMERG satellite precipitation estimates. Remote Sens 
11:1345

Maathuis B, Mannaerts C, Schouwenburg M, Retsios B, Lemmens R, 
Nkepu MR (2014) In situ and online data toolbox installation, 
configuration and user guide. Faculty of Geo-Information Science 
and Earth Observation, University of Twente, Enschede. https:// 
doi. org/ 10. 13140/2. 1. 3272. 0003

Mandapaka PV, Qin X (2013) Analysis and characterization of prob-
ability distribution and small-scale spatial variability of rainfall in 
Singapore using a dense gauge network. J Appl Meteorol Climatol 
52:2781–2796

McCollum JR, Gruber A, Ba MB (2000) Discrepancy between gauges 
and satellite estimates of rainfall in Equatorial Africa. J Appl 
Meteorol 39:666–679

Michaelides S, Levizzani V, Anagnostou E, Bauer P, Kasparis T, Lane 
JE (2009) Precipitation: measurement, remote sensing, climatol-
ogy and modeling. Atmos Res 94:512–533

O, S., & Kirstetter, P.-E. (2018) Evaluation of diurnal variation of GPM 
IMERG-derived summer precipitation over the contiguous US 
using MRMS data. Q J R Meteorol Soc 144:270–281

189Performance of daily satellite‑based rainfall in groundwater basin of Merapi Aquifer System,…

https://doi.org/10.1029/2002JD002641
https://doi.org/10.1029/2002JD002641
https://doi.org/10.3133/ds832
https://doi.org/10.3133/ds832
https://doi.org/10.5067/GPM/IMERGDF/DAY/06
https://doi.org/10.1029/2005JD006156
https://doi.org/10.1175/1525-7541(2004)005%3C0487:CAMTPG%3E2.0.CO;2
https://doi.org/10.1175/1525-7541(2004)005%3C0487:CAMTPG%3E2.0.CO;2
https://doi.org/10.3390/rs12121954
https://doi.org/10.3390/rs12121954
https://doi.org/10.13140/2.1.3272.0003
https://doi.org/10.13140/2.1.3272.0003


1 3

Park S, Berenguer M, Sempere-Torres D (2019) Long-term analysis of 
gauge-adjusted radar rainfall accumulations at European scale. J 
Hydrol 573:768–777

Pfeifroth U, Trentmann J, Fink AH, Ahrens B (2015) Evaluating satel-
lite-based diurnal cycles of precipitation in the African tropics. J 
Appl Meteorol Climatol 55:23–39

Qian J-H (2008) Why precipitation is mostly concentrated over islands 
in the maritime continent. J Atmos Sci 65:1428–1441

Rahmawati N (2020) Space-time variogram for daily rainfall estimates 
using rain gauges and satellite data in mountainous tropical Island 
of Bali, Indonesia (Preliminary Study). J Hydrol 590:125177

Rahmawati N, Lubczynski MW (2018) Validation of satellite daily 
rainfall estimates in complex terrain of Bali Island, Indonesia. 
Theoret Appl Climatol 134:513–532

Rozante JR, Vila DA, BarbozaChiquetto J, Fernandes ADA, Souza 
Alvim D (2018) Evaluation of TRMM/GPM blended daily prod-
ucts over Brazil. Remote Sens 10:882

Sacré RegisMouhamedKouakouAdelineAronaHouebagnon SaintKoffi 
ClaudeTalnan JeanSalomonIssiaka MDLKBDJCAKHCOS (2020) 
Using the CHIRPS dataset to investigate historical changes in 
precipitation extremes in West Africa. Climate 8:84

Scheel MLM, Rohrer M, Huggel C, Santos Villar D, Silvestre E, Huff-
man GJ (2011) Evaluation of TRMM multi-satellite precipitation 
analysis (TMPA) performance in the Central Andes region and 
its dependency on spatial and temporal resolution. Hydrol Earth 
Syst Sci 15:2649–2663

Skofronick-Jackson G, Kirschbaum D, Petersen W, Huffman G, Kidd 
C, Stocker E, Kakar R (2018) The Global Precipitation Meas-
urement (GPM) mission’s scientific achievements and societal 

contributions: reviewing four years of advanced rain and snow 
observations. Q J R Meteorol Soc 144:27–48

Sorooshian S, AghaKouchak A, Arkin P, Eylander J, Foufoula-
Georgiou E, Harmon R, Hendrickx JMH, Imam B, Kuligowski 
R, Skahill B, Skofronick-Jackson G (2011) Advanced concepts 
on remote sensing of precipitation at multiple scales. Bull Am 
Meteor Soc 92:1353–1357

Stephens GL, Kummerow CD (2007) The remote sensing of clouds 
and precipitation from space: a review. J Atmos Sci 64:3742–3765

Tapiador FJ, Turk FJ, Petersen W, Hou AY, García-Ortega E, Machado 
LAT, Angelis CF, Salio P, Kidd C, Huffman GJ, de Castro M 
(2012) Global precipitation measurement: methods, datasets and 
applications. Atmos Res 104–105:70–97

Wu W, Li Y, Luo X, Zhang Y, Ji X, Li X (2019) Performance evalua-
tion of the CHIRPS precipitation dataset and its utility in drought 
monitoring over Yunnan Province, China. Geomat Nat Haz Risk 
10:2145–2162

Zhang X, Anagnostou EN (2019) Evaluation of numerical weather 
model–based satellite precipitation adjustment in tropical moun-
tainous regions. J Hydrometeorol 20:431–445

Zhu L, Meng Z, Zhang F, Markowski PM (2017) The influence of sea- 
and land-breeze circulations on the diurnal variability in precipita-
tion over a tropical island. Atmos Chem Phys 17:13213–13232

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

190 N. Rahmawati et al.


	Performance of daily satellite-based rainfall in groundwater basin of Merapi Aquifer System, Yogyakarta
	Abstract
	1 Introduction
	1.1 Study area description

	2 Data and methodology
	2.1 Data
	2.2 Methodology

	3 Result
	4 Discussion and conclusion
	Acknowledgements 
	References


